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NOTES ON INFRARED ABSORPTION EXPERIMENTS 
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The problem of calculating the transition probability 
of methane molecules in a molecular beam interacting with 
an infrared (3 .  39p)  radiation beam is discussed. Contrary 
to the usual microwave molecular beam experiments, f irst-  
order  Doppler frequency shifts cannot be neglected. This 
makes the solution of the wave-equations more  difficult. 
Weak field approximations to the transition probability have 
been calculated. 
to the Rabi-type interaction result  in a Doppler-broadened 
absorption line with an estimated half-power width of a few 
MHz. For  separated multiple field experiments analogous 
to the Ramsey-type interaction, no observable response i s  
predicted, the expected sharp resonance pattern being 
smeared out by the random Doppler shifts due to the spread 
of the molecular beam trajectories.  Further  investigations 
a r e  required in order  to predict the resonance line shapes 
for strong fields, i. e. , saturated absorption. 

Single optical beam experiments analogous 
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1. INTRODUCTION 

In 1970 H. Hellwig suggested a methane molecular beam 

absorption experiment for the investigation of the photon recoil effect [ 1 J 

which might limit the accuracy of the 3 .  39 - pm saturated absorption cell  

frequency standard of R. Barger  and J. Hall. This note summarizes  

some f i r s t  attempts to gain more  understanding of the interactions 

between the infrared radiation field and the molecular beam. 

see  that one of the main problems is the first order  Doppler shift which 

i s  not negligible a t  these short  wavelengths. 

different f rom that encountered in a microwave molecular beam 

apparatus (e. g., cesium). 

We shall 

The situation i s  very 

We f i rs t  note some initial data and facts: 

a )  Dimensions of the interaction region 

Optical beam diameter A = 0. 1 c m  

Separation for  Ramsey interaction L = 5 c m  

Molecular Beam Dimensions: Width - 1 c m  
Height - 0. 1 c m  

Divergence of molecular t ra jector ies  c 0. 1 radian. 

A compromise between divergence, which can be reduced by collimation, 

and useful f l u x  has to be made. Similarly to the absorption cell,  selec- 

tion of t ra jector ies  is also possible by saturated absorption. However, . 

we then have more  problems in understanding the recoil  effect. 

b) State selection 

The source temperature  can be situated between 78K and 300K; 

thus the ratio hv lies between 5 6  and 15 and the initial population of the 

upper energy level of the transition can be neglected. 
kT 
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W e  have 
v-  = v ,  (1 + P 1 

V 
where B = < ; , v being the velocity of the molecule and < <( 1 the 6, 

angle 

OPTICAL S T A N D I N G  
N A V E S  

F i g u r e  1. Geometry of molecular beam-optical wave interaction. 

between the molecule trajectory and the wavefront in  the plane of the 

trajectory.  For methane, we have v - 3 X  10 c m  s and thus with 

6 = 10 c .  An absorption experiment using a c =  3x10 c m s  

traveling wave puts an unfulfillable requirement on the adjustment of 

the optical and molecular beams with respect to each other, as 

4 -1 

-1 -6 10 

-3  = 10 radian would shift the absorption line by its entire width. 

The shift can be reduced or  compensated by using a standing 

wave produced by a Fabry-Perot  cavity. We then have an interaction - 
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with two equal and opposite running waves. 

but only a Doppler broadening due to the divergence of the beam, 

assuming that we have indeed a pure standing wave. 

will not be entirely perfect and this may limit the accuracy of the 

e xp e r ime nt . 

We thus expect no shift 

Actual resonators 

2 .  ABSORPTION IN SINGLE STANDING WAVE OPTICAL BEAM 

The following treatment is based on Ramsey's calculations of 

the transition probability of a two-level system perturbed by a periodic 

field [ 2, Section V. 3 1  . The form of the perturbation is different, 

however, because we have to deal with two simultaneously applied 

oscillating fields of equal amplitude but slightly different frequencies. 

This case has not been treated in the ear l ie r  l i terature  on microwave 

molecular beam spectroscopy because there i t  was usually either 

possible to neglect first order  Doppler shifts o r  if 

simultaneous perturbations by two frequencies were considered, one 

was assumed to be very much weaker than the other. We therefore 

could not see  how the older work could be used. If we look at  the 

geometry as  shown in figure 2, 

two running waves, which has to degenerate into the classical  case 

[ 3 ]  - [ 6 ] ,  

we have a perturbation by each of the 

of Rabi for < = 0, i.e. for a molecular trajectory exactly paral le l  to 

the plane in  which the nodes of the field pattern l ie.  

4 



Figure 2. Phase p of individual trajectory. 

F o r  the two-level system we have the wave function [ 2  3 ,  [7 ’J 

q % $ ( t ) = C  $ t c  
P P  

as a solution of the wave equation 

Since we have two equal amplitude waves running in opposite directions, 

the perturbation takes the following form 

i(u t uD)t Ab v = - ( e  t e  
P 9  2 

q P 2  

- i ( w  t wD)t 
e t e  



which, by adding an initial phase angle p (see fig. Z ) ,  can also be 

written as : 

i o t  
V = h b e  cos( .o  t t p) 

-iWt 
V = h b e  cos(.w t t p) 

Pq D 

w D 

where o is the Doppler shift (angular frequency) D 

V o = ooP = oo& * D 

With the assumed dimensions and velocity i t  is easy to see that W t D o  
var ies  between the limits : 

a 
where t = - . 
form; after transformation a s  in [ Z ] :  

The wave equations to  be solved take the following o v  

d iot 
i -  C ( t )  = W C ( t )  t b e  cos((3Dt t p)Cq( t )  

dt  P P P  

d - io t  
i -  C ( t )  = b e  cos(WDt t p)C ( t )  t W C ( t )  

dt 9 P q q  

where 

P 

a r e  the energies of the two levels p and q, so that 

w - w  = x u  . 
9 P 0 

The above equations a r e  to be solved with the initial conditions 
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c ( 0 )  = 1 c ( 0 )  = 0 . (2) 
P q 

It is easily verified that for 0 = 0 the case t reated by Ramsey is D 
obtained and the solution in closed form is obtained for the transition 

probability 
3 L 

P = I C  1 .  
PI 9 9 

Unfortunately, a closed form solution in our case has not been 

found. 

We have obtained the  following approximate solutions using 

the approach of Appendix A. 

The solution depends on the phase angle p, 

field where the molecule enters  the field region (see fig. 2) and is 

to be averaged over (0 ,  2 T ) .  

0 I p 5 27~  of the 

For very small values of b t the solution is: (without higher 
0 

order  te rms)  

a 
o v  with A = ( u o - W )  and t = - . This solution is valid for one 

typical trajectory incidence a n  le and is to be averaged over the 

<, which again is not possible in possible values of 0 = - 
closed form but easily done on a computer. 

WO 
D C 

It is nevertheless possible to discuss this resu l t :  
sin x 2 

WD We have a superposition of t e rms  of the ( - ) type. Finite 
X 

yields the following picture for a single trajectory : 
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u 
0 

Figure 3. Approximate transition probability for individual 
trajectory with Doppler shift w . 

0 
A finite spread in and w respectively smear s  oat the la teral  

wiggles and we obtain a simple Doppler-broadened central  peak at LIJ 

with a half width of about 2 aD 

D 

0 
(rough estimate) i.e., for 

max 

-6 = 3 . 3 x 1 0  s a 0 . 1  t = - =  
3 x l o 4  o v  

6 7 -1 - -  - 40 x10 = 1 . 2 x 1 0  s 
D 3 . 3  

0 

max 

2 V b  - - 3.8 MHz D = WD with 2 a v 

as  an estimate for the observed linewidth. 

so  that we obtain a line-Q of only about 

This is very broad indeed, 

13 
( V o  = 8 . 8 X 1 0  H z )  . 7 2 x 10 

As a conclusion, saturated absorption has to be attempted also in the 

case of the molecular beam experiment. The possibility of a Ramsey 

separated field excitation scheme has been discussed too. 

moment, an attempt to solve the wave equation appears to be a rather 

formidable task in  the case of separated fields.' To compute the 

F o r  the 
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discussion of the single beam ("Rabi"-type) case,  the following results 

may be obtained: 

a) Expressions valid for larger  values of b t have been obtained, they 

a r e  asymptotic for b t  - , but 
0 

0 
1) they a r e  singular at the resonance h = 0 

2) they contain elliptic integrals.  

b) At resonance X = 0 ,  the following expressions have been obtained: 

s in  wDto) 2b 2b 

P D D 
A =  0 

u t  
) 

D O  
sin - 4b 

- 2 Jo  ( w  2 D 

J o ( x )  being the Bessel-Function. 

the range of W 

c) 

This is again to be averaged over 

D '  
Fo r  a particle with zero Doppler shift we have 

w = o ,  x = o  D 

The last expression allows, in principle, to estimate the required 

power for saturated absorption. 

3 .  DISCUSSION OF MULTIPLE OPTICAL BEAM EXCITATION 

At this stage, we can only discuss the weak-field approximations. 

The result  shown in the preceding section (fig. 3)  

superposition of the two independent solutions of the Schrsdinger - 
Equation, with one single, Doppler -shifted perturbation applied each 

time. 

is equivalent to the 

In other words, and this can easily be verified in [ 2 ] , we have 



the sum of two shifted Rabi-type resonances, the shifts being + uD and 

- W respectively. D '  
It therefore seems reasonable to assume, without proof, that the 

same should be t rue for Ramsey-type resonances produced by two or  

more separated fields. 

We shall  see,  however, that for this weak-field assumption, 

the average result, i.e., averaged over the spread of incidence angles 

(see fig. 2) vanishes. In an experiment, we can predict that only 

the Doppler-broadened (A V - 3 MHz) Rabi-Pedestal will be observed. 

The question if Ramsey-type "interference fringes" could be observed 

by going into saturation remains still open. 

In a first crude experiment performed in January 1970, 

H. Hellwig and P. Kartaschoff have observed a weak saturation peak with 

single beam excitation, but we were not able even to estimate the linewidth 

The weakness of the signal and the bad signal to noise ra t io  was 

believed to be due to lack of excitation power and mechanical laser  

instabilities . 
F o r  sake of completeness, we shall give below the resul ts  of 

calculations of probability transition for the multiple field (2  and 3 

field) cases ,  with single frequency perturbation. 

A. Two-field case (Ramsey) 

This is Ramsey's resul t  (2) .  The perturbation applied is : 

i u t  V = B b e  
Pq 

- iot 
V = B b e  

9p 

and the solution is : 

P = <I c 1 2 )  
P, 9 q 

2 a r  
2 sin -1 cos- - cos 0 sin - = 4 s i n  0 sin2 [cos- 

2 AT a7 AT 
2 2 2 2 
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where : 
0 0  - 0 .  2b cos e = sine = - - a a 

2 2 1/2 a =  [ ( W o - W )  t 4b ] a T = -  
V 

A =  0 - 0  
0 

F o r  weak fields, i.e., b7  <cl and near resonance i . e . ,  A << b this 

reduces to : 

2 2 1  1 
2 

4 b  7 (z t - C O S  AT) P 
PY 9 

for one single frequency perturbation of amplitude b and angular 

frequency w . 
If we now assume that the interaction with the two running waves 

i s  analogous to the case  t reated in Section 2,  

angle of incidence c ,  i.e., for a given angular frequency Doppler shift, 

0 the following resul ts  : 

we obtain for a given 

D' 

This probability has to be averaged over all possible angles c y  i.e., 

values of 0 T ,  corresponding to the divergence of the t ra jector ies  in 

the molecular beam. The simplest, but crude example, is to assume a 

sharp collimation so that there is an uniform flux between two sharp 

cutoff angles t < '. We then have : 

D 

- 

11 



F r o m  the beam geometry, we estimate the limit value 

* - _  - A  

r -  - -  r 

If we do the integration for a close multiple of 2T , e.g., 

the integral vanishes exactly except for a constant term,  and since 

w' T i s  at least  of that order  of magnitude, slightly different values of 

W' T wi l l  produce only a very small  t e rm varying with X . 
means that due to the spread in angles of incidence, the Ramsey 

resonance ("fringe pattern") i s  smeared out, and we cannot expect to 

observe anything, at least  for the assumed case of'weak excitation. 

B. Three-field case  

D 

D This 

There was some hope in early discussions that the application of 

three successive separated oscillating fields might lead to an observable 

resonance pattern. It was assumed that a majority of molecules would 

be excited under a prefer red  se t  of phase relations. 

Doppler shift was neglected then and these early assumptions a r e  

wrong, at least  for the present case of weak field excitations. 

The 3-field excitation geometry i s  

Unfortunately, the 

assumed as follows : 



and the calculations of the transition probability is done using the same 

notation and method as in  Ramsey [ 2 f . 
not difficult, an outline is given in Appendix B.  

resul t  

The calculation is lengthy but 

We obtain the following 

2 = < I C  ( 3 T t  2T)I > 
P, 9 9 

3P 

2 2 a7 = 4 sin 0 sin -[cos 0 sin a 7  sin AT 2 

2 a 7  - cos 2) cos AT + (cos 6 sin - 2 
2 

2 a 7  2 + sin - sin 6 - 1 l2 . 2 2 

Near resonance and with weak perturbation as before, this reduces to 

2 2  
x b 7 ( 3  + 4 cos AT + 2 cos 2XT) . 

PI 9 
3P 

This is again periodic in AT and the averaging over 

respectively leads to the same smearing out of the resonance pattern 

as in the 2-field case.  

or % . 

At exact resonance A = 0 we find for all three cases'the common 

be havio r 

where n is the number of interacting field regions. 

::: i. e . ,  single-field (Rabi), 2-field, and 3-field cases.  

13 
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Appendix A 

It does not appear possible to solve the wave equations (l),  (2) 

in closed form for a rb i t ra ry  values of (0, o 
resul ts  can be obtained. 

b ) ,  but some interesting D’ 

For  convenience, we introduce some changes of variable and 

dimensionless parameters .  

atom, and take R to be the width of the optical beam. Let 

We take V to be the axial velocity of the 

V 
R ’  s = t -  

so that s = 0 when the atom enters  the perturbing field, and s = 1 

when it emerges.  Let also : 

a dimensionless measured of how near the fseld angular frequency w 

i s  to the atomic resonance ; 

a field strength parameter ; 

a Doppler parameter ,  where k is the optical wave number, and vL is 

the particle velocity parallel  to the optical beam. Then putting 

1 - i ( w  i- w - W ) t  

a s )  
iwt 2 p q C ( t )  = e e 

P 

16 



1 - i ( w  + w - w ) t  
c ( s )  9 

2 P  9 C ( t )  = e 
9 

we have the equations : 

= i E d + i F cos (Gs t p)c 

= -i E c t i F cos (Gs t p)d 

subject to initial data 

d ( 0 )  = 1 

c ( 0 )  = 0 . 
We wish to find the transition probability 

Clearly the functions (c, d) a r e  regular functions of the parameters  E 

and F. 

Weak field ap2roximation 

The solutions can be expanded in power se r i e s  in the field 

strength parameter  F : 

00 

d ( s )  = F Z k d k ( s )  
k =  0 

M 

where 

iE s d ( s )  = e 
0 

and the recursion equations a r e  

17 



S - i E ( s  -x)  
c ( s )  = i/ d x e  cos(Gx t p)d  k ( x )  k 

S i E ( s  -x )  
( s )  = i J  d x e  

0 

cos(Gx t p ) c k ( x )  . dk t 1 

The weakest field-dependent te rm i s  

i [ ( E + G ) s  + p ]  -i(Es - p) 
- e  

2 2 E t G  
c o b )  = q e 

i [  (E - G)s - p ]  -e - i (Es t p) 

2E - G  1 

2 
Averaging ] F c o ( l )  1 
equation (3)  in  the text. 

Expansions near resonance 

over the phase p leads to the resul t  shown in 

The solutions can be expanded in  power of E to describe the 

solution in a neighborhood at the resonance E = 0. F o r  this, we put 

d =  Ekdk 
k = O  

k 
c =  c E C k  

k =  0 

and define 

1 
c ( 8 )  = - ($  - 4 k )  . k 2 k  

18 



These new functions satisfy the system 

# k  - i F  cos(Gs t p) k i a k - l  

4 k  t i F  cos(Gs i p ) @  k = i  + k - l  . 

For  k = 0, the initial data a re  satisfied by the solutions 

F 
G i -  [sin(Gs t p) - s i n p ]  

= e 

. F  
-1- G [s in(& t p) - s i n p ]  

4 ( s )  = e 
0 

The higher order  functions could be obtained, with some pain, f r o m  

the recursions k 2  1 

F 
G i - sin(Gs t p) 

#,(s) = i e 

F 
C -i - sin(Gs t p) 

6 ( s )  = i e  k 
S F 

C i - sin(Gx t p) 
dx ‘k - 1 ( x ) e  

0 

k -  Note that 4 ( s )  = ( - )  # , ( s )  . k 

19 



Restricting ourselves to the resonance solution, 

= cos [ G (sin(Gs t p) - sinp)  ] 

E = 0 

F 
d 
0 

F 
0 G 

c = s in[  - (sin(Gs t p) - sinp)  ] . 

To this approximation 

2 *  
= sin [ F (sin(G t p) - s i n p )  ] 

where 

b 

D 
- -  * F  

= E -  w F 

To average this resul t  over the phase p ,  we note that we can write 

I C  2 a  ( - 1 1  = F { l - c o s [ 2 F  1 * s i n p ( c o s G - l ) ] c o s [ 2 F  * c o s p s i n G ]  q v  
* * 

t s i n [ 2 F  sinp(cos G - l ) ] s i n [ 2 F  c o s p s i n G ] }  . 

The third t e rm in the bracket can be dropped, since i t  is anti- 

symmetric about p = 0 .  Using the expansions 

cos (x sin p) 

cos ( x  cos p) k = O  
] = 2 Ck J Z k ( x ) c o s  2k 

where € = 1, € = 2 (k 2 l ) ,  and noting that 
0 k u 

20 



we have, averaging over p. 

rlr rlr 
?- 

where A = 2 F  (cos G - l),  B = 2F1' s in  G .  By Graf's Addition 

Theorem 

= J o ( m )  . 

Thus, 

.lr 2 R  1 * 
<Cq ( T ) > ~  = ~ ( 1  t J0(2F (cos G -  1 ) )  Jo(2FTsinG) 

* G  
2 -2 J0(4F sin - ) } 

which leads to equation (4). 

F o r  a particle with no Doppler shift, W = 0: D 

2 b R )  1 1 
2 = - (1 - Jo( 

Iw = 0 
D 

as given in equation (5) . 
L 

9 
To derive even the linear dependence of I C I on E appears to 

be a very difficult problem. Solutions for large F (saturating fields) 

can be obtained. 

could be determined to linear te rms ,  i t s  form for large F could be 

matched to the la rge-F  solutions to give a uniform solution for 

saturating fields. 

These a r e  singular at E = 0, but i f  the E- se r i e s  

The solutions for large F wi l l  not be discussed in this report. 
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Appendix B 

The problem is to solve the t ime -dependent SchrGdinger 

e quation 

i R  !!k = (Ho t V) #I 
a t  

where 

using the Rayleigh-SchrGdinger Perturbation Method [7  1 - The initial 

conditions a r e  more  general  than in Section 2, i.e., we assume the 

values 

and look for the solutions at  t = T . 
The perturbation is : 

i w  t - iwt  
V = % b e  V = * b e  

PQ v 9 p  

The general solution has been given by Ramsey [2]as follows ; we just 

introduce the abbreviations 

0 = # / a  W = Uq/R 
P P 9 

and assume these values to be constant throughout the interaction space. 

(This simplifies somewhat the computations and i t  is valid €or this case  

since we can assume the Zeemann and Stark Shifts to  be negligible. ) 

The solutions a r e :  

22 



a T  t cos-IC a T  (t ) c (t t T) = { [ i  cos e sin- P 1  2 2 P 1  

a T  iwtl 
t [ i s in  e sin - e 3 Cq(tl) ] 2 

i T / 2 ( w - w  -us) 
P X e  

a T  - iwt l  c (t + ~ ) = ( [ i s i n ~ s i n - e  2 . ]cp(tl) 
9 1  

a T  a T  
t cos-]IC (t ) }  

2 9 1  
t [ - i cos B sin- 2 

m I -i-(ut % t w ) 
2 9 X e  

where s i n e ,  cos 8 , a ,  a r e  the same as defined in Section 3A. The 

computation for  three successive separated oscillating fields follows 

closely that of Ramsey [ 2 ,  pp. 127- 1281; we used the same notation in 

order  to allow an easy comparison. Before Proceeding fur ther ,  le t  us  

note the special case of b = 0 ,  which is used for the regions between 

the oscillating fields : 
-wpT 

0 C (t t T) = . C  (t )e  
P 1  P 1  

T - i w  
9 Oc (t t T) = c (t )e 

9 1  9 1  

To avoid further complication, we res t r ic t  ourselves to the case of 

equal b in all three field regions of length 

length L ,  where b = 0 ( s z e  f ig .  4).  

, separated by regions of 

The molecule enters  the first region at t = 0 and leaves i t  at 1 
T = 7. During that time 7, b is constant (not exactly true,  but s impler) .  

Fur thermore ,  C ( 0 )  = 1,  C ( 0 )  = 0 .  We then have, after the f i r s t  
P 9 

23 



field region: 

a T  a T  
2 t cos - ) C ( r )  = ( i c o s e s i n -  P 2 

7 
X e  i- 2 (-P - WS) 

-i- 7 ( a t  o -t ) 

C q ( r )  = ( i s in8  s in  - )  a r  X e 2 P 9 
2 

These resul ts  a r e  the initial conditions for the next s tep :  b = 0 for 

time T .  We obtain 

c ( r  t T) = ( i c o s  e sin t cos - )  a r  
P 2 2 

+ i[' ( w -  w - wq) - w p ~ ]  
2 P X e  

a r  
C (7 t T) = ( isinG sin -) 9 2 

T 
- i [ z ( w +  w P + w )  9 + wqT] . 

X e  

In the second Eield region, another perturbation b is applied for  time 

7 ,  with the above C (7 t T) , C (7 t T) as initial conditions. We 

therefore apply the general  solutions by setting therein: t l =  T + T  

and T = and obtain: 

P 9 

C ( 2 T t  T) = {  [ i s i n g s i n z  t cos C (7 t T )  
P 2 2 P  

T + i - ( w - w  - 0  1 
2 P 9 X e  
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, 



IC ( 7 + T )  
a7 -io (7 t T) 

C (27 t T)  = [ [ i sin 8 sin - e 
q 2 P 

a7 
t - i cos 8 sin 5 t cos - 1 c (7 t T) 3 

2 2 q  

Up to this point, the results a r e  copied out of reference [ 2 ] .  To go 

beyond, we apply again b = 0 for t ime T and obtain: 

- i w  T 
C (27 t 2T)=  C (27 t T)  e P 

C (27 t 2T)= C (27 t T)  e 9 

P P 
- i w  T 

9 9 

Finally we need only: 

C (37 t 2T) = [ [ i s ine  sin a7 e -iw(27 ' 2T] C (2, .  + 2T) 
q 2 P 

t [ - i c o s e  sin- a7  t cos ] C (27 t 2T) ] 
2 2 9 

-'(wtw + w )  
.P  9 2 

X e  

in order  to obtain: 

2 = ( 1  C (37t 2T) I ) 
9 P¶ q 

3P 

where the ( )just denote that this is an expectation value. 

need for a further averaging over.initia1 phases of entry into the f i r s t  

field, since Ramsey's solution is independent of the initial phase. 

is no longer t rue for the case treated in Appendix A. ) 

There is no 

(This 

For  the detailed computation we introduce the following 

substitutions: 



a7 a = i sin 8 sin - 2 

a r  @ = i cos 8 sin - 
2 

a7 y = cos - 2 .  

Then: 

7 i[- ( 0 - w  - w  ) - w  T I  
G ( 2 7 t T ) = [ ( p t Y )  2 e 2 P 9 P  

P 

- i r L ( w t w  t u  ) t w  T - u ( T t T ) ] ]  
2 2 P 9  9 

+ C Y  e 

i L  ( w - w  - w )  
2 P '  9 X e  

7 i[- ( w  - up - wq) - w T - w ( 7 t T )  ] 
2 P 

-i[z ( w t w  t o ) t w  T I ]  

C .  (27  t T ) =  {a ( p  t Y )  e 
9 

7 

P 9  9 +- ( Y  - 8 )  ae 

We want to obtain 

2 T ) ' C  ( 2 7  + 2 T )  C. ( 3 7 + 2 T ) =  frwe 
9 P 

This  expression can be writ ten in the following form: 
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i 5 ,  i 5, i 5, i t4 
C (37 + 2 T )  = Ale t AZe t A3 e t A4e 

9 

where 

3 
A2 = CY 

3 

And by introducing X = w 

we have 

- w - 0, w - w = u0 :. X = w0 - w 
q P  q P  

5 ,  = 
1 

- - ( 2 T t 3 7 ) ( ~ t W  t W  ) t h T  
2 P 9  

1 - - - - (2T + 3 7 )  ( W  t w w ) - A T  
54 2 P 9  

and thus: 

i A  T - i X T  - i p  
t A  t A 3 t A e  ) e .  . 2 4 C (37 t 2 T )  = (Ale 

q 

Of this las t  expression we need only the t e rms  in the 
- i p  

parenthesis, since the factor e drops out in calculating the 

modulus of this complex quantity, and we obtain, by using 

) 
- i h  T 

+ e  
1 i h T  
2i 
1 i A T  t e  - i X  T 
2 

s in  X T = - (e 

c o s h  T = - (e 1 



the final solution: 

2 
= 4 sin 8 sin2 aT { cos 8 s in  a7  sinX T 2 

3P 
P, 9 

having re-substituted for CY, 5, and Y . 
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