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ABSTRACT

Most workers in the field of atomic clocks encounter
frequency and time instabilities which can be character-
jzed (or modelled) as random fluctuations. These random

- fluctuations typically display a power spectral density
which varies as a power-law over some signiiicant range
of (Fourier) frequencies (e.q., S (f) = h,f~, where Y
denotes the normalized, instantan¥ous fre uency and f
denotes the Fourier frequency). Typical oscillators
and/or clocks may have regions where one specific power-
law predominates and other regions where other power-laws
predominate. In general, various combinaticns of five
different power-laws seem to be adequate to describe
almost all observed random behavior in atomic clocks.
The five types are:

White phase modulation S (f) = hzfﬁ
Flicker phase modulation Sy(f) = hlf
White frequency modulation Sy(f) = h f°_1
Flicker frequency modulation sY(f) = h?lf_2
Random Walk frequency modulation Sz(f) = h_,f

In addition to the random components, oscillators and
clocks often show systematic, (i.e., deterministic)
trends such as offsets in frequency and time, as well as
linear drifts in frequency.

For the atomic clocks used in the NBS Time Scales, an
adequate model is the superposition of white FM, random
walk FM, and linear frequency drift for times longer than
about one minute. The model has been tested on several
clocks using maximum Tikelihood techniques for parameter
estimation and the residuals have been "acceptably ran-
dom." Conventional diagnostics indicate that additional
model elements contribute no significant improvement to
the model even at the expense of the added model
complexity.

I. INTRODUCTION

Many authors (1, 2, 3) have documented the fact that most precision
oscillators and clocks exhibit both random and systematic variations in
their output signals. The typical random parts may include white noise
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phase modulation (PM), flicker noise PM, white noise frequency modulation
(FM), flicker FM, and random walk FM. A subset of these five noises is
usually adequate. In addition, most oscillators also exhibit a Tinear
drift in frequency, which is often difficult to measure.

Experimenters often diagnose the various noises using the two-sample
variance (or "Allan Variance") (4,5). On occasion, they will use an esti-
mate of the power spectral density of the frequency fluctuations (4, 5).
O0f course, one cannot adequately observe the fluctuations of a single
clock or oscillator by itself -- one must look at the difference between
two clocks. The allocation of noise levels to individual clocks requires
three or more clocks of comparable quality. This allocation process does
not always provide reasonable results. In fact, often the process yields
negative values for the variance -- an undesirable artifact of the estima-
tion procedure.

The Allan Variance is defined (1) as the infinite time average of
sample variances based on a sample size of only two adjacent values of
frequency. That is,

y (= e 7 (1)

where y is the average frequency departure from nominal, averaged over
the time interval and divided by the nominal frequency. An equivalent
form of Eq. (1) is:

n
2
.1 (X, = 2X 5+ X _,)
oyz(t) - klg N 2 n n 12 n-2 (2)
n=1 21

where x(t) and y(t) are related by

y(t) =55 X(t) (3)

and X(t), the instantaneous time error, is related to the phase error of
the oscillator by the relation:

X(ey = §Lb) (4)

0

where ¢(t) is the phase error and v

o is the nominal frequency (e.g.,
5MHz).
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The Allan Variance is normally computed from finite data sets of the
time difference, Xn , where

Xn = X(nto) (5)
and the estimated Allan Variance is
N-2
2
S X - ZX + X )
2 - 1 ( n+2m ntm “n
oy (W =§zm 2 ol 2 (6)
n=1 )
where T = mto.

Although Eq. (6) is very close in form to the definition of the Allan
Variance (see Eq. (1)), it is NOT an optimum estimator of the "true" Allan
Variance. That is, there are other statistical techniques which provide
more precise estimates of the frequency variability. These improved
techniques, however, are usually valid only for very specific clock models.
Fortunately, commercial cesium beam atomic clocks have been studied exten-
sively, and good models are well documented.

II. Optimum Estimates
In the introduction, we identified two prbb]ems:

A. Statistically inefficient estimators of the level of oscillator noises
and drift, and
B. Difficulties in separating individual clock performances.

While these two problems cannot be totally eliminated, they are amenable
to optimal estimation techniques. That is, we can minimize their effects.

The means of estimating these parameters has been developed by R.H.
Jones and P.V. Tryon (6, 7). Basically, the technique is that of maximum
likelihood estimation. The technique requires an ensemble of comparable
clocks (M > 2) and time difference data between clocks covering a signifi-
cant duration (e.g., a year). With the assumptions that the perturbing
noises are both independent and Gaussian, and that the basic model is
adequate, then it is possible to form the likelihood function as a func-
tion of the oscillator parameters. The likelihood function is obtained
from a Kalman Filter algorithm applied to the clock ensemble data.

Using essentialy the same notation as used by Gelb (8), the clock model

297




and measurements can be expressed as follows:

( X1 ) (1 1 0 0...)¢( X1 ) ( 81 )
(v to100.3¢v3 (n)
e n
(1Y < Yy (1)
( X2 ) (0 0 1 1...)(¢( X2 ) ( 82 )
e n
( 2) ( Y( 2) (%)
SR ) U )
(. )n ( ) (. -1 ( )n

where the subscripts on the matrices denote the recursion number
(i.e., time).

Eoel"- 00 og
(0 o 12 0 0...)
Q= " ) (8)
E 0 0O Oc o ...g
( o)
( )
( .2)
(1 0-100 0...)
( )
(100 0-10...)
H=( ) (9)
(. cel)
( ) .
(. )
R=0 (10)

where the the number of clocks is M, the state vector, X, is a 2M column
vector, ¢ and Q are 2M by 2M square matrices, and the measurement ma-

trix, H, is M-1 by 2M, since there are only M-1 independent clock dif-
ferences.

In matrix form the equations become:

X =¢ X . +U (11)
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and the measurements, Z , are:
Z, = #-¥% (12)

The forecasts of xn and Zn to step n+l based on data up to and including
step n are:

~

_541 =% - XﬁF ' (13)

A A

Liyp =8 X (14)

Of interest are the innovations at step n+l. The innovations are given
by ~ -

Lotl = dnel ” dpn (15)
with the covariance matrix V .4
yn+1 = H' - _En+1 - H (16)

where E'+ is the error covariance matrix for the state vector (see
Appendii’élfor a brief summary of the Kalman filter relations).

Assuming that the driving noises, &¢_and n_, are normal random devi-
ates with zero mean, then the multivarilte proﬁhbi]ity distribution can be
written in the form

N ~ s ~

2, 2p) = [0y | % 17 exp [ 3, Y] an

The function, £, given by -2 times the log of the 1ikeiihood function, is
N N

8= 3in +3 7 -v1.g (18)
n=1 n=1

Now, £ is an implicit function of the parameters 02, because both the
innovations and the error covariance matrix, P-, are dependent on these
mer] parameters. The estimation procedure fifds that set of parameters
(0°'s) which minimizes £ (that is, maximizes the 1ikelihood function).
Unfortunately, £ is a non-linear function of the parameters and must be
calculated by a complete pass through the data for each trial set of the
2M parameters. For example, if one has M=10 clocks and daily time differ-
ence data for a year, then one has 365 x (M-1) = 3285 independent measure-
ments and 2M = 20 parameters to adjust in order to maximize the likelihood

fuggtion. There exist standard computer algorithms to perform such calcu-
ations.
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Three additional concerns are (a) the estimates of confidence intervals
for the parameters, (b) the diagnostics to test the adequacy of the basic
model assumptions, and (c) the extension of the maximum likelihood esti-
mates to include a frequency drift parameter for each clock (9). The
model adequacy can be tested by testing of the residuals (Z_ ) for "white-
ness" (i.e., randomness); and by comparing results to more complex model
assumptions. References 6,7 include a discussion of the methods used to
estimate the confidence intervals of the parameter estimates.

III. Experimental Results

For many years, the National Bureau of Standards (NBS) has accumulated
large quantities of clock comparison data on the commercial cesium clocks
used in the NBS time scale. We used a recent sample of time comparisons
on a dozen clocks over about two months sampled every two hours. We also
used another set of daily data on seven clocks over a period of one year.

The basic model assumption was that of white FM noise plus random walk
FM noise plus linear frequency drift. Thus, for each clock in a data set
we estimated o, o, and D the drift parameter. Also estimated were the
corresponding Zonfi¥ence intervals. The three parameters can be related
to the more conventional Allan Variance through the equation (see Appendix
B):

~ 082 o 2(2n2 + 1) (Dnto)z
Gy (n‘[o) = 5 + n 5 + ) (19)
nt, 6nt0

Figure 1 displays plots of the Allan variance obtained from the use of
Eq. 19, above and the estimated parameters. Figure 2 dispiays a cumula-
tive periodogram of residuals for one of the clocks. A periodogram of
pure "white" noise would fall within the boundaries shown 90% of the time.
On the shorter data run, (~ 2 mos.) linear frequency drift was not statis-
tically significant. In fact, even on the longer run (1 year), only
infant clocks or older clocks approaching end of life showed significant
drift. (Of course, the algorithm could only detect relative drifts be-
tween clocks, not a common drift shared by all clocks.) Tests were made
using more complex models, but any improvement was found to be statistical-
1y insignificant.

IV. Conclusions

A viable clock model for commercial cesium beam clocks consists of
three elements: '

(1) White FM
(2) Random walk FM
(3) Linear frequency drift
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Maximum 1likelihood estimation techniques yield reasonable results and
confidence intervals also. Conventional tests show the model to adequate-
1y describe observed clock behavior. Further, the technique allows one to
estimate the individual performance of each clock. As pointed out by
Jones, one can avoid the problem of negative variances by using a log
transformation, y = 2n(c2).

Equation 19 allows one to express the results in the form of conven-
tional Allan Variances.

The new NBS time scale algorithm (TA(NBS)) makes use of the parameter
estimation routines covered in this paper. The technique is also used for
NBS clock calibrations.
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SUMMARY OF
Model: X,
Measurement: ~ Z
Forecast: X

Error Covariance:

-n
Kalman Gain: K,

Error Covariance: gn+
State Update: Xn

APPENDIX A

DISCRETE KALMAN EQUATIONS
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>

i
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Allan Variance

-

- v 2
o 2(mt )=E (Xn+m Zx"+m ’ X")
y 0 2m2t 2
= o
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Random Walk FM oy (mr )= o, =
Gmt°
Linear Frequency Drift
X, = !sD(nto)2 (Deterministic)
Allan Variance
K ypr = 2%, + X ¥
o 2(mt ) = n+2m ntm__n
y ° 2m2102
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Allan Variance

%Dtoz[(n+2m)§- 2(n+m)2+ n2 ] 2

2. 2
2m T,

o 2(mro) =

ts0r 2+ (2n))?
2m2t°2
%(Dmto)2

Composite: Assumes noises statistically independent.

2 () 082 2 (2n? + 1) + %(omr Y2
(¢ mt = ———2 (o} ———-—2———- mt
y ° me, n Gmt° 0

If the time error, Xn’ is sampled from a continuous process, then*

2 2
2 _ 08 Y mto 2
0, (mty) = =5 + -1;—3—- +5(Dn )
tO IO
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