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12 FREQUENCY AND TIME MEASUREMENT 193 

12.1 CONCEPTS, DEFIMTIONS, AND MEASURES 
OF STABILITY 

This chapter deals with the measurement of the frequency or time stability 
of precision oscillators. It is assumed that the average output frequency is 
determined by a narrow-band circuit so that the signal is very nearly a sine 
wave. To be specific, it is also assumed that the output is a voltage, which is 
conventionally (Barnes ef al., 1971) represented by the expression 

V(c) = [V. + E(t)] sin[Zxv,t + &r)]. (12-l) 

where V, is the nominal peak voltage amplitude, s(t) the deviation of 
amplitude from nominal, v,, the nominal fundamental frequency, and H(t) the 
deviation of phase from nominal. 

When either specifying or measuring the noise in an oscillator, one must 
consider the nature of the reference. This may be either a passive circuit such 
as a narrow-band filter, another similar oscillator, or a set of oscillators, 
synthesizers, and other signal-generating equipment. A reference with lower 
noise than the device under test may be available, and in this case the 
expressions developed in this chapter describe the noise in the oscillator 
alone. However, a state-of-the-art device will have lower noise than any 
available reference. In this case all the expressions below refer to the sum of 
device and reference noise. The most common approach to solving this 
problem is to compare two or more nearly identical devices. Under most 
circumstances it is then reasonable to assume that each oscillator contributes 
half of the measured noise. 

The most direct and intuitive method of characterizing the properties of 
a signal is to determine the two-sided spectrum of V(t), which is denoted 
ST(j) (Rutman, 1978). The variablef is called a Fourier frequency and is 
very closely related to the concept of a modulation frequency. A positive 
f indicates a frequency above the carrier frequency vo, while a negative f 
indicates a frequency lower than the carrier. Since the noise can in theory 
modulate the carrier at all possible frequencies, a continuous function is 
required to describe the modulation of V(r). S is called a spectral density and 
Szs(f) is the mean-square voltage (V*(t)) in a unit bandwidth centered at/. It 
is proportional to the rf power per unit bandwidth delivered by the oscillator 
to a matched load. The total signal power is proportional to the mean square 
voltage, which is also called the variance of the signal since the mean value of 
V(t) is zero. The variance is therefore equal to the two-sided spectral density 
integrated over all frequencies. 

The two-sided spectrum is usually measured by an rf spectrum analyzer, a 
device that functions like a bandpass filter followed by a bolometer, as shown 
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194 SAMUEL R. STEIN 

FIG. 12-1 An rf spectrum uul>zer. The device produas an output proportional to the 
mean-square value of the si@ pruing through I tutuble narrow-bnd filter antered at 

f=wwh. 

in Fig. 12-l. The spectrum of the filtered voltage V’(t) is equal to the square 

of the magnitude of the filter transfer function H(f - lo) multiplied by the 
spectrum of the input signal (Cutler and Searle, 1966). The variance of the 
filtered voltage is obtained from Parseval’s theorem: 

&(fo) = IQ IW - fo)l”mf)& (12-2) 
-m 

If the bandpass filter is sufficiently narrow, so that Sa/) changes negligibly 
over its bandwidth, then Eq. (12-2) may be inverted. With this assumption, 
the power spectrum is estimated from the measurement using Eq. (12-3): 

SWO) = 6%,),‘B, (12-3) 

where B = j” o VW’ - lo)12 4 ’ is the noise bandwidth of the filter andf, its 
center frequency. Figure 1 2-2 shows a typical two-sided rf spectrum. For 
many oscillators the spectrum has a Lorentzian shape, that is, 

’ . cf) P 
2( V2>ln Afi,a 

= 1 + (fi(Ajada’2),’ . 
(12-4) 

The Lorenttian lineshape is completely described by the mean square voltage 
(V’) and the full width at half maximum A/368. 

I 

I I 

-1, 0 f, f 

FIG. 12-2 The rf spectrum of a signrl. It is often useful to divide the spectrum inlo the 
carrier and the noise pedestal. The spectral density of the carrier exceeds that of the noise 
pedestal for Fourier frequencies smaller in magnitude thrnf, . 
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12 FREQUENCY AND TIME MEASUREMENT 195 

12.1.1 Relationship between the Power Spectrum and the 
Phase Spectrum 

The power spectrum differs from a delta function S(f) due to the presence 
of the amplitude- and phase-noise terms, s(r) and &t), respectively, included 
in Eq. (12-1). Usually the noise modulation separates into two distinct 
components, so that one observes a very narrow feature called the carrier 
above the level of a relatively broad pedestal. The frequency that separates 
the carrier and pedestal is denoted I,. Below this frequency the spectral 
density of the carrier exceeds that of the pedestal. Assuming that the ampli- 
tude noise is negligible compared to the phase noise and that the phase 
modulation is small, the relationship between the power and phase spectra 
is given by (Walls and DeMarchi, 1975) 

V,z s?(f) s _i-e-ruJ x ‘fA if -fc</</cr 
SF(f), otherwise. 

(12-S) 

S;‘(J) is the two-sided spectrum of the phase fluctuations, which divides 
into a carrier component SFJf) and a pedestal component S&(f); f(f,) is 
given by 

(12-6) 

since abovef, the pedestal dominates the noise spectrum. The variance of the 
carrier is equal to ( V~/2)e-‘(lc), with the remaining variance in the pedestal. If 
Av, is the width of the pedestal and Av, the width of the carrier, then the 
power density in the carrier is equal to that in the pedestal when f(L) = 
In(AvJAv,). For the pedestal, one may use the 3-dB linewidth for Av, 
provided that j/T S,(f) df < In 2. Otherwise the pedestal width is estimated 
from j&z S,(f) df = In 2. For the carrier, the linewidth is estimated by 
calculating j&;2 S,,,(f) df = In 2. 

The foregoing analysis makes it possible to draw certain conclusions 
concerning detection of the carrier. We use j, df to denote the integral over 
the phase noise pedestal. If J, S&f) df < In 2, then the carrier may be resolved 
irrespective of detector bandwidth. When In(Av,lAv,) > j,S,(f)df > In 2, 
the carrier may be resolved by restricting the detection bandwidth. But when 
I, S,(f) t(f > In(AvJAv,), the carrier can no longer be distinguished from the 
pedestal since its spectral density is smaller. 

12.1.2 The IEEE Recommended Measures of Frequency Stabilit, 

By the mid-1960s the problem of the specification of precision oscillators 
had become extremely important. but there was very little uniformity among 
manufacturers, metrologists, and applications engineers in the methods of 
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196 SAMUEL R. STEIN 

performing measurements or the description of measurement results. This 
situation was complicated by the difficulty of comparing the various 
descriptions. A measure of stability is often used to summarize some 
important feature of the performance of the standard. It may therefore not be 
possible to translate from one measure to another even though the respective 
measurement processes are fully described and all relevant parameters are 
given. This situation resulted in a strong pressure to achieve a higher degree 
of uniformity. 

In order to reduce the difficulty of comparing devices measured in separate 
laboratories, the IEEE convened a committee to recommend uniform 
measures of frequency stability. The recommendations made by the com- 
mittee are based on the rigorous statistical treatment of ideal oscillators that 
obey a certain model (Barnes et al., 1971). Most importantly, these oscillators 
are assumed to be elements of a stationary ensemble. A random process is 
stationary if no translation of the time coordinate changes the probability 
distribution of the process. That is, if one looks at the ensemble at one instant 
of time, then the distribution in values for a process within the ensemble is 
exactly the same as the distribution at any other instant of time. The elements 
of the ensemble are not constant in time, but as one element changes value 
other elements of the ensemble assume previous values. Thus, it is not 
possible to determine the particular time when the measurement was made. 

The stationary noise model has been adopted because many theoretical 
results, particularly those related to spectra1 densities, are valid only for this 
case. It is important for the statistician to exercise considerable care since 
experimentally one may measure quantities approximately equal to either the 
instantaneous frequency of the oscillator or the instantaneous phase. But the 
ideal quantities approximated by these measurements may not both be 
stationary. The instantaneous angular frequency is conventionally defined as 
the time derivative of the total oscillator phase. Thus, 

o(r) = ;i; d [Znv,t + &t)], 

and the instantaneous frequency is written 

For precision oscillators. the second term on the right-hand side is quite 
small, and it is useful to define the fractional frequency’ 

1 dr#J dx 
=--=-, 

‘nv, dt dt 
(12-9) 
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12 FREQUENCY AND TIME MEASUREMENT 197 

where 

X(f) = Q(f)/274 (12-10) 

is the phase expressed in units of time. Alternatively, the phase could be 
written as the integral of the frequency of the oscillator: 

#(r) = &J + J-;?n[“(e) - vo] de. (12-11) 

However, the integral of a stationary process is generally not stationary. 
Thus, indiscriminate use of Eqs. (12-7) and (12-11) may violate the assump- 
tions of the statistical model. This contradiction is avoided when one 
accounts for the finite bandwidth of the measurement process. Although a 
more detailed consideration of the statistics goes beyond the scope of this 
treatment, it is very important to keep in mind the assumption that lie behind 
the statistical analysis of oscillators. In order to analyze the behavior of real 
oscillators, it is necessary to adopt a model of their performance. The model 
must be consistent with observations of the device being simulated. To make 
it easier to estimate the device parameters, the models usually include certain 
predictable features of the oscillator performance, such as a linear frequency 
drift. A statistical analysis is useful in estimating such parameters to remove 
their effect from the data. It is just these procedures for estimating the 
deterministic model parameters that have proved to be the most intractable. 
A substantial fraction of the total noise power often occurs at Fourier 
frequencies whose periods are of the same order as the data length or longer. 
Thus, the process of estimating parameters may bias the noise residuals by 
reducing the noise power at low Fourier frequencies. A general technique for 
minimizing this problem in the case of oscillators actually observed in the 
laboratory is discussed below. 

It has been suggested that measurement techniques for frequency and time 
constitute a hierarchy (Allan and Daams, 1975), with the measurement of the 
total phase of the oscillator at the peak. Although more difficult to measure 
with high precision than other quantities, the total phase has this status 
owing to the fact that all other quantities can be derived from it. 
Furthermore, missing measurements produce the least deleterious effect on a 
time series consisting of samples of the total phase. Gaps in the data al.Iect the 
computation of various time-dependent quantities for times equal to or 
shorter than the gap length, but have a negligible effect for times much longer 
than the gap length. The lower levels of the hierarchy consist of the time 
interval, frequency, and frequency fluctuation. When one measures a quan- 
tity somewhere in this hierarchy and wishes to obtain a higher quantity, it is 
necessary to integrate one or more times. In this case the problem of missing 
data is quite serious. For example. if frequency is measured and one wants to 
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198 SAMUEL R. STEIN 

know the time of a clock, one needs to perform the integration in Eq. (12-l I). 
The missing frequency measurements must be bridged by estimating the 
average frequency over the gap, resulting in a time error that is propagated 
forever. Thus, it is preferable to always make measurements at a level of the 
measurement hierarchy equal to or above the level corresponding to the 
quantity of principle interest. In the past this was rather difficult to do. 
Measurement systems constructed from simple commercial equipment suf- 
fered from dead time, that is, they were inactive for a period after performing 
a measurement. To make matters worse, methods for measuring time or 
phase had considerably worse noise performance than methods for measur- 
ing frequency. As a result, many powerful statistical techniques were 
developed to cope with these problems (Barnes, 1969: Allan, 1966). The elTect 
of dead time on the statistical analysis has been determined (Lesage and 
Audoin, 1979b). Other techniques have been developed to combine short 
data sets so that the parameters of clocks over long periods of time could be 
estimated despite missing data (Lesagc, 1983). The rationale for these 
approaches is considerably diminished today. Low-noise techniques for the 
measurement of oscillator phase have been developed. Now, commercial 
equipment is capable of measuring the time or the total phase of an oscillator 
with very high precision. Other equipment exists for measuring the time 
interval. These devices use the same techniques that were previously 
employed for the measurement of frequency and are very competitive in 
performance. 

The proliferation of microcomputers and microprocessors has had an 
equally profound e!fect on the field of time and frequency measurement. 
There has been a dramatic increase in the ability of the metrologist to acquire 
and process digital data. Many instruments are available with suitable 
standard interfaces such as IEEE-583 or CAMAC (IEEE, 1975) and 
IEEE-488 (IEEE, 1978). As a result, there has been a dramatic change in 
direction away from analog signal processing toward the digital, and this 
process is accelerating daily. Techniques once used only by national 
standards laboratories and other major centers of clock development and 
analysis are now widespread. Consequently, this chapter will focus first on 
the peak of the measurement hierarchy and the use of digital signal 
processing. But the analysis is directed toward estimating the traditional 
measures of frequency stability. Considerable attention will be paid to 
problems associated with estimating the confidence of these stability meas- 
ures and obtaining the maximum information from available data. 

The IEEE has recommended as its first measure of frequency stability the 
one-sided spectral density S,(i) of tht instantaneous fractional-frequency 
fluctuations j<t). It is simply related to the spectral density of phase Buctua- 
tions since differentiation of the time-dependent functions is equivalent to 
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12 FREQUENCY AND TIME MEASUREMENT 199 

multiplication of their Fourier transforms by@: 

SyC/) = wd2qf) = m!f)2uf). (12-12) 

Section 12.1.1 on the relationship between the power spectrum and the 
phase spectrum described the analog method for the measurement of a 
spectral density. If a voltage c/is the output of the oscillator, then the result of 
the measurement is proportional to the rf power spectral density. But if the 
voltage were proportional to the frequency or phase of the oscillator, then the 
result of the measurement would be proportional to the spectral density of 
the frequency or phase. The most common units of S,(f) are radians squared 
per hertz. 

Alternatively. the spectral density can be obtained by digital analysis of the 
signal. For example, the quantity S,(f) can be calculated from the Fourier 
transform of x(r). The relevant continuous Fourier-transform pair is defined 
as follows: 

X(f) = S_: x(f)e-j2nfr dr (E-13) 

and 

x(r) = _f_ 2x I _: x(/,ej’=“dJ (12-14) 

However, one does not generally have continuous knowledge of the phase of 
the oscillator. Since it is relatively easy to measure x(r) at equally spaced time 
intervals, we assume the existence of the series x1, where x, = x(lr) for integer 
values of 1. The discrete Fourier transform is defined by analogy to the 
continuous transform (Cochran er al., 1967): 

X(f) = f x(l)e-jtnff. 
I=-lc 

(12-15) 

In practice the time series has finite length 7 consisting of N intervals of 
length T, and it is not possible to compute the infinite sum. Nevertheless, it 
remains possible to compute a spectrum that is not continuous inf but rather 
has resolution AJ where 

Af = 1,‘7= 1,‘Ns. (12-16) 

The need to sum over all values of the index I is removed by assuming that the 
function X(I) repeats itself with period T. The resulting spectrum contains no 
information on the spectrum at Fourier frequencies less than l/‘T. Truncation 
of the time series also introduces spurious effects due to the turn-on and turn- 
off transients. These problems can be minimized through the use of a window 
function. The.computed spectrum is actually the square of the magnitude of 

TN-69 



200 SAMUEL R. STEIN 

the window function multiplied by the desired spectrum. The use of a window 
function reduces the variance of the spectrum estimate at the expense of 
smearing out the spectrum to a small degree. With these changes but no 
window function, we arrive at the discrete finite transform 

(12-17) 

The spectral density of x(r) is computed from Eq. (12-17) by squaring the real 
and imaginary components, adding the two together, and dividing by the 
total time T: 

The digital method of estimating spectral densities has many advantages 
over analog signal processing. Most important is the fact that it may be 
computed from any set of equally spaced samples of a time series. As a result, 
the technique is compatible with other methods of characterizing the signal, 
that is, the sampled data can be stored and processed using a variety of 
algorithms. In addition, each record of length Fproduces a single estimate of 
the spectrum for each of the N frequencies Af, 2 A1; . . . , N Aj It is therefore 
possible to estimate the entire spectrum much more quickly using the digital 
technique than it would be using analog methods. The fast Fourier 
transform, a very efficient algorithm for the computation of the discrete finite 
transform, has opened the way to versatile self-contained, commercial 
spectrum analysis. It is also very straightforward to compute the spectrum 
from data acquired by computerized digital data acquisition systems. 

A result of the finite sampling rate is that the upper frequency limit of the 
digital spectrum analysis is l/25, called the Nyquist frequency (Jenkins and 
Watts, 1968). Power in the signal being analyzed that is at frequencies higher 
than the Nyquist frequency affects the spectrum estimate for lower frequen- 
cies. This problem is called aliasing. The out-of-band signal is rejected by 
only approximately 6dB per octave above the Nyquist frequency. Thus, 
when significant out-of-band signals exist, they must be reduced by analog 
filtering. One or more low-pass filters are usually sufficient for this purpose. 

As its second measure of frequency stability, the IEEE recommended the 
sample variance a:(r) of the fractional-frequency fluctuations. It is a measure 
of the variability of the average frequency of an oscillator between two 
adjacent measurement intervals. The average fractional-frequency deviation 
& over the time interval from t, to rL + T is defined as 

(12-19) 
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TIME 

FIG. 12-3 Measurement process for the computation of the sample variance. The phase 
difference between two oscillators is plotted on the ordinate. The measurement yields a set of 

frequencies averaged over equal intervals r separated by dead time T- c. 

from which it follows that 

- _ X(lk + 7) - xll3 
Yk - 

f 
(1120) 

The quality r is often referred to as the sampling time or the averaging time. 
Equations (12-19) and (12-20) are not the only way to define mean frequency. 
but they are the simplest. Other definitions lead to alternative measures of 
stability that may have desirable properties. 

Suppose that one has measured the time or frequency fluctuations between 
a pair of precision oscillators and a stability analysis is desired. The process is 
illustrated in Fig. 11-3. These are IV values of the fractional frequency j$. 
Each one is measured over a time T, and measurements are repeated after 
intervals of time IT: If the measurement repetition time exceeds the averaging 
time, then there is a dead time equal to T- T between each frequency 
measurement, during which there is no information available. 

There are many ways to analyze these data. A fairly general approach is the 
N-sample variance defined by the relation 

(a;(‘V, 7-, I)) = (A!,(‘. - ;$,eky)v (12-21) 

where the angle brackets denote the infinite time average. Frequently, Eq. 
( 12-Z 1) does not converge as N + SC, since some noise processes in oscillators 
diverge rapidly at low Fourier frequencies. This implies that the precision 
with which one estimates the variance does not improve simply as the sample 
size is increased. For this reason, the two-sample variance with no dead time 
is preferred. Also called the Allan variance, it converges for all the major 
noise types observed in precision oscillators. It may be written as 

(13-12) 
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d.,,,,,,, 1 t I 
NUMB% OF SAGLES N 

ld 

FIG. 12-4 N-sample variance versus Allan vartancc. The two-sample varianceconverges for 

the important types of noise observed in frequency standards but the ratio of the traditional 
variance to the two-sample variance is an increasing function of sample size for flicker frequency 
noise and random-walk frequency noise. 

The dependence of the classical variance on the number of samples is shown 
in Fig. 12-4 for the case of no dead time. The quantity plotted is the ratio of 
the N-sample variance to the Allan variance. Note that u;(r) has the same 
value as the classical variance for the white-noise frequency modulation. 
However, the classical variance grows without bound for flicker-frequency 
and random-walk-frequency noises. 

One may combine Eqs. (12-20) and (12-22) to obtain an equation for a,(r) 
in terms of the time-difference or time-deviation measurements: 

a,‘(r) = (+r-‘[.x(t + 35) - 2x(t + T) + x(t)]‘). (12-23) 

N discrete time readings may be used to estimate the variance 

1 s - 2 

G;(5) z 1 (eKiT2 - 2Xi+l + wK~)~, 
2(-V - Z)r2 iz, 

(12-24) 

where i denotes the number of the measurement in the set of N and the 
nominal spacing between measurements is r. Since it has been assumed that 
there is no dead time between measurements, one can write r in Eq. (12-24) as 
an integer multiple of rO. that is, T = )?IT~, where ~~ is the smallest spacing of 
the data. In this case 

1 N-2m 

+?tro) 2 C (-Ki-2m - ZXi+, + Xi)2. 
Z(N - 34m27; i-1 

(12-25) 
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12 FREQUENCY AND TIME MEASUREMENT 203 

12.1.3 The Concepts of the Frequency Domain and the Time Domain 

Spectral densities are measures of frequency stability in what is called the 
frequency domain since they are functions of Fourier frequency. The Allan 
variance, on the other hand, is an example of a time-domain measure. In a 
strict mathematical sense, these two descriptions are connected by Fourier 
transform relationships (Cutler and Searle, 1966). However, for many years 
the inadequacy of measurement equipment created artificial barriers between 
these two characterizations of the same noise process. As a result, many 
specialized techniques have been developed to translate between the various 
measures of stability (Allan, 1966: Burgeon and Fischer, 1978). The preceding 
sections have demonstrated how easily both types of stability measures can 
be computed from the same data provided that the measurement process 
provides complete information. For example, both az(mr,,) and S,(m Af) can 
be computed from evenly spaced samples of x(r). However, incomplete 
information can result from either measurement dead time or interruptions in 
the data acquisition process. In these cases translation techniques remain 
valuable. 

Both the spectral density and the Allan Variance are second-moment 
measures of the time series x(t). However, it is only possible to translate 
unambiguously from the spectral density to the Allan variance, not the 
reverse. To calculate the spectral density it is necessary to use the autocor- 
relation function of the phase. The following discussion on power-law noise 
processes further demonstrates this dichotomy. As we shall see, the Allan 
variance for a fixed measurement bandwidth does not distinguish between all 
of the noise processes that are commonly observed in precision oscillators. 

12.1.4 Translation between the Spectral Density of Frequency 
and the Allan Variance 

The power-law model is most frequently used for describing oscillator 
phase noise. It assumes that the spectral density of frequency fluctuations is 
equal to the sum of terms, each of which varies as an integer power of 
frequency. Thus, there are two quantities that completely specify S,(f) for a 
particular power-law noise process: the slope on a log-log plot for a given 
range off and the amplitude. The slope is denoted by SL and thereforef’ is the 
straight line on a log-log plot that relates S,(j) toj. The amplitude is denoted 
h,. When we examine a plot of the spectral density of frequency fluctuations, 
we represent it by the addition of all the power-law processes (Allan, 1966: 
Vessot er al., 1966) with the appropriate coefficients: 

S,(f) = h,f’. : 12-26) 
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TABLE 12-l 

Correspondence between Common Power-Law Spectral Densities and the 
Auan Variaod 

Noise type Y/j 

White phase ha/’ 

Flicker phase hf 
[I .038 + 3 Inf2~,,t)J h 1 

(2%)’ ‘;i 

White frequency ho 9Wd 

Flicker frequency h-J 2 M2)h _ , 

Random-walk frquency h-J-’ t(2n)‘hmIr 

’ Where necessary for convergence the spectral density has been assumed to 
be zero for frequencies greater than the cutoff frequency I,. 

This technique is most valuable when only a few terms in Eq. (12-26) arc 
required to describe the observed noise and each term dominates over several 
decades of frequency. This situation often prevails. Five power-law noise 
processes (Allan, 1966: Vessot et al., 1966) are common with precision 
oscillators: 

(1) random-walk frequency modulation 2 = -- 7 
(2) flicker frequency modulation a= -1 
(3) white frequency modulation a= 0 
(4) flicker phase modulation a= 1 
(5) white phase modulation 2= 2 

The spectral density of frequency is an unambiguous description of the 
oscillator noise. Thus, the spectrum can be used to compute the Allan 
variance (Barnes er al., 1971): 

+I 
2 = =7 

wo f)’ I 
S,( /) sin’(&) cIJ 

0 
(C-27) * 

However, Eq. (12-27) shows that the Allan variance is very sensitive to the 
high frequency dependence of the spectral density of phase, thereby neccs- 
sitating a detailed knowledge of the bandwidth-limiting elements in the 
measurement setup. The integral has been computed for each of the power- 
law noise processes, and the results are summarized in Table 12-1 (Barnes et 
al., 1971). For I in the range -2 15 Q s 0, the Allan variance is proportional 
tor’,whcrep=-z- 1. When the log of the Allan variance is plotted as a 
function of the log of the averaging time, the graph also consists of straight- 
line segments with integer slopes. However, Table 12-l also shows that even if 

l SeeAppendixNote#8 
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the oscillator is reasonably modeled by power-law spectra, it is not practical 
to distinguish between white phase noise and flicker phase noise from the 
dependence of the Allan variance on T. In both cases ei 2 l/~*. 

12.1.5 The Modified Allan Variance 

Table 12-1 also shows that the Allan variance has very different bandwidth 
dependence for white phase noise and flicker phase noise. Therefore, these 
noise types have been distinguished by varying the bandwidth of the 
measurement system. If x(t) were measured, the noise type could be identified 
by computing the spectrum. However, both the approach of making 
measurements as a function of bandwidth and the computation of the 
spectrum can be avoided by calculating a modified version of the Allan 
variance. The algorithm for this variance has the effect of changing the 
bandwidth inversely in proportion to the averaging time (Snyder, 1981; Allan 
and Barnes, 1981). 

Each reading of the time deviation -Yi has associated with it a measurement- 
system bandwidthf, . Similarly, we can define a software bandwidthf, = fb’n, 
which is l;/n times narrower than the hardware bandwidth. It can be realized 
by averaging n adjacent .Y~s. Based on this idea it is possible to define a 
modified Allan variance that allows the reciprocal software bandwidth to 
change linearly with the sample time T: 

mod C;(T) = $ 
u 

tjltxi+2m (12-28) 

where r = ~7~. Equation (12-28) reduces to Eq. (I 2-23) for n = 1. One can see 
that mod CT:(~) is the second difference of three time values, each of which is a 
nonoverlapping average of n of the xls. As n increases the software 
bandwidth decreases as fbht . 

For a finite data set of N readings of xi (i = 1 to N), mod C;(T) can be 
estimated from the expression 

1 N-h+1 n+j-1 
mod C-$(T) z 

27*n’(N _ 3n + 1) j&l zj fxi+2n - 2xi+a + xi)2* * 

(12-29) 

which is easy to program but takes more time to compute than the 
corresponding equation (12-24) for e:(r). 

Table 12-2 gives the relationship between the time-domain measure 
mod U;(T) and its power-law spectral counterpart. In the right-hand column 
are the asymptotic values of the ratio of the modified Allan variance to the 
Allan variance. It is clear from the table that mod at(r) is very useful for white 

l SeeAppendixNote#g 
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TABLE 12-2 

Correspondence between Common Power-Law Spectral Densities and the Modified Allan 
Vari8nd 

Noise type Y/l mod +I mod ua ia1 P’ , 

white ph8se W 
h xl 1 

‘no’7 
n 

Flicker phase h,/ 
h Il.038 + 3 lttf2~&;t)] I 

I 
W’ 7 

1 

white frequency 

Flicker frequency 

Random-walk frequency 

ho 

he,/” 

h-J-’ 

h,,‘4r 0.5 

h-,(0.936) 0.674 

h,,(S.42)t 0.824 

’ Where necessary the spectral density has been assumed to be zero for frequencies greater than 
the cutoff frquency f . The constant n ir the number of adjacent phase values that are averaged 
to produce the bandwidth reduction. The values in the last two columns are for the asymptotic 
limit n - x. In practice, R only needs to be IO or larger before the asymptotic Iimit is approached 
within a few percent. When n I 1 the ratio in the last column is I in all cases 

phase modulation and flicker phase modulation, but for I s 1 the con- 
ventional Allan variance gives both an easier-to-interpret and an easier-to- 
calculate measure of stability. 

It is interesting to make a graph of I versus p for both the ordinary Allan 
variance and the modified Allan variance, such as the one shown in Fig. 12-5. 

-2 - 

FIG. 12-5 Relationship between a power-law spectral density whose slope on a log-log plot 
is I and the correspondin sample variance whoss slope on a log-lo8 plot is p. The solid line 
describes the behavior of the Allan variance, while the dashed line shows the advantage of the 
modified Alhn vrrirnce for white phase noise and flicker phase noise. 
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This graph allows one to determine power-law spectra for noninteger as well 
as integer values of a. In the asymtotic limit the equation relating p and cx for 
the modified Allan variance is 

a=-p-1 for -3<r<3. (1 I-30) 

12.1.6 Determination of the Mean Frequency and Frequency Drift 
of an Oscillator 

Before the techniques of the previous four sections can be meaningfully 
applied to practical measurements, it is necessary to separate the deter- 
ministic and random components of the time deviation x(t). Suppose, for 
example, that an oscillator has significant drift, such as might be the case for a 
quartz crystal oscillator. With no additional signal processing, the Alian 
variance would be proportional to 7 ‘. The variance of the Allan variance 
would be very small, further demonstrating that deterministic behavior has 
been improperly described in statistical terms and the oscillator’s predict- 
ability is much better than the Allan variance indicated. Unfortunately, it 
is difficult to estimate the oscillator’s deterministic behavior without intro- 
ducing a bias in the noise at Fourier frequencies comparable to the inverse 
of the record length. In practice, it has been suficient to consider two 
deterministic terms in I(C): 

x(f) = x0 + (Av/vo)t + IDt’ + x,(f) (12-31) 

The first term on the right-hand side is the synchronization error. The second 
term is due to imperfect knowledge of the mean frequency and is sometimes 
called syntonization error. The quadratic term, which results from frequency 
drift, is the most difficult problem for the statistical analysis because the Allan 
variance is insensitive to both synchronization and syntonization errors. 

For white noise, the optimum estimate of the process is the mean. 
Therefore, a general statistical procedure that can be followed is to filter the 
data until the residuals are white (Allan et al., 1974; Barnes and Allan, 1966). 
For example, at short times the frequency fluctuations of atomic clocks are 
usually white. Taking the first difference of Eq. (12-31), we find that 

j(r) = 5 + Dr + 
X,(f + 7) - x,(t) 

9 ( 12-32) 
7 

and a linear least square fit to the frequency data yields the optimum estimate 
of Av. However, the drift in atomic clocks is generally so small that the value 
obtained for D will not be statistically significant when 7 is small enough to 

TN-77 



208 SAMUEL R. STEIN 

satisfy the assumption of white frequency noise. Thus, we are led to consider 
the first difference of the frequency, 

.iJtt + 7) - .tio = D + x,0 + 24 - 2x,(t + T) + x,(r) 
T T2 

. (12-33) 

Many atomic clocks are dominated by random walk of frequency noise for 
long averaging times. Thus, the first difference of the frequency data (the 
second difference of the phase data) is white, and the optimum estimate of the 
drift is just the simple mean. If instead, a linear least square fit were removed 
from the frequency data in this region of T, then the random-walk residuals 
would be biased, and it is likely that an optimistic estimate of a,(r) would be 
obtained. 

The optimum procedure would be different if the dominant noise type 
were flicker of frequency, rather than random walk. But there is no simple 
prescription that can be followed to estimate the drift in that case. 
Fortunately, a maximum likelihood estimate of the prameters for some 
typical cases has shown that the mean second difference of phase is still a 
good estimator of frequency drift in the sense that it introduces negligible bias 
in the Allan variance. Thus, in practice there is a simple prescription for 
computing the Allan variance in the presence of significant drift. Starting 
with the phase data, one forms the second difference and uses the simple 
average to estimate the mean. The value of r chosen for creating these second 
differences must be long enough so that the predominant noise process is 
random-walk frequency modulation. After subtracting this estimate, the 
second-difference data is integrated twice to recover phase data with drift 
removed, and further analysis, including the computation of the Allan 
variance, may proceed. Figures 12-6 through 12-10 illustrate the estimation 
of drift. The quadratic dependence of the phase data in Fig. 12-6 nearly 
obscures the noise. The first difference of this data produces the nearly linear 
frequency dependence shown in Fig. 12-7, and the second difference produces 
the residuals shown in Fig. 12-8, which appear to be nearly white. Rigorous 
statistical analysis of this data indicates that the first difference of the 
frequency is indeed white with 90:/, confidence. Next, the mean frequency 
difference is subtracted. Then the residuals of Fig. 12-8 are integrated twice, 
and the result is the estimate of the phase deviation with drift removed shown 
in Fig. 12-9. Fig. 12-10 illustrates the Allan variance of this data calculated by 
three techniques. The squares were computed from the data of Fig. 12-6, 
while the open circles were computed following the recommended procedure 
for estimating the drift. The validity of the approach is illustrated by the black 
dots, which are the result of a statistically optimum parameter estimation 
procedure. 
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FIG. 12-6 Measured phase difference between a frequency standard and a reference during 
a 14O-day experiment. The nearly quadratic form of the data effectively obscures the noise. 
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FIG. 12-7 One-day frequency averages obtained by taking the first differences of the data in 
Fig. 12-6. The ordinate is the fractional difference of the daily frequency from a nominal value. 
The nearly linear change in frequency with time is apparent, although the random deviations are 
visible. 

FIG. 12-8 Second diHerence of the data in Fig. 12-6. The second ditferencc operation has 
removed the nonrandom behavior and the residuals appear to be nearly white. 
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-II-cl 
TIME (DAYS) 

FIG. 12-9 Phase variations of the frequency standard due to the residuals. obtained by 
performing two integrations on the data of Fig. 12-8. The ordinate scale is expanded 
approximately 10 times compared to Fig. 12-6. 

-11 r 

log T(sec) 

FIG. 12-10 Logarithm of the square root of the Allan variance as a function of the 
logarithm of the averaging time for three di5ercnt computation methods. The squares were 
computed from the data of Fig. C-6 and show the e5ect of the drift. The open circles were 
computed from the data of Fig. 12-9. The closed circles were computed using an optimum- 
parameter estimation procedure. 

12.1.7 Confidence of the Estimate and Overlapping Samples 

Consider three phase or time measurements of one oscillator relative to 
another at equally spaced intervals of time. From this phase data one can 
obtain two adjacent values of average frequency and one can calculate a 
single sampk Allan variance (see Fi_n. 12-l 1). Of course, this estimate does not 
have high precision or confidence, since it is based on only one frequency 
difference. 

For most commonly encountered oscillators, the first difference of the 
frequency is a normally distributed variable with zero mean. However, the 
square of a normally distributed variable is not normally distributed. This is 
so because the square is always positive and the normal distribution is 
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FIG. 12-11 Calculation of two average frequencies j$ and j1 by measuring the phase of an 
oscillator x(r) at times I,. ra. and I,. 

completely symmetric, with negative values being as likely as positive ones. 
The resulting distribution is called a chi-squared distribution, and it has one 
“degree of freedom” since the distribution was obtained by considering the 
squares of individual (i.e., one independent sample), normally distributed 
variables (Jenkins and Watts, 1968). 

In contrast, from five phase values four consecutive frequency values can 
be calculated, as shown in Fig. 12-12. It is possible to take the first pair and 
calculate a sample AlIan variance. A second sample Allan variance can be 
calculated from the second pair (i.e., the third and fourth frequency 
measurements). The average of these two sample Allan variances provides an 
improved estimate of the true Allan variance, and one would expect it to have 
a tighter confidence interval than in the previous example. This could be 
expressed with the aid of the chi-squared distribution with two degrees of 
freedom. 

However, there is another option. One could also consider the sample 
Allan variance obtained from the second and third frequency measurements, 
that is, the middle sample variance. This last sample Allan variance is not 
independent of the other two, since it is made up of parts of each of the others. 
But this does not mean that it cannot be used to improve the estimate of the 
true Allan variance. It does mean that the new average of three sample Allan 
variances is not distributed as chi squared with three degrees of freedom. The 

‘1 t a 
f l:E 

t4 ts 

FIG. 12-12 Calculation of four frequency values j,. Jz, j,, and J. from five phag 
measurements at times r,, rr. t,. I., and 1,. The sample variance formed from 1, and jr and the 
one formed from j, and j4 are indcpndent. The sample variance formed from ~7~ and 9, is not 
independent of the other two but does contain some additional information useful in estimating 
the true sample variance. 
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number of degrees of freedom depends on the underlying noise type, that is, 
white frequency, flicker frequency. etc., and may have a fractional value. 

Sample Allan variances are distributed as chi square according to the 
equation 

x’ = (df)s;/a;. (12-34) 

where si is the sample Allan variance, df the number of degrees of freedom 
(possibly not an integer), and af the true Allan variance, which we are 
interested in knowing but can only estimate imperfectly. 

The probability density for the chi-squared distribution is given by the 
relation (Jenkins and Watts, 1968) 

1 
JJfJt2) = 2mr(df;‘2) 

(X2)df/2-1,-1*/2, 

where r(df;2) is the gamma function, defined by the integral 

J 
* 

T(r) = x’-‘e-’ dx. 
0 

(12-36) 

A typical distribution is shown in Fig. (12-13). 
Chi-squared distributions are useful in determining confidence intervals for 

variances and standard deviations, as shown in the following example. 
Suppose one has a sample variance s2 = 3.0 and it is known that this 
variance has 10 degrees of freedom. The obje.ct is to calculate a range around 
the sample value of si = 3.0 that probably contains the true value cr:. The 
desired confidence is, say, 907/,. That is, I@< of the time the true value will 
actually fall outside of the stated bounds. The usual way to proceed is to 
allocate 57,; to the low end and 5% to the high end for errors, leaving 90% in 
the middle. This is arbitrary and a specific problem might dictate a different 

FIG. 12-13 Approximate form of a typical chi-squared distribution. For IO degrees of 
freedom 5”; of the area under the curve corresponds to values of x’ less than 3.91, and an 
additional ST/, corresponds to values of 1’ greater than 18.3. 
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allocation. By referring to tables of the chi-squared distribution, one finds 
that for 10 degrees of freedom (df = 10) the 5% and 95% points correspond to 

x2(0.05) = 3.94, x*(0.95) = 18.3. (12-37) 

Thus, with 907; probability the calculated sample variances: = 3 satisfies the 
inequality 

3.94 < (df)s;/cr; < 18.3, (12-38) 

and this inequality can be rearranged in the form 

1.64 < 0; < 7.61. (12-39) 

The estimate sf = 3 is a point estimate. The estimate 1.64 < 0,’ < 7.61 is 
an inter& estimate and should be interpreted to mean that 90”/, of the time 
the interval calculated in this manner will contain the true cr:. 

12.1.8 Efficient Use of the Data and Determination of the 
Degrees of Freedom 

Typically, the sample variance is calculated from a data set using the 
relation 

(12-40) 

where it is implicitly assumed that the z,, ‘s are random and uncorrelated (i.e., 
white) and where z is the sample mean calculated from the same data set. Ifall 
of this is true, then s* is chi-squared distributed and has N - 1 degrees of 
freedom. 

Consider the case of two oscillators being compared in phase with N values 
of the phase difference obtained at equally spaced intervals T,,. From these N 
phase values one obtains N - 1 consecutive values of average frequency, and 
from these one can compute N - 2 individual sample Allan variances (not all 
independent) for T = re. These N - 2 values can be averaged to obtain an 
estimate of the Allan variance at r = T,,. 

The variance of this Allan variance has been calculated (Lesage and 
Audoin, 1973; Yoshimura, 1978). This approach is less versatile than the 
method of the previous section since it yields only symmetric error limits. 
However, it is simple and easy to use. Let A(N) be the relative difference 
between the sample .411an variance and the true value. Thus, 

s; = [i + A(N)]+). (12-41) 
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TABLE 12-3 

Variance ol the Relative DiUerencc between the Sample 
Allan Variance and the True Value (CJN)’ 

Noise type a c. 

White phase 2 3.88 
Flicker phase 1 3.88 
White frequency 0 2.99 
Flicker frequency -1 2.31 
Random-walk frequency -2 2.25 

’ N is the number of phase measurements. The result is 
accurate to better than 10:; for N larger than IO. 

The quantity A(N) has mean zero. For N larger than 10, the variance of A is 
approximately 

a’(A) = CJN. (12-42) 

Table 12-3 gives the constant C, for the five major noise types. 

Using the same set of data it is also possible to estimate the Allan variances 
for integer multiples of the base sampling interval T = mr,. Now the 
possibilities for overlapping sample Allan variances are even greater. For a 
data set of N phase points, one can obtain a maximum of exactly N - 2m 
sample Allan variances for T = mr,,. Of course only (N - l),?m of these are 
generally independent. Still, the use of all of the data is well justified since the 
confidence of the estimate is always improved by so doing. Consider the case 
of an experiment extending for several weeks in duration with the aim of 
getting estimates of the Allan variance for r values equal to a week or more. 
As always, the purpose is to estimate the “true” Allan variance as well as 
possible, that is, with as tight an uncertainty as possible. Thus, one wants to 
use the data as efficiently as possible. The most efficient use is to average all 
possible sample Allan variances of a given T value that one can compute from 
the data. This procedure is illustrated in Fig. 12-14. 

In order to calculate confidence intervals for a sample variance, it is 
necessary to know the number of degrees of freedom. This has been done by 
both analytical and Monte Carlo techniques, and empirical equations have 
been found that are accurate to l”/d for white phase, white frequency, and 
random-walk frequency modulation. The tolerance is somewhat larger for 
flicker frequency and phase modulation (Howe et al., 1981). The empirical 
equations for the degrees of freedom are given in Table 12-4. Table 12-5 gives 
the degrees of freedom for selected values of N, the tots1 number of phase 
values, and m, the number of intervals averaged. Figure 12-15 illustrates the 
number of degrees of freedom for all noise processes as a function of r for the 
case of 101 total phase measurements. 
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FIG. 12-14 Illustration of the case of r = 4z,. for which the ratio of the number of fully 
overlapping to nonoverlapping estimates of the variance is more than 8 for the 57 phase points 
shown. When the averaging time for the computation of mean frequencies T exceeds the 
sampling time rO, the number of fully overlapping mean frequencies is far larger than the oumbcr 
of nonoverlapping frequencies. In general. for large N approximately 2m times as many 
estimates of the sample variancescan be computed using the fully overlapping technique. 

TABLE 12-4 

Number of Degrees of Freedom for Calculation of the Coofideoce of the 
Estimate of a Sample Allan Variance’ 

Koix type 

White phase 

df 

(N + 1Jf.V - 2m) 

2l.V - m) 

Flicker phase 
ex+(y),n((?m + lqXIV - I))] 

White frequency 

Flicker frequency 

3(&V - 1) 2IN - 2) 4m’ --- - 
2m N 1 4m’ + 5 

2(N - 2) 

2.3N - 4.9 
for m = 1 

5N’ 

4mlrv + 3ml 
form22 

N - 2 (N - 1)’ 
Random-walk frequency - 

- 3mt.V - I) + 4m’ 

m (.V - 3)’ 

’ For T = mr,, from .\; phase points spaced r,, apart. 
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TABLE 12-5 

Number of Degrees of Freedom for Calculation of the Confidence of the Estimate of a Sample 
Allan Variance for the Major Noise Types’ 

N m 
White Flicker White Flicker Random-walk 

ph= ph= frequency frequency frequency 

9 1 3.665 4.835 4.900 6.202 
2 3.237 3.637 3.448 3.375 
4 1.ooo 1.000 1.000 1.000 

129 1 65.579 
2 64.819 
4 63.304 
8 60.310 

16 54.509 
32 44.761 
64 l.OCO 

1025 1 526.373 
2 525.615 
4 524.088 
8 521.038 

16 5 14.952 
32 502.839 
64 478.886 

128 432.609 
256 354.914 
512 1.000 

79.015 
66.284 
52.586 
37.306 
22.347 
9.986 
1.000 

625.071 
543.863 
459.041 
366.113 
269.849 
179.680 
104.743 
50.487 
17.429 

l.OQo 

84.889 110.548 
71.642 77.041 
42.695 36.881 
21.608 16.994 
9.982 7.345 
4.026 2.889 
l.ooO 1.000 

682.222 889.675 
583.622 636.896 
354.322 316.605 
186.363 156.492 
93.547 76.495 
45.947 36.610 
21.997 16.861 
10.003 7.281 
4.003 2.861 
1.000 1.000 

7.000 
2.866 
0.999 

127.000 
62.524 
29.822 
13.567 
5.631 
2.047 
1.000 

1023.000 
510.502 
253.755 
125.39: 
61.241 
29.210 
13.288 
5.516 
2.005 
l.OO?l 

’ h’ is the number of equally spaced phase points that are taken nt at a time to form the averaging 
time. 

12.1.9 Separating the Variances of the Oscillator and the Reference 

A measured variance contains noise contributions from both the oscillator 
under test and the reference. The individual contributions are easily sepa- 
rated if it is known a priori that the reference is much less noisy than the 
device under test or equal to it in performance. Otherwise, the individual 
contributions can be estimated by comparing three devices (Barnes, 1966). 
The three possible joint variances are denoted by 0;. G$, and ai, while the 
individual device variances are G:, c$, and oz. The joint variances are 
composed of the sum of the individual contributions under the assumption 
that the oscillators are independent: 

(E-43) 
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FIG. 12-l 5 Number ofdegrees of freedom as a function of averaging time for the case of 101 
phase measurements: The heavy broken line is for random-walk frequency noise. the light 
broken line is for flicker frequency noise. the dotted line is for white frequency noise. the heavy 
solid line is for flicker phase noise, and the light solid line is for white phase noise. 

An expression for each individual variance is obtained by adding two joint 
variances and subtracting the third: 

a’ = &J; + a: - ajz), 

rJ; = j(c7,k + 0; - a$, (12-44) 

at = #k + cr: - 06). 

This method works best if the three devices are comparable in performance. 
Caution must be exercised since Eqs. (12-44) may give a negative sample 
Allan variance despite the fact that the true Allan variance is positive definite. 
This is possible because the confidence interval of the estimate is sufficiently 
large to include negative variances. Such a result is an indication that the 
confidence intervals of the sample Allan variances are too large and that 
more data is required. 

12.2 DIRECT DIGITAL MEASUREhlEiVT 

12.2.1 Time-Interval Measurements 

A common technique for measuring the phase difference between oscil- 
lators having nearly equal nominal frequencies is the use of direct time- 
interval measurements. In this section and those that follow, the symbols vIo 
and vLO are used to indicate the nominal values of vi and v2, respectively. In 
the simplest form of this technique, a time-interval counter is started on some 
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FIG. 12- 16 The phase difference measured by a time-interval counter is the phase difference 
between the start signal and the stop signal modulo the period of the stop signal. 

arbitrarily selected positive-going zero crossing of the signal from one 
oscillator (started on v,~ at time tr) and stopped in the next positive-going 
zero crossing of the second oscillator (stopped on vzo at time tz). The 
measured time difference is 

x20,) - x,0,) 2 -fw + ho - bJ/V10lr (U-45) 

where P is the reading of the time-interval counter and T, the period of its 
time base (Allan et al., 1974). The units of the time difference is seconds of 
oscillator number 1. Equation (12-45) demonstrates an important character- 
istic of both time- and phase-difference measurements. Because of distortion 
the phase of an oscillator is generally not well known except at zero crossings. 
Thus, the quantity usually measured is x2(t2) - x,(t,). However, ail analysis 
techniques require the phase difference at the same time, and the translation 
requires a correction that takes into account the difference in frequency 
between the two oscillators. This correction is the reason for the second term 
in the brackets on the right-hand side of Eq. (12-45). 

The simple scheme described above measures a maximum accumulated 
phase difference of one cycle of the signal. When the phase difference exceeds 
one cycle the counter reading is periodic, as shown in Fig. 12-16. This 
ambiguity can be reduced by dividing the signals from each oscillator before 
the time-interval measurement. The complete system is shown in Fig. 12-17. 
The effect of the divider is to increase the time interval before an ambiguity 

FIG. 12-17 Schematic diagram ol the dividers used in conjunction with a time-interval 
counter to increase the maximum measurable phase diaerence to IV cycles of the stop signal. 
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occurs to Nj$(j, where N is the divisor. Such measurement systems are used 
at many standards laboratories for the long-term measurement of atomic 
clocks, whose output is usually divided down to 1 pulse/set. Since time- 
interval counters with resolution better than 0.1 nsec are available, this 
measurement scheme is suitable for long-term performance monitoring, 
yielding frequency-measurement precision of IO-” for l-day averages. 

12.2.2 Frequency Measurements 

Average frequency is measured most directly using a frequency counter. 
Used this way, the counter determines the number of whole cycles M 
occurring during a time interval 7 given by the counter’s time base. Thus 

40; 7) = (M + AM)/7 2: M/7, (12-46) 

where C(r,: t2) denotes the average frequency over the interval from f, to cZ 
and AM, the fractional cycle, is not measured by the counter. The starting 
time is arbitrarily called t = 0. Thus, the quantization error is given by 

Av,/(v) < l/M. 

12.2.3 Period Measurements 

For low frequencies, the number of cycles counted may be small and the 
quantization error can be very large. By measuring the period instead of the 
frequency, it is possible to decrease the error without increasing the duration 
of the measurement. A period counter measures the duration of M whole 
cycles of the signal as N cycles of the time base 75,. The fraction of a cycle AN 
is not measured. Thus, we have 

and therefore 

A4 = $0: M/v&V + AN)7,, (12-48) 

C(O; M/v,,) I M,‘Ns, 

and the quantization error is 

(12-49) 

Avo/(v) < l/N. (E-50) 

Frequency measurements are almost never used to characterize precision 
oscillators, but period measurements are very common. A straightforward 
extension of this method eliminates the bias potentially introduced by the 
quantization error and permits the measurement of accumulated phase. The 
counter must be capable of being read without halting the counting process. 
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DIVIDER I 
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TIME BASE 

I 
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FIG. 12-l 8 Two-counter system to eliminate dead time in period measurements. The two 
counters alternately count the number of cycles of the time base in N periods of the oscillator 
under test. 

Alternatively, a second counter may be used to begin counting the same time 
base when the first counter stops. The second approach is illustrated in Fig. 
12-18. This type of measurement system is sometimes called a chronograph. 

12.3 SEI\;SITIVITY-ENH.4SCE~lE~~ METHODS 

12.3.1 Heterodyne Techniques 

It is possible for oscillators to be very stable, and values of a,,(~) can be as 
small as lo-l6 in some state-of-the-art standards. Thus, one often needs 
measuring techniques capable of resolving very small fluctuations in oft). One 
of the most common techniques is the heterodune or beat-frequency 
technique. In this method the signal from the oscillator under test is mixed 
with a reference signal of almost the same frequency so that one is left with a 
lower average frequency for analysis without reducing the frequency (or 
phase) fluctuations themselves. 

In principle, it is possible to analyze the most general measurement case, 
where no restrictions are placed on the average frequency or phase difference 
between the two oscillators under test. Equation 12-l can be inverted as 

27r~,t + b(t) = arcsin[L’(r)/VJ (12-51) 

and used to obtain the series 4(m7) by sampling the voltage at regular time 
intervals. This direct technique is not used, because it requires unobtainable 
mixer performance characteristics. The high-level rf signals that are required 
for low-noise phase measurements produce significant harmonic distortion, 
so that the output of the phase detector deviates si_gnificantly from a sine 
wave. Furthermore, the distortions are generally sensitive to level and 
environmental perturbations. However, the phase relationships among the 
various harmonics are very stable, so it is possible to use the repetition of one 
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point on the waveform in order to count cycles. The positive-going zero 
crossings are normally chosen in order to provide immunity from changes in 
both the amplitude and symmetry of the waveform. 

Consider two signals whose frequency difference is much less than the 
frequency of either oscillator: 

V,(t) = VI0 sin[2nv,or + $J~(C) + 4~~3 

and (12-52) 

V2W = ho 4?~v20t + 4~~0) + 4d 
where lvi,, - vzol Q vIo and the constants $to and &o represent the nominal 
phases of the two signals. 

Suppose that the two signals are mixed in a linear product detector and 
filtered so that the signal at the sum frequency v,~ + vzo is highly attenuated. 
The result is 

w = KJ CO~C274V,o - v20)r + 410 - 420 + 910) - 4Jtw1, (12-53) 

which may be characterized by any of the measurement techniques discussed 
in Section 12.2. The amplitude V, of the mixer output is a function of the 
mixer design, the input amplitudes, and the output termination (Walls er al., 
1976). Using the definition (12-lo), we find that for the heterodyned signal 

x,(t) = (1,2xv,) A+(t), (12-54) 

where 

VH = Iv10 - v201 (12-55) 

and 
A&) = 4,(r) - &(t). (12-56) 

Equation (12-54) may be rewritten as 

X”(f) = (volv,)xW, (12-57) 

from which we conclude that a given phase change corresponds to a larger 
time deviation for the heterodyne signal than for the original signal. As a 
result, the quantization error for the period measurement technique is 
reduced by the factor vH/vo. 

12.3.2 Homodpne Techniques * 

The limit of the heterodyne method, called homodyne, occurs when 
vIo = v2,,. In this case the output of the phase detector is given by 

V(t) 2 vocosc4,o - 420 + 9,(f) - La2Wl. (12-58) 

a See Appendix Note # 6 
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The analysis of phase noise is accomplished by arranging that 
4 10 - &zo = n/2, which can be achieved with a phase shifter. Then, 

V(r) I - V, SinChW - 42(01 = M42(f) - fhW1. (E-59) 

There are various methods by which one can control the signal Vz(t) so that 
“10 = “20 without producing significant correlation between 42(r) and t&(t). 
When any one of these methods is used, it is possible to use V(r) as a measure 
of&t). Two methods, delay lines and phase-locked loops (Gardner, 1966), are 
described below. 

12.3.2.1 DISCRIMINATOR AND DELAY LINE 

The circuit of a discriminator or delay-line system for measuring phase 
noise is illustrated in Fig. 12-19. The delayed signal is given by 

V2(r) = V,(r - td) = V,, sin[2xvIo(t - cd) + &(t - td) + dlo + 4,]. 
(12-60) 

When the phase shifter is set for quadrature, 4, - 27r~,~t., = x:2 and 

Vzw = V~osin[2xv,ot + 4,(r - cd) + dlo + x,2]. (12-61) 

The output of the phase detector is given by 

V(t) = Kd410 - td) - dJ,m (12-6’) 

Substituting Eq. (12-62) into Eq. (12-20). we obtain 

.W - td: r) = - V(t),:‘2xr,V,r, (12-63) 

and we see that the delay-line method can be used to produce samples of 
j(mr,,) by varying the delay time. However, the technique is used more 
frequently with a fixed delay by restricting its application to the region of T 
much greater than the delay time, so that j$ - cd: r) is a good approximation 
for the instantaneous frequency. Under this assumption spectrum analysis of 

PHASE SHIFTER 
DELAY LINE 

FIG. 12-19 A delay-line phase-noise-measurement system. When the phase shifter is 
adjusted so that VJr) is in phase quadrature with Vo(r), the output of the phase detector is 
approximately equal to the instantaneous frequency deviation of the oscillator. The spectral 
density of the source may be estimated for Fourier frequencies small compared to the inverse of 
the delay time. 
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the signal from the mixer can be used to estimate the spectral density of the 
frequency fluctuations: 

Frequency discriminators are applied in an analogous fashion. A resonant 
circuit is often used to provide discrimination since it produces a phase shift 
proportional to the frequency deviation from the resonant frequency. For 
example, the phase shift on reflection from a resonance with loaded quality 
factor Q is 

t$ = arctan(lQy) z ~QJ, (12-65) 

provided that the frequency deviation is small compared to the bandwidth of 
the resonance and the applied signal is nearly at the center frequency of the 
discriminator. This can be accomplished either manually or with a frequency- 
locked loop. The design of such a loop is similar to the phase-locked loop of 
the next section. Once again, one can spectrum analyze the signal from the 
mixer to obtain 

for f B v,,/Q. 

The noise floor for measurements made with either a delay line or discrimi- 
nator normally results from white voltage noise in the analysis circuitry and 
is independent of the Fourier frequency. We denote the noise floor S,,, 
(minimum) and find the noise floor for frequency or phase measurements by 

S,(noise limit) 4 = i S,(noise limit) 4 
f 

= 7 S,,&ninimum). 
f-('Q) 

(12-67) 

Consequently, the discriminator or delay-line technique is limited in sensi- 
tivity since the output voltage is proportional to the frequency deviations. 
Greater sensitivity is possible using two oscillators in a phase-locked loop. 
The noise in the reference is an important consideration, even though the 
reference is passive in the case of a discriminator or a delay line. If the 
oscillator has sufficiently low noise, then the circuits described measure the 
variations of the discriminator center frequency or the delay variations in the 
delay line. 

12.3.2.2 PHASE-LOCKED LOOP 

The block diagram for the most general phase-locked loop that will be 
considered here is shown in Fig. 1 2-20. The noise voltage summed into the 
loop is a schematic way of representing d,(r), the open-loop phase noise of the 
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FIG. 12-20 Block diesram of a phase-locked loop. The order of the loop is determined by 
the filter transfer function. For convenience, noise in the oscillator under test is introduced at the 

summing junction. 

oscillator under test. Phase noise in the reference oscillator is denoted by 

The purpose of using a phase-locked loop is simply to guarantee that the 
two oscillators are, on the average, in phase quadrature. When the oscillators 
are near quadrature, the voltage output of the phase detector is proportional 
to the difference in phase between the two output signals. 

Analysis of the phase;locked loop yields the result 

where G,,(s) is the open-loop transfer function defined by 

(12-69) 

and d,,(s) and &(s) are the Laplacc transforms of the corresponding time- 
varying quantities. We can also calculate the voltage output of the phase 
detector, 

b(s) = KiC4,Ddd - 4aWl 
1 + G,,(s) ’ 

as well as the feedback voltage to the varactor, 

q(s) - F(s)vys) = gf-g C4,rcAs) - O&)1. 
*q 

(12-70) 

Assuming that the phase noise of the two oscillators is not correlated, 

(12-71) 

6-d 
(w) + SJO)]. (12-73) 
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FIG. 12-21 Circuit diagram of the most common loop filter for a second-order phase- 
locked loop. Resistor R2 is required for stable operation. Capacitor C provides the low- 
frequency gain needed to reduce the phase errors of the first-order loop. 

FIG. 12-22 Bode plot for the loop filter of Fig. 12-21. 

Thus, if we know the behavior of G&U), then we can relate the measured 
spectrum of the voltage at the output of the phase detector or at the varactor 
tuner ‘to the sum of the spectral densities of the phase noise of the two 
oscillators. 

The loop filter is often chosen to be a pure gain. The resulting first-order 
loop has a significant drawback: the two oscillators are offset from quadra- 
ture by a phase shift proportional to their open-loop frequency difference. In 
order to maintain system calibration, the operator must remove the fre- 
quency offset from time to time. This problem can be eliminated by using a 
second-order loop. Figure 12-21 illustrates one loop filter that can be used to 
achieve the desired frequency response. The transfer function of this filter is 

F(s) = (1 + sr&/sr,, (12-74) 

where rz = R2C and TV = R,C. Figure 12-22 shows the Bode plot of the 
frequency-response function of this filter. Substitution of Eq. (12-74) into Eq. 
(12-69) yields the open-loop frequency-response function 

G&-4 = - 
w.’ + 2j<w,o 

w2 ’ (12-75) 

where 

and 

0, = [K&/T*y (12-76) 

; = +szw,. (11-77) 
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FIG. 12-23 Bode plot of the open-loop frequency-response function for a phase-locked loop 
having the loop filter of Fig. 12-21. Parameters were chosen to illustrate a stable condition. 

The first requirement to be satisfied by the loop parameters is that the 
closed loop be stable. Since the transfer function G,,(s) has no poles or zeros 
for s > 0, a sufficient requirement for the phase-locked loop to be stable is 
that the slope of the Bode plot of IG.,(jo)l be less steep than - 12 dB/octave at 
the point where IG,,(@)l = 1. The Bode plot of IG&o)l is shown in Fig. 
12-23 for a case where the loop operation is stable. 

It is desirable for the loop to be nearly critically damped, that is, { = 1. At 
critical damping the natural frequency of the loop is related to r2 by 

%:=t = 2jT2. 

Under the same conditions the unity gain frequency is 

(12-78) 

w.c=1 = 4.12/?2. (12-79) 

The second requirement to be satisfied by the phase-locked loop is related 
to the accuracy with which spectral-density measurements can be made. 
Substitution of Eq. (12-75) into Eq. (12-72) yields 

sp.d(4 = 
Kgo” 

(w2 - al;)’ + 4;‘o*w,z CS,&) + L&41. ( 1 Z-80) 

Since the proportionality factor has a high pass response, it is possible to use 
an essentially constant calibration to relate S,,(m) and S,(o). For example, if 
we require that 

S&J) s K&J”) + sO,bil (12-81) 

with no more than lop/, error for all Fourier frequencies greater than 
2~ rad,‘sec, then for the critically damped loop the requirement on r2 is 
-r2 > 1.4 sec. 
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The third requirement on loop performance is that the frequency offset 
between the two oscillators produce negligible phase shift of the oscillators 
from quadrature. In the ideal loop the phase error for a frequency error Av 
introduced at time t = 0 is 

d error = 2n Avt eman’. 

However, in the actual circuit there is a finite phase error due to the limited 
loop gain of the amplifier of Fig. 1 2-21. Nevertheless, the phase error is 
reduced by lo5 compared to its value for a first-order loop. Typically, the 
error is less than the residual phase error due to the voltage offset at the mixer 
output and should be much less than lo. 

The feedback loop reduces the sensitivity of the system for measurements 
of the phase spectral density for Fourier frequencies less than the unity-gain 
frequency of the phase-locked loop. One way to avoid this problem is to 
utilize the feedback voltage V,. Substituting Eq. (12-75) into Eq. (12-73). we 
find that 

S,(o) = 
2744 

(‘X2 - 4c2w5w2) CSy,.,(o) + s&.qJ. - co;)2 + 4&~,2 
(12-82) 

For this case, the proportionality factor has a low pass response and a 
constant calibration factor may be used to relate S&J) to S,(o). 

12.3.3 Multiple Conversion Methods 

Quite often the beat frequency between the signal under test and the 
laboratory reference is unsuitable or inconvenient for frequency-stability 
measurements. The frequency may be too high for the available counters or 
the heterodyne factor may be too small to yield the required noise enhancc- 
ment. Under these circumstances a second mixing stage in series with the first 
can be used to produce the desired beat frequency. On the other hand, the 
direct beat frequency between two oscillators may be too small. For example, 
the frequencies of commercial cesium-beam frequency standards are usually 
so close together that the beat frequency between two devices would be near 
1 cycle/day. making it impossible to observe the stability at shorter times. 
This limitation can be overcome by the use of two parallel mixing stages. 

13.3.3.1 FREQUENCY SYNTHESIS 

A commercial frequency synthesizer is usually the most convement way to 
produce arbitrary reference frequencies for stability measurements. A mixing 
stage preceding the synthesizer can be used both to bring the signal into the 
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FIG. 12-24 UK of frequency synthesis to measure oscillators whose frequency differs 
significantly from the available low-noise reference. It may be necessary to use a frequency 
multiplier to bring the signal into the range of the available synthesizer or to overcome the 
synthesizer’s phase noise. 

appropriate range and to enhance the oscillator noise compared to the short- 
term phase noise of the synthesizer. Figure 1 2-24 demonstrates both aspects 
of the technique. 

The initial mixing stage from the microwave frequency to the rf results in a 
substantial heterodyne factor, 77.5 for the example chosen. The output of the 
first conversion stage lies within the range of low-noise commercial frequency 
synthesizers, which makes it possible to obtain a fixed, low beat frequency 
over a wide range of input frequencies. The initial mixing stage also reduces 
the frequency synthesizer’s contribution to the measurement-system noise. 
Figure 12-25 shows the typical phase excursions of a high-quality commercial 
synthesizer operated near 5 MHz. 

Under some circumstances a frequency divider may be used to provide 
the signal for the second mixing stage! as shown in Fig. 12-26. This technique 
has the disadvantage of requiring a custom divider but results in much 
lower measurement noise than the direct use of a synthesizer with a single 
heterodyne stage. 

lay 

-16*0600 
TIME (SEC) 

FIG. 12-25 Typical phase excursions of a commercial frequency synthesizer. 
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REFERENCE 

FIG. 12-26 Use of a simple divider as a substitute for a commercial frequency synthesizer in 

a heterodyne measurement system. Better noise performance can result from the initial mixing 

stage. 

12.3.3.2 THE DUAL-MIXER TIIME-DIFFERENCE 
TECHNIQUE 

There is no best answer to the question of how to make frequency-stability 
measurements. However, by combining versatility with low-noise perform- 
ance, the dual-mixer time-difference technique (Cutler and Searle, 1966: Allan 
and Daams, 1975) shown in Fig. 12-27 comes close to the ideal. The ori@nal 
motivation for this method was to use a transfer oscillator and two mixers in 
parallel to permit short-term frequency-stability measurements between 
oscillators that have an inconveniently small frequency difference. The 
transfer oscillator is most easily realized with a frequency synthesizer locked 
to one of the oscillators, designated oscillator 1 in Fig. 12-27. By convention 
the frequency of the synthesizer is set low compared to the oscillator under 
test, so we write the frequency of the synthesizer as 

v, = v,(l - l/R). (12-83) 

The constant R is equal to the heterodyne factor, which can be seen by 
calculating the beat frequency between oscillator 1 and the synthesizer: 

VBl = v, - v, = v,/R. (E-84) 

OSCILLATOR 1 

TIME-INTERVAL 
P 

OSCILLATOR 2 

FIG. 12-27 A dual-mixer measurement system. The scalars measure the number of whole 

cycles of elapsed phase. while the time-interval counter measures the fractional cycle. 
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The combination of oscillator, frequency synthesizer, and mixer functions as 
a divider and scaler 1 functions as the system clock, recording elapsed time in 
units of cycles of oscillator 1. 

The signals from oscillators 1 and 2 are represented according to Eq. 
(12-52) with r#~,,, = &e = 0, and the signal from the synthesizer is written 

v,(t) = V,~cos[2m,I)t + t#gt)]. (12-85) 

The phase of the synthesizer retards nearly linearly in time compared to the 
phase of oscillators 1 and 2. At time t, the synthesizer reaches phase 
quadrature with oscillator 1 and the beat signal crosses zero (in the positive 
direction), producing a pulse from the zero-crossing detector and starting 
the time-interval counter. At a later time tN the continued sweep of the 
synthesizer has brought it into quadrature with oscillator 2, and a pulse is 
produced that stops the time-interval counter. The phase difference between 
the oscillators can be written in terms of the three counter readings: 

&(tJ - f#gfM) = 2(N - M)n - Zn[v’,,(r,: t/d]TcP, (12-86) 

where N is the reading of scaler 2, M the reading of scaler 1, P the reading of 
the time-interval counter, and ?5, the period of its time base (Stein er al., 1983). 
Comparison with Eq. (12-45) for direct time-interval measurements reveals 
that the role of the scalers is to accumulate the coarse phase di!ference 
between the oscillators, while the time-interval counter provides fine-grain 
resolution of the fractional cycle. This process is illustrated in Fig. 12-28. The 
advantage of the technique over direct time-interval measurements is that the 
noise performance is improved by the large heterodyne factor. allowing time 
resolution of 0.1 psec to be obtained. The synthesizer degrades the noise 
performance very little since it contributes to the noise only over the interval 
7,P. 

TIME 

FIG. 12-28 Total elapsed phase measured bj the dual-mixer system of Fig. 12-27 (solid 
line). This phase measurement consists of IWO components: the number of full cycles that have 
elapsed is the step function plotted as a dashed line: the fractional cycle is the saw-tooth function 
plorted as open circles. 
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The average beat frequency v’ , & y: tN) cannot be known exactly, but it may 
be estimated with sufficient precision if it changes slowly compared to the 
interval between measurements. If the primed and unprimed variables 
represent two independent measurements, then 

I,,(t,: tx) f (N’ - N)/[R(M’ - M)/vio + r&P - I’)]. (12-87) 

12.3.3.3 FREQUENCY MULTIPLICATION 

A frequency multiplier produces n full cycles of the output signal for each 
cycle of the input signal, where n is an integer determined by the design of the 
device. Such a device is also a phase multiplier, that is, the total phase 
accumulation of the output signal is n times as great as the phase accumu- 
lation of the input signal: 

@ wt = 2nv,,t + &t(t) = 2R(nviJt + +(t)- (E-88) 

It follows that the spectral density of the output signal is enhanced by a factor 
of n2 compared to the input signal, 

making it easier to perform the necessary noise measurements. Similarly, it is 
also easier to make Allan-variance measurements. If the oscillator under test 
and the reference are both multiplied by the same factor, the beat frequency 
will be n times larger than with no multiplication but the heterodyne factor 
will be the same. The zero crossings that must be detected by the counter 
have n times higher slope and more easily overcome the voltage noise in the 
counter trigger circuits. The ability to measure frequency stability is only 
enhanced if the multipliers have extremely low phase noise themselves. This is 
the case for many modem multipliers that are triggered by the zero crossings 
of the input signal. As a result, the use of multipliers can reduce the 
performance requirements on the phase detector and the following low-noise 
amplifiers. 

12.4 CONCLUSION 

The IEEE recommendations have achieved the goal of introducing 
substantial uniformity in the specification of oscillator performance. The 
Allan variance and the one-sided power spectral density of phase have proved 
sufficient to evaluate oscillators for all common applications. In a few c3ses 
more specialized measures are helpful in relating performance to the specific 
application. For example, the rms time-prediction error is helpful in judging a 
clock’s ability to keep time over long intervals (Allan and Hellwig, 1978). 
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However, the specialized performance measures are generally calculable in 
terms of the IEEE recommended measures. 

Significant progress has been made during the last 15 years in measure- 
ment techniques and data processing. These advances have obscured the 
dividing line between the frequency domain and the time domain. Today the 
spectral density and the variance are most often computed from the identical 
input data set, the equally spaced time series of the phase deviations. The 
choice of a specific measurement setup can be made mostly on a cost versus 
performance basis. Perhaps the biggest advance in commercially available 
equipment is the introduction of heterodyne measurement techniques for 
time-domain (counter-based) measurements. As a result, the noise perform- 
ance of these systems has improved dramatically. 

One recommendation that should be made is to perform measurements as 
high up in the measurement hierarchy as possible. Direct measurement of the 
phase deviation is most desirable. This approach places the largest share of 
the burden on the measurement equipment, minimizes long-term errors, and 
maximizes data processing flexibility. 
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