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Quadrupole traps for charged particles often involve electrodes with portions carefully
machined to the shape of hyperboloids. It is shown here that the more important features of
such traps can be achieved using electrode shapes which are much easier to fabricate. Detailed
numerical calculations are reported on some sample electrodes. The numerical method can be
easily extended to other shapes which accommodate specialized laboratory situations.

. INTRODUCTION

Quadrupole ion traps are used in a wide variety of re-
search applications. It is well known that it is not possible to
construct static electric fields which will trap ions in ali three
dimensions. However, if is possible to build an effective trap
by either adding 2 magnetic field' (Penning trap) or by
making the electric field time dependent? {Paul trap). For
many applications it is desirable to achieve a special electric-
potential function which is referred to below as the “ideal.”
It is generally desirable for the electric-potential function to
have both cylindrical and reflection symmetry. With these
symmetry restrictions, a general potential can be expressed
in the form,

Vrz) = Co+ Gy (rz) + CH,(v2}
+ CeHg(rz) + Celly(r,2) + ..., (1)

where
H,(rz) = (228 — F#)/5*,
Hy(rz) = (82% — 2427 + 3:*) /5%,
H, (rz) = (162° — 1202*7% 4 90%* — 5:5)/5°,
Hy(rz) = (1282° — 1792257 + 3360%*

— 11202%° + 35/8) /58 .

The H; functions (spherical harmonics) are homogeneous
polynomials in z/s, /s with the numerical coefficients cho-
sen so that each satisfies the Laplace equation. The C; are
constants (independent of position ) with the units of poten-
tial, and s is a distance to be chosen to suitf the circumstances
of the problem. The ideal potentiai referred to above corre-
sponds to the first two terms of this expansion. A special
quality of the ideal potential is that the equations of motion
of trapped particies are particularly simple. For instance, for
the Paul trap, the » and z components have separate equa-
tions of motion, making it relatively easy to specify stability
criteria. Also, in a Penning trap, the ideal potential yieids
axial, cyclotron, and magnetron frequencies which are inde-
pendent of the amplitude of excitation (neglecting relativis-
tic effects). Thus a trap with the ideal potential is sometimes
described as “harmonic.” Some relatively recent reviews
cover both the operations and the appiications.™*

. THE PROBLEM

To achieve the ideal potential represented by the first
two terms of Eq. (1), three electrodes are needed, each a
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hyperboloid (and therefore infinite in extent). The elec-
trodes which produce the ideal potential are referred to be-
low as ideal electrodes. The three electrodes, each conform-
ing to an equipotential surface of the ideal potential function,
consist of a central “ring” electrode and “endcaps”™ on either
side. Some errors are caused by making finite electrodes;
however, these can be minimized by careful treatment of the
truncation boundaries.®> The hyperbolic electrodes are diffi-
cult to fabricate and for many purposes it is worth consider-
ing a much simpler shape. The purpose of this paper is to
point out that it is possible to achieve a good approximation
to the ideal with very simple electrodes.

The electrode structures examined below have the same
general topology as the ideal electrodes. They have cylindri-
cal and reflection symmetry, and involve a region of space
substantially surrounded by a ring and two endcaps. To pre-
serve the reflection symmetry, the two endcap electrodes
must have the same potential (assuming they have the same
shape). By appropriate choice of the potentials of the two
free electrodes, it is possible to make €, and C, match any
preset conditions. To make the other terms small with a
three-electrode system, it is necessary to choose the shapes of
the electrodes carefully. A more general version of Eg. (1)
involves terms with odd powers of z and 7, and also terms
involving the angle coordinate. Such terms are not included
here because it is easy to choose experimental conditions
which, in principle, make them zero. If the electrodes and
applied potentials have reflection symmetry, the odd-order
terms will all be zero, and if the electrodes have cylindrical
syminetry, the terms involving the angle coordinate all van-
ish. In practice, errors in fabrication or mounting (also non-
uniform contact potentials) can cause these terms to be non-
zero. The term of order one [C 4, (7,2} ] caused by these
laboratory errors can be made small by either choosing a
different origin of coordinates for the expansion, or by mak-
ing the endcap potentials unequoal. If the machining and
mounting are precise enough to make the third-order term
small, then it is appropriate to loock for electrode shapes
which make the fourth-order term small.

Some example calculations are reported below to show
that simple electrodes are capable of adequately producing
the ideal potential over a substantial volume. The basic com-
putational method as it applies here is described in some
detail in Ref. 5. The general method has previously been
used by Harting and Read® for electron lens calculations.
Only a brief summary of the method is given here. In this
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FIG. 1. A drawing of the trap geometry examined in this paper. The elec-
trodes are cylindrically symmetric about the z axis,

procedure the surface-charge density on all the electrode
surfaces is determined numerically, using the condition that
the potential is known on all the electrode surfaces. Then
either the C; or the potential can be calculated by application
of Coulomb’s law. The numerical representation of the sur-
face-charge density involves the arbitrary division of the
electrode surfaces into & small areas each of which has ap-
proximately uniform surface charge density across it. The
surface-charge distribution is represented by giving N
numbers, each of which provides the assumed constant sur-
face-charge density on one of the surface elements. One of
the principal computational chores is the solution of ¥V linear
algebraic equations. The values of N used were of the order
of 100. Much larger values of ¥ require 2 large amount of
computation time and tend to cause digital truncation error
to be a significant problem. Much smaller values of N cause
unacceptable errors in the results.

. RESULTS

A diagram of the example electrode shape examined in
this paper is displayed in Fig. 1. Detailed calculations of the
surface-charge densities have been carried out for a variety
of the variables defined in Fig. 1. By using a simple search
procedure it is easy to find values of the dimensions which
yield small values of C . It is even reasonable to search for
conditions which make C¢ small also. In the following dis-
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FIG. 2. Sample plot of the potential function ¥ (r.z) vs z for three values
of r.

cussion, all dimensions are given relative to 7, and the length
variables are therefore treated as dimensionless.

The C, are each linear functions of each of the electrode
potentials. The zero of potential is arbitrary and here the
potential is assumed to approach zero far from the elec-
trodes. For the purposes of this paper it is not necessary to
have a completely general solution. The values of C; were
calculated for a specific set of potentials on the electrodes.
These special values of C; are called 4. The reference set of
potentials are O for the ring and 1 for the endeaps (as defined
here the 4; have the same units as the endcap potential).
Scaling the results to other values of the endcap potential is
straightforward. These results capnot be generally scaled to
other ring potentials; however, in most circumstances it is
only the potential difference between the endcaps and the
ring which is important (for a more complete discussion see
Ref. 5). A general solution would involve generating a sec-
ond set of C; with other values for the electrode potentials,
including a nonzero value for the ring potential. The dis-
tance s in Eq. (1) is assigned the value »,. With these nor-
malizations the set of 4, are functions of the shape of the
electrodes and are independent of the size or the potentials
which are applied to the electrodes in use.

Table I contains resulis for eight cases which have been
found to yield 4 , = 4 5 = 0. Figure 2 displays the potential
for case six as a function of axial position. The data points in
the graphs are the calculated values and the solid lines are
the ideal potentials as represented by the first two terms of

TABLE 1. Data for eight sets of values for the variables defined in Fig. 1. The dimensions were selected to yield 4, = 4, = 0. The dimensions specified have
been scaled to the condition 7, = 1. The 4; are the spherical harmonic expansion coefficients with normalized potentials on the electrodes.

2z 7y z; 73 z; Ay A4, Ay
1 0.6122 0.8812 0.7952 1.1020 0.5913 0.54548¢6 0.568051 0.002312
b 0.7000 0.6856 0.8182 1.0462 0.2678 0.497635 0.489588 0.000142
3 0.7000 0.6950 0.8197 1.1147 0.2949 0.508734 0.478829 0.000103
4 0.7000 0.7095 0.8224 1.3654 0.4438 0.524285 0.463748 0.000033
5 G.7000 0.7799 0.8518 1.1000 0.4000 0.492112 0.488548 0.000623
é 0.7071 0.8435 0.8728 1.2340 0.5956 0.49399% 0.476988 0.000569
7 0.8000 0.7884 0.9356 1.2030 0.4569 0.441861 0.416657 0.000025
8 0.8000 0.8841 0.9683 1.2224 0.5573 0.435476 0.417169 0.000177
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FIG. 3. Plot of E;/2* vs displacement from the center of the trap. E, is the
fractional ervor in the eleciric field on the axis.

Eq. (1). Data are shown for =0, 0.2, and 0.4. Equation
(1) with values of C; derived from Table I can be used to
calculate the potential near the center of the trap. Near the
walls Eq. (1} is generally useless because too many terms
contribute significantly to the sum. The data of Fig. 2 were
calculated directly from the charge distributions without in-
volving Eq. (1). The potential is reasonably close to the ideal
all the way to the endcap.

The electric field on the z axis can be relatively easily
calculated from the surface-charge distributions (the deriva-
tive of the potential can be done analvtically ). The electric
field on the z axis corresponding to the ideal potential is
24 ,z. The fractional ervor in the electric field is given by

A Aq
—-16 L2448 284 4512 220 L,
2 AZ AZ

Figure 3is a plot of E,/2z” vs z for several of the cases of Table
I. The limit of these curves as z goes to zero is 164 ,/4,, a
quantity which is small by design. The field errors displayed
in Fig. 3 are all positive because the electrode shape chosen
here has a sharp point on the z axis. This point contributes
particularly large fields in a small volume near the point.
Away from the polar axis the electric field is not necessarily
in the same direction as the ideal, making a comparison more
difficult. While the departures from the ideal are more diffi-
culi to display in other regions, the data of Fig. 3 are reasona-
bly representative. Two of the cases are not included in the
plot because case 3 is similar to case 2, and case 5 is similar to
case 6.

Case 7 of Table I has the best value of 4 ; /4 , suggesting
that it might be a particularly favorable choice. Actually,
any of these cases may be difficult to implement with encugh
precision to make the eighth-order term the dominant error
in a laboratory situation. Case I has a small ring-endcap gap
providing good shielding from external fields. Cases 2, 3, and
4 have a relatively large ring-endcap gap aliowing easy ac-
cess with light beams, etc. Case 6, aiso relatively open, has
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already been used in an atomic spectroscopy application.” It
may be helpful in visualizing the shapes to know that the
diagram of Fig. | was drawn using the dimensions of case 6
from the table. For some purposes it would have been better
to have a hole in the endcaps on the » = 0 axis (instead of 2
point), thereby reducing the electiric-field anomaly and al-
lowing a convenient access for ioms, electron beams, etc.
Such holes would not have greatly complicated the compu-
tations, and unless they were very large, they would not have
interfered with making 4 ; and 4 ; smali.

An investigation of the errors in the general method was
reported in Ref. 5. Less extensive tests conducied in conjunc-
tion with the generation of the data of Table I confirm the
general conclusion that the principal errors were due to rep-
resenting the charge distribution on too coarse a grid. The
grid used was kept relatively coarse to speed the calculation
through the tedious search. Any small errors in the 4, and
A , can be easily compensated for by adjusting the potentials
applied to the electrodes. Errors in the computation of 4,
and A4 4 result in errors in the five length variables of Table 1.
The length data given in the table are estimated to have ap-
proximately four digit accuracy.

Might electrodes such as those of Fig. 1 be more sensi-
tive to misalignments than hyperbolic electrodes? An easy
and useful test is to make a small change in one of the dimen-
sions and repeat the calculation to observe the change in the
A, . Tests made in conjunction with the work of Ref. 5 but not
reporied there yield the result that 84, /82, = — 0.72 and
34 , /82, = 0.04 for the case of ideal electrodes with 225 = #2
{7, is the distance from the trap center to each of the end-
caps). In changing z; both endcaps were displaced but their
shape was not changed. Such tests were carried out both
with truncated hyperbolas and with the design of Fig. 1.
Some of the cases of Table I were found to have 4, about
twice as sensitive to this displacement as the ideal electrodes
cited. Similar sensitivities were also found for truncated hy-
perbolas. A conclusion is that the electrodes examined here
are not significantly more sensitive to laboratory errors than
those with hyperbolic shapes.

In Fig. 1 the electrodes extend beyond the boundaries of
the drawing. An assumption was made that in practice the
portion off the drawing would involve wires and mounting
brackets special to the particular instaliation. Thus, the im-
pact of varicus ways of handling the remote portions was not
systematically investigated. For the results of Table 1 elec-
trodes were extended a short distance and simply terminat-
ed. In each case the straight boundaries paralle} to the axes
had a length of 1.5#,. To test the sensitivity to this dimen-
sion, some of the calculations were repeated with both ring
and endcap extended by an additional 0.5r,. For cases 1, 4,
and 7, the changes in 4, were { — 1, — 17, — 10) X 1075,
respectively. Generally, increasing the size of the endcap in-
creases 4 4, and expanding the ring decreases it. If the ring
and endcap are close together, the region near the center of
the trap is shielded from charges on the more remote parts of
the electrodes. For cases where the intrinsic shielding is ina-
dequate a reasonable step is to insert a relatively large extra
electrode and empirically adjust its potential to produce op-
timum performance,
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iV, DISCUSSION

Some general comments can be made about the use of
the data of Table I in applications needing the ideal poten-
tial. In a common form of the problem the potential must
approximate the ideal to some specified tolerance over a
specified volume. This means that C, and C, have specified
values, and litnits are available for the other C;. To meet
these requirements with hyperbolic electrodes is straightfor-
ward with the condition that the minimum electrode size be
large enough not to intrude on the specified volume. To meet
these requirements with the electrodes of Fig. 1, it is neces-
sary to have larger values of ry, and z, (perhaps by a factor of
2 or 3) and therefore higher potentials.

An application where simple electrodes might be useful
is mass spectroscopy. In one kind of mass spectrometer, the
electric potentials are made time dependent in such a way
that ions with small masses have unstable orbits for one rea-
son, and ions with large masses have unstable orbits for an-
other reason.” With the ideal potential the stability condi-
tions are well defined and it is possible to create a situation in
which only ions in a narrow mass range have stable orbits.
Particles with unstable orbits leave the trap rather quickly.
Also some of the particles in stable orbits are removed be-
cause the orbits intersect one of the electrodes. Many such
traps have been built and found to give good service. It is
clearly possible to arrange the electrodes of Fig. ! {or other
simple shapes) such that near the trap center the orbits of the
ions and the stability conditions are not materially changed.
A failing of the simple electrodes is that near the electrode
surfaces the orbits are much more complex, blurring the dis-
tinction between stable and unstable orbits. Ions near the
center which fail (o meet the stability conditions will move
out where the fringing field may produce stability or at least
a long lifetime. The impact of this problem on mass resolu-
tion can’t be easily evaluated. Fulford ef ¢l. and Mather e
al® experimentally investigated the performance of some
traps that had cvlindrical rings and plane endcaps. They
found the mass resolution to be significantly lower than they
were accustomed to finding with hyperbolic electrodes. It is
not clear what the specific failing of the cylindrical traps was.
The design has the endcap and ring quite close together,
resulting in high electric fields in a place easily available to
the trapped particles. Also, as implemented, the endcaps had
large holes such that 4, may not have been small.

In some precise atomic physics measurements the po-
tential function must be very close to the ideal. In many of
these experiments the precise fields are achieved by having a
way to compress the cloud of ions into a relatively small
volume near the center of the trap.* While the electrodes
used have typically been modified hyperbolas, in some cases
extra “compensation” electrodes have been added s that €,
can be electrically adjusted to zero.!® In many of these ex-
periments it is important to closely approximate the ideal
field near the trap center while giving little concern to irregu-
larities near the electrodes. For this situation the design of
Fig. 1 is quite appropriate. It might be desirable to add elec-
trodes to a design such as that in Fig. 1 to allow compensa-
tion for some mounting errors. There is a significant need for
the extra electrodes to have both reflection and rotation sym-
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metry, with the penalty that it would be possible to compen-
sate only those errors with these symmetries.

Gabrielse and MacKintosh'' have examined the elec-
trostatic properties of cylindrical traps where it is possible to
solve the Laplace equation using series methods. They show
that 4, can be made zero by appropriate choice of the ratio
of height to radius. They also consider the option of dividing
the cylindrical ring electrode into three parts such that the
outer two can be used as compensation electrodes. This ar-
rangement atlows the user to empirically adjust 4, to zero
after assembly is complete. This analysis is based on very
small interelectrode gaps. While a practical design may re-
quire larger gaps and other holes, the adjustment should
have enough latitude to cover these problems. This is a good
example of how extra electrodes can be used to compensate
for incomplete design information. For the case of the Pen-
ning trap the potentials normally do not vary rapidly with
time and the potentials for the extra electrodes can be de-
rived from a simple resistive divider network. In Paul traps,
high-frequency potentials are needed and the divider
network is not so easy to adjust. Also, in many applications
the test for small 4, is very difficult.

V. CONCLUSIONS

Normally the most effective way to generate a close ap-
proximation to the ideal potential distribution is to use hy-
perbolic-shaped electrodes. This is especially true if the ap-
plication demands that the close approximation extend all
the way to the electrodes. The only inirinsic problem with
hyperbolic electrodes is the truncation. The truncation er-
rors can be made small either by careful design’ or by insert-
ing compensation electrodes.'® Practical problems with hy-
perbolic electrodes are that they are difficult to fabricate
and, in some applications, it is necessary to make holes
which spoi! the ideal fields. The simple electrodes discussed
above can, in some applications, be adequate and much easi-
er to fabricate. With electrodes requiring only simple lathe
cuts it is possible to be rather free with making access holes
and special mounting fixtures, while preserving some of the
more important features of the potential distribution. In cir-
cumstances where the dominant errors in the potential func-
tion are caused by alignment or machining errors, the simple
electrodes may have a positive advantage.
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