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SOLUTION OF THE ABEL INTEGRAL TRANSFORM FOR A 

CYLINDRICAL LUMINOUS REGION WITH OPTICAL 

DISTORTIONS AT ITS BOUNDARY * 
E a r l  R. Mosburg, Jr. and Matthew S. Lojko 

The use of orthogonal polynomial expansions in  
the calculation of the Abel integral t ransform is dis- 
cussed. Par t icu lar  attention is directed to  the effects 
of optical and instrumental  distortions when the lumi- 
nous region is contained by a cylindrical glass  tube. 
An easily calculable solution of the Abel integral  is 
presented which reduces the effect of such distortions 
by employing a weighting function which has a maxi- 
mum a t  the center and vanishes at  the boundary. 
approach resul ts  in a more accurate solution of the 
Abel integral t ransform in the case where significant 
optical and instrumental  distortions a r e  present  near 
the boundary of the luminous region. 

This 

Key Words: Abel transform, Abel inversion, plasma 
diagnostics, emissivity profile, radiance 
profile. 

INTRODUCTION 

In order  to obtain the radial  distribution of volume light 

emissivity within a cylindrical, non-absorbing luminous region, we 

must  solve the Abel integral  t ransform using the projected brightness 

profile, measured by scanning the detector in a direction perpendicular 

to  the axis of the tube. If the projected brightness profile is f(x), where 

x is the ratio of the distance off axis to the radius of the luminous 

region, and i f  g ( r )  is  the corresponding volume emissivity distribution, 

where r is the normalized radius, then the Abel integral t ransforms 

can be writ ten a s  

*Work supported in par t  by the Advanced Research Projects  Agency. 



f(x)x dx 2 d 
n rdr s,' q r  g(r)  = - - - 

and 

o r  alternatively in the fo rms  

1 f ' (x)  dx 2 
g ( r )  = - - Tr 

- 

and 

where the pr imes  indicate differentiation. A direct n u m e r x a l  solution 

f o r  g ( r )  using measured values of f(x) in Eq. ( l a )  o r  Eq. (IC) is subject 

to considerable e r r o r  due to  the behavior of the denominator in the 

integrand and to the necessity for  numerical  differentiation. 

difficult ies a r e  considerably alleviated by f i r s t  making a l ea s t  square  

f i t  of f(x) to a power s e r i e s  expansion as described by F r e e m a n  and 

Katz. 

These 

1 

A more  convenient expansion in  t e r m s  of orthogonal polynomials 
L has been reported by Herli tz 

second kind. Popenoe and Shumaker have used Herli tz 's  method as 

well  as an expansion in t e r m s  of Legendre polynomials. The use  of 

orthogonal polynomial expansions is equivalent to a weighted l eas t  

squa res  analysis. 

functions, the coefficients can be independently calculated. Each 

coefficient can then be tested for  s ta t is t ical  significance and the 

using Tchebycheff polynomials of the 
3 

But here ,  because of the orthogonality of the basis  

2 



expansion appropriately truncated without any pr ior ,  ad hoc decision 

about the number of t e r m s  to be used. 

of Eq. (5 )  i s  determined once a par t icu lar  s e r i e s  of orthogonal poly- 

nomials is chosen fo r  the expansion. 

The weighting function w(x)/v(x)  

Sufficient attention has  not, however,  been given to the use  of 

orthogonal polynomial expansions in the case  where optical o r  instru-  

mental  distortions a r e  introduced a t  the boundary of the luminous 

region, as for  example,  by the presence  of a glass  container. In this  

case,  distortions due to the scat ter ing and uneven refraction4 of light 

in the tube walls may become important. 

near  x = 1 where a near  grazing angle is involved in the measurement.  

Fu r the rmore ,  the finite s ize  of the spec t rometer  sl i t  introduces an 

averaging over  the normalized spacial  resolution function of the 

instrument,  R(x-:), such that the measured  curve becomes a function, 

These effects a r e  a maximum 

h(<) ,  where 

and i D / 2  a r e  the limiting values of (x-5)  for  which there is appreciable 

contribution to the integral. The projected brightness profile, f(x),  

can, in principle,  be recovered f rom h(c) by an appropriate inversion 

of Eq. ( l e ) ,  but res idual  e r r o r s  will be present.  These e r r o r s  w i l l  

a l so  be l a r g e r  near  x = 1 where the differences between functions h(C) 

and f(x) a r e  la rges t ,  i. e . ,  where the second derivative of h (< )  is m o r e  

important. These distortions a r e  par t icular ly  la rge  when it  is des i r ed  

to invert projected prof i les  approximating f(x) = 1 -x  

to  g ( r )  = constant. 

near  the boundary and the luminosity is now high in the region of 

maximum distortion. 

which corresponds $-"- 
Here  the second derivative of h (< )  is even l a r g e r  

3 



We wish to  s t r e s s  a t  this point that, in contrast  to the dis tor t ions,  

most projected brightness profiles of experimental  i n t e re s t  vanish a t  

x = 1 

is now c l ea r  that  in order  to reduce the effect of the dis tor t ions,  w e  

would like a weighting function in Eq. ( 5 )  which vanishes at x = 1 

exhibits a maximum a t  x = 0. 

and exhibit maxima a t  o r  near  the center  of the light source.  It 

and 

In this paper  we r e s t r i c t  our choice of polynomial t o  the genera l  

c lass  of Ultraspherical  o r  Gegenbauer polynomials, which includes 

Legendre and Tchebycheff polynomials a s  special  cases .  

follows we w i l l  use  the notation of the Handbook of Mathematical  

Functions. We expand f(x) in t e rms  of general  Gegenbauer polynomials 

a s  

In what 

5 

f(x) = X a v(x)C (u(x))  
- n  n n =  0 

where v(x) is some shape function to be chosen and u(x) is some 

function of x. Substituting Eq. ( 2 )  into Eq. ( l a )  we a r r i v e  a t  the 

exp r e  s s ion 

N v( x)Cf )( u( x) )x  dx 
' C  a -  r'  

n r d r  d r  ( 3 )  
g ( r )  = - - 

ll n =  0 

5 
When the orthonormalization integral for  the Gegenbauer polynomials 

is writ ten in the f o r m  

w(x) C(') (u(x)) C") (u(x)) dx = h 6 , n m M nm (4) 

4 



then multiplying Eq. ( 2 )  by - w(x) 

w e  obtain 

(u(x)) and using Eq. (4), 
4 x 1  m 

which allows the calculation of the coefficients a n needed in Eq. ( 3 ) .  

It is c lear  that the function f(x) can be written a s  the sum of an 

experimentally significant par t ,  f (x), and a par t  due to optical and e 
instrumental  distortions, f (x);  that is, d 

f(x) = f (x) t f (x). ( 6 )  e d 

In many cases  it may be convenient to further spli t  the experimental 

par t  into an  easily soluble approximate form, f a (x), and a relatively 

small  perturbation to this form, f (x),  s o  that 
P 

Experimentally the t e r m s  a r e  not, of course,  separable f rom prior  

knowledge, but we may arbi t rar i ly  separate out the approximate function 

f (x). 

of these t e r m s  separately and then summing. 

expansion used for f (x) need not be the same a s  that used for the two 

other t e r m s  of Eq. (7). 

The same final resul t  is  obtained by performing the Abel inversion 
a 

Note that the polynomial 

a 

The problem then becomes one of reducing the effect of the 

distortion contribution, fd(x), in treating the combined contribution, 

f(x) of Eq. ( 6 ) ,  or  f (x)  of Eq. (7) .  

Eq. ( 2 )  we wish therefore to satisfy two requirements: 

When choosing a specific form of 
C 

5 



( A )  Prope r  weighting factor. The weighting factor in Eq. (5)  

should be such that the contribution to the calculation of a 

where the distortion contribution, f (x )  is largest. 

like the weighting function w(x)/v(x) to  approach ze ro  a s  x-1 and be a 

maximum a t  the center. 

is reduced 
n 

One would therefore 
d 

(B)  Ease  of calculation. In principle, Eq. ( 3 )  can always be 

evaluated numerically, but the number of integrals that must be cal-  

culated can be very large. 

calculate g ( r )  for S different values of r ,  then the number of integrals 

becomes N(St1) where N i s  the number of t e rms  in the polynomial 

expansion. F o r  convenience, then, Eq. (3) should be directly integrable 

in some closed form,  o r ,  this failing, i t  should be easi ly  calculable 

a s ,  for example, by a recurrence relation between the integrals of 

o rde r  nt2,  n t l ,  and n. In this paper we have settled for the la t ter  

condition in order  to satisfy requirement A in full. 

To i l lustrate  this point, i f  we wish to 

Once the f o r m  of Eq. ( 2 )  has  been set, the weighting factor of 

requirement A and the integrability o r  non-integrability of Eq. (3) in 

closed form a r e  fully determined. 

of requirements A and B must be somewhat fortuitous. The number of 

solutions of the Abel integral equation in t e r m s  of well-known polynomials 

i s  severely limited. 

factors  and solutions of the integrals of Eq. ( 3 )  for s eve ra l  choices of the 

form of Eq. (2)  where the function v(x) has been chosen to allow evaluation 

Thus the simultaneous satisfaction 

In rows 1 thru 4 of Table 1, we show the weighting 

of these integrals in closed form. A l l  of these solutions can be derived 

by proper  manipulation of the general  equation 

6 
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W e  a r e  not aware of any closed form solutions which a r e  not specific 

cases  derivable f rom this equation. 

is closely related to the normalization function w(x) and therefore  the 

weighting function w(x)/v(x) cannot be a rb i t ra r i ly  chosen. 

solutions l is ted has  a weighting function of the fo rm we desire .  

paper we present  a solution of the Abel integral  equation which involves 

a weighting function of the desired type and consis ts  of an expansion in 

t e r m s  of Gegenbauer (a=2) polynomials (Table 1, Row 5). 

The f o r m  of v(x) in these solutions 

None of the 

In this  

THE SOLUTION USING GEGENBAUER (a=2) POLYNOMIALS 

If we choose an expansion of the form 

then Eq. ( 5 )  becomes 

(10) a =  n rr ( 2 n t  8 3 )  ( 2 n t  1 )  . r - I  ” f(x)  (1 - x 2 ) CA:) (x) dx ,  

and we immediately see that c r i t e r i s n  A is satisfied. F o r  the 

sake of completeness, the first few polynomials of interest  a r e  given 

below. 

(2 1 C2 ( 2  1 ( x ) =  1 2  x 2 - 2  C4 (2 )  (x)  = 80 x 4-48 x t3 co (x)= 1 

C F ) ( x ) =  448 x 6 - 4 8 0  x 4 t 120  x 2 - 4  



.. , . . *-.. -_ .I -I -.. - . . &. -. . . . . . . 

It remains  to evaluate the equation 

It can be shown that 

where 
U (x) x dx -1 1 2n I ( r ) E -  - - 

n ~ T T  r d r  J : 7 1 7 J x T  
and thus I ( r ) =  0 and I ( I ) =  - 1. 

0 1 

Svbs tituting the recur rence  relation 
2 

U2n t 4 (x) = 2 ( 2 x  - "'2nt 2 (XI  - U2n (XI 

= t 2  '2n t 2 ( X I  - u 2n (x)  -I 4(x - 1 )  U2n (1 6 )  2 
(XI 

(x) x dx into Eq.( 14),we obtain 2 
2 1  d . 1  d l -  U Z n +  2 

(17) - -1 + - - -  
1 n t 2 - 2 1 n t 1  n IT r d r  J r  JxV 

9 



The integral  of the las t  t e r m  has a closed form solution ( see  Table 1) 

so that Eq. (17)  becomes 

2 5 where P ( 2 r  -1) is also generated by a recur rence  relation 

given by 
n t l  

2 
( 2 r 2  - 1 )  P ( 2 r  -1)  

2 2n t 1 ( 2 r  - I ) =  
n t  1 n t l  n 
P 

2 P ( 2 r  - 1). 
n - -  

n t l  n - 1  

Using Eqs. ( 1 5 ) ,  (18), and (19), the desired function, g ( r ) ,  can 

readily be obtained from Eq. (1 3).  

This approach was readily programmed for a computer solution. 

The integral of Eq. (10) was evaluated using the trapezoidal rule and a 

40 point Gaussian quadrature. 

using the trapezoidal rule was completely negligible. 

Fo r t r an  computer program using the trapezoidal rule is given in Appendix 11. 

The s e r i e s  of coefficients so calculated can be terminated by applying 

the F-distribution significance tes t  to each coefficient in turn. We 

s t a r t  by assuming that a 

the mean square deviation, 6 ,  between the input curve f(x.) and the 

curve defined by Eq. ( 2 )  using the coefficients known to be significant. 

This calculation, when repeated using one additional coefficient to be 

tested,  yields 6 ’ .  

input curve) /&’ is then compared with the value of F chosen f r o m  

The change in the values of the coefficients 

A listing of the 

6 

is always significant. We then calculate 
0 

1 

The quantity F* = (6  - 6 ’ )  x (number of points in the 

10 



. 

Table V of Ref. 6. If F* > F then the additional coefficient is considered 

significant and the procedure is repeated for  the following coefficient. When 

a non- significant coefficient is found, all  subsequent coefficients a r e  

then se t  equal to zero. 

s t ructure  is not expected. 

This is done on the physical basis  that fine 

In treating the input curves  we allowed for  asymmetr ies  by 
1 following the approach of Freeman and Katz, 

the t ransformed curves to be symmetric. This was done, in spite of 

the fact  that no large asymmetr ies  were expected, in order  to obtain 

a check on the symmetry of the discharge. 

symmetr ic  pa r t  of f(x) is contained in the even function 

and thus did not force 

In this approach, the 

f (t x) t f ('X) 

fg(X)  = 2 

and the asymmetr ic  pa r t  of f(x) is described by the even function 

f (t x) - f ('X) 
f ( x ) =  

U 2x 

After the Abel inversion of these functions to obtain g ( r )  and g (r) ,  g U 

the radial  distribution is constructed by using 

and 

11 



CONCLUSION 

The use and advantages of orthogonal polynomial expansions in 

solving the Abel integral  t ransform have been briefly discussed and a 

new solution in t e r m s  of Gegenbauer (a = 2 )  polynomials, which uti l izes 

a weighting function (1 - x  ) in the calculation of the expansion coefficients, 

has  been presented. In the presence of significant distortions near  the 

boundary of the luminous region, a condition which is particularly t rue  

for projected profiles approximating f(x) = 

constant, the use of the Gegenbauer (a=2) polynomial expansion w i l l  

reduce the contribution of such distortions in the calculation of the 

expansion coefficients, and in principle allow a m o r e  accurate solution 

of the Abel inversion integral. 

2 

2 
1-x , o r  g ( r )  approximately 
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APPENDIX I 

We present  here  a proof of the statement that the "impact 

parameter"  of a light ray is unchanged by passage thru the wall 

of a uniform glass  tube. 

s ines  f o r  triangle ABC as  s in  8 

Referring to figure 1, we write the law of 

= sin (180-e3)/(1 t T ) ,  or  
2 

3' (1 t T )  sin O 2  = s in  8 (A-1) 

The initial and final impact parameters  a r e  given by the relations 

(A -2 )  4' 
= (1 t T )  s i n e  ,and-p = s i n 9  

pi 1 f 

The angles involved a re  related by Snell's law a s  follows: 

Here 7 

a i r  and the indices of refraction both inside and outside of the tube a r e  

assumed identical. Combining these relations,  we obtain 

pf = sin 8 

parameter  inside the tube is identical with that of the incident ray. 

resul t  is simply another expression of the conservation of angular 

momentum. There is consequently no distortion due to refraction for 

the case of a cylindrically symmetric light source,  coaxial with a 

cylindrical glass  tube of uniform thickness. 

is the index of refraction of the g lass  tube relative to that of 

. Thus the impact 

This 
P i  = s in  g 1  (s in  03/sin 9 ) = sin (1 t T )  = 

4 2 
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Figure 1. Displacement of an incident beam of light in passing 
through an optically perfect glass tube. 
parameter ' '  is not changed. 

The "impact 
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APPENDM I1 

PROGRAM ABELTAPE 
D I Y E N q I O N  HED(  5 ) , X ( 5 0 0 ) r Y ( 5 0 0 1 * R P ( l O ~ ) * R M ( I O O ) , X P ( 2 5 0 ) , Y ~ ( 2 5 0 ) *  

1 Y M ~ 2 5 ~ ~ ~ X F ~ 5 ~ l ~ ~ F X ~ 5 0 l ~ r t J R l ~ 5 O l ~ ~ t J R 2 ~ 5 ~ l ~ ~ Y K N ~ 2 5 1 1 ~ A N ~ 7 0 ~ ~ R N ~ 2 0 ~ ~  
2 A N N ( 2 0 ) ~ ~ N N 1 2 0 ) r R A I 2 n ) r R R ( 2 n ) r R X ( 5 n l ~ ~ C ~ ( 5 ~ l ) ~ B S ( 5 ~ l ) ~ G P ( l ~ 0 ) ,  
3 G M ( 1 0 0 ) r K I N D ( 3 r 2 ) ~ G R ( 2 ~ l ~ ~ X J P I 2 S l ) ~ X J M ( 2 5 l ~ ~ X X ~ 2 5 l ~ ~ ~ E ~ ~ l 0 ~  

TYPE INTEGER DATE 
COMMON YPO I NT 
DATA( IRUNO=O 1 9 ( I SETOxO 1 
DATA(ESPI=5.092958)~(’SPrl.2732395)r((KIND(l~I)~I=lr~)=8H TCHEBI 

~ ~ H I C H E F ) , ( ( K I N D ( Z I I ) ~ I = ~ , ~ ) P ~ H  L E G E I ~ H N D R E ) ~ ( ( K I N D ( ~ * ! ) * I = ~ * ~ ) =  
28H CEGE * SHNBAUR 1 

1 1 2  F O R M A T ( + O S E T = + r I 2 r S X * 4 R ~ ~ = + ~ I 2 * ~  NOT FO1JND ON INPUT TAPE*)  
R E A D ( 6 n r 5 C 5 ) H E E  

5C5 FORMAT ( I O A B  1 
c 
C GENERATE RHO ARRAY 
C 

R Z = O o  
RP ( 1 ) 
R M ( l ) = - . O l  

R P ( I ) = R P ( I - l ) + * O l  

01 

DO 106 I r 2 1 1 0 O  

106 R M ( I ) = - R P ( I )  
DATE= IDATE I XDUMMY ) 

C 
C GENFRATE GR A R R A Y  
c 

DO 5 0 0  I=ltlOO 
I M= 1 0 1 - 1  
IP-101+1 
G R ( I ) = R M ( I M )  

500 G R ( I P ) = R P ( I I  
G R ( l O l ) = O o  

C 
C REA0 INPUf  PARAME TERSIDATA t AND HEADING. 
C 

99 READ( 60.11 1 )  I SET IR\JNINNI NX ,YED+ INFLAG 
111 F O R M A T ( 4 I S r 5 A 8 r 1 1 )  

I F ( E O F r 6 P ) 9 8 r 5 n l  

REPD(60rl53)(X(I),YII)*I=lt”) 
w i  IF(INFLAG.EQ.O) GO TO 5 0 3  

153 F O R M A T ( ~ ( F ~ * O I F ~ * ~ ) )  
GO TO 9 9 9 9  

5 0 3  R E A D ( 6 0 r 1 5 1 )  ( X (  I )  1x1 9NX) ( Y (  I )  I=l r N X )  
1 5 1  F O R M A T ( 8 E l O o 3 )  

NP 9 FVA LUE 9 TH ICK 9 I PPP 
152 F O R M A T I Z I S * 2 F l 0 . 5 t I l )  

9999 READ ( 6 0  9 1 5  2 1 NPO I PIT 

C 
C GENERATE ARRAYS FOR YM AND YP*  THE CORRESPONDING Y 
C VALUES FOR - X  AND + X  RESPECTIVELY AND ASStJME f H E  
C VALUES A T  THF END POINTS ARE AVERAGFS OF THE MEASUREO Y o  
C FIH=NX/Z FOR EVEN NX. 
C N H e ( N X - 1 ) / 2  FOR ODD NX. 
C ‘VT IS THE TOTAL NO. OF POINTS. 

16 



C 
C 
C 

c 
C 
C 

C 
C 
C 

C 
C 
C 

c 
C 
C 

6 

1 2  

14 

1 3  

1 5  

16 

F I R S T  FIND T H E  AVFRAGE DELTA X .  

N = O  I M P L I E S  NX IS EVFNo 

N H = N X / 2  
D X H = D X A  / 7 
N H P O = N H + l  
DO 14 I=I,NH 
NHP=NH+T 
Y P ( I ) = Y ( N H P )  
X P ( I ) = D X A + F L O A T F ( I - l ) + D X H  
NHM=NHPO- I 
Y M (  I ) =Y ( NHM) 

GO TO 16 
Y Z = . S * ( Y ( N H ) + Y ( N H P O ) )  

N NOT 0 IMPCIEZ N X  IS 0000 

A P P L Y  RACKGROUND N O I S E  C O R R E C T I O N  T 3  T H E  DATA.  

T P = T H I C K + l  
T P S = T P + T P  
IF(TH1CK.EQ.n . )  C = O O  
I F ( T H I C K O N E O ~ I D )  C = Y A / S Q R T ( T P S - l o )  
Y Z = Y  Z-C+TH I CK 
00 17  I=lrNH 
X S O = X P ( I ) + X P ( I )  
D X P = S Q ~ T F ( T P ~ - X S O ) - S Q R T F ( ~ * - X S Q )  
CO=C*DXP 
Y P ( I ) = Y P ( I ) - C D  

1 7  Y M ( I ) = Y Y ( l ) - C O  

17 
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C 
C 
C 
c 

c 
c 
C 
c 

C 
c C 

c 
C 
C 

T R A N S F O R M  T H E  F U N C T I O N * S O  T H A T  I T  IS ZERO A T  T H E  
BOUNDARY AND IT I S  N O R M A L I Z E D .  

Y Z = Y  Z -Y A 
Y M A X I N = Y Z  
DO 18 I = l * h ( Y  
Y P ( I ) = Y P ( T ) - Y A  
Y M ( I ) = Y M ( I ) - Y A  
I F  ( Y P  I I )  .GT.YMAX I N  119921 

19 Y M A X I N = Y P (  I )  

22 Y M A X I N = Y M (  I) 
18 C O N T I N t I E  

Y 2 = Y Z  /YMAX I N  
DO 2 0  I= l ,NH 
Y P ( l ) = Y P ( I ) / Y Y A X I N  

70 Y M ( l ) = Y M ( I ) / Y M A X I N  

2 1  IF(YM(I).GT.Y"AXIN)22~1~ 

S E T  UP X F  AND F X  A R R A Y S  I t S E D  R Y  THF 
S I G N I F I C A N T  C O E F F I C I E N T  T E S T .  

NHPO=NH+ 1 
N T = N H + N H P O  
DO 23 I = l t N H  
N H M = N H P O - I  
F X ( I ) = Y M ( N H M )  
X F (  I ) = -XP(  NHM 1 
N H P = N H P O + I  
F X ( N H P ) = Y D (  1 )  

23  X F ( N H D ) = X D ( I )  
F X ( N H P O ) = Y Z  
X F  ( N H P O  1 =n 

C A L C I J L A T E  S Y M M E T R I C  A N D  A S Y M M E T R I C  P O R T I O N S  O F  FUNCTION. 

18 
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I 

9 

x 
4 

W R I T E 1 6 1 ~ 1 2 4 ) ( X ( I ) ~ Y ( r ) r I = 1 . " )  

WRITE ( 6 1  9 1 2 1  IHEE *HFD*OAT€ 9 ISFT 9 I R U N I N N ~ N X ~ F V A L U E ~ T H I C K  ,NP,KIND(NPO 

WRITE (61  9 125 1 

W R I T E ( 6 l r l 7 7 )  
W R I T E ~ 6 1 ~ 1 3 4 ~ ~ X F ' I ~ r F X ~ I ~ ~ I ~ l ~ N l ~  

DXH=nXH/?  
X X C l l = O .  
DO 91 I = ? * N H P O  

GO TO (lDn92OO93OO) r N P O I N T  

124 F O R M A T ( S I F 1 3 . 4 r F 9 . 4 ) )  

~ I N T ~ ~ ) ~ ~ I N D ( N P O I N T I ~ )  

125  FORMAT(*  THF L I S T I N G  OF THF NORMALIZED I Y P U T  D A T 4  FOLLOWS+/ / )  

C GENER&T!ON OF THE CQFFFICIFFTS FOP THE nc<IsFr, PCILYNWIAL 

91  X X ( I ) = X o C I - l )  

5 N P O I N T = l ,  TCHEBICHEF CASE 
100 DO l c I l  I = l r N H P O  

U R 2 (  I 1 ~ 1 0  
U R 1 (  I ) = X X (  I ) + X X  ( I )  
I F ( I o F Q . l ) l Q 8 r l O Q  

198 A N ( 7 1 = X J P ( l ) * D X Y  
RN( 1 1  = X J M (  1 l * @ X H  
GO TO I n 1  

195, AN( 1 )  = b Y ( 1  ) + X J P (  I ) * D X A  
RN ( 1 1 =Pq ( 1 1 + X  JM ( I 1 *DXA 

101 CONTINUE 
AN( 1 )  =PY ( 1  ) * F S P  
RNJ( 1)  =R4( ( 1  ) * F S P  
DO 1 0 2  J = Z r N P  
DO 107 I = l , N H P O  
TX=XX ( I ) + X X (  I )  
U Q 2  ( I 1 = T Y * I J Q 1  ( I )  - l J R 2  ( I 1 
I J R 1  ('I I = T X + I J Q ? (  I ) - I J R 1  ( 1 )  
I F ( I . ~ C o l ~ l ~ 4 r l O 5  

1 n 4  IJRR=URZI I )  *DYH 
A N ( J I = X J D (  I ) * U R R  
BN(  J )  = X J U (  I )*URR 
GO TO 1q3 

1 0 5  U R R = U R Z ( I ) * D X A  
A N ( J ) = C Y ( J ) + X J P ( I ) * l J R R  
R N ( J I = I ? Y ( J ) + X J M ( I ) * U R R  

103 CONTINUE 
AN ( J =PY ( J 1 *FSP 
BN ( J  1 =EY f J ) *FSP 

GO TO ! l  
i n z  CONTINLJF 

c 
2n0 DO 2 0 1  I = l r N H P O  

IJR2 ( ! ) = l  
Y K N ! I ) = 2 e * X X ( I ) * X X ( I ) - l ~  
U R 1 (  I =YKN ( I 1 

298  URR=C)XV*XX ( 1  I 
I F ( I ECe 1 1 2 9 8  9299 

A N ( l ) = X J P ( l ) + U R R  
B N ( l ) = X J Y ( l ) * U R R  

N P O I N T = 2  9 LEGFNDRF CASE 

19 
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GO TO 201 
299 URR=DXA+XX ( I 1 

AN( 1) =AN ( 1  ) + X J P (  I )  * I IRR 
B N ( l ) = B N f l ) + X J M ( I ) + I J R R  

2 0 1  CONTINUE 
A N ( l ) = Z . * A N ( l )  
R N ( 1 ) = 2 r * R N ( l )  

I F ( J . E Q e 7 ) 2 3 4 * 2 7 5  
DO 7 0 7  J=?*NP 

2 7 4  XN=J-1 

7 3 5  XN=J-7 

231 XN2=XN+XN+ l *  

GO TO 2 3 1  

X N l = J - 1  

DO 203 I=ltMHPO 
I F ( J . E Q . 2 1 2 4 4 * 2 4 5  

2 4 4  U R = U R l ( I )  
GO TO 249 

U R 2 (  I ) = I J R l ( I  ) 
1JR 1 ( I 1 = t l R  

245 U P = ( X N 2 + Y K N ( I ) + U R l ( I ) - X N * U R 2 ( I I I / X N 1  

7 4 9  IF( I.FQ.1 ) 2 n 4 r 7 0 5  
7 n 4  I J R R = I l R * n x H * X ) I (  T 1 

AN( J ) = X J P (  I ) + t l Q R  
SN ( J 1 = X  JM ( I 1 *URR 

205 URR=IJR+DXA*XX ( I )  
GO TO 2 0 3  

A N ( J ) = A N ( J ) + X J P (  I I * O R R  
R N ( J ) = B N ( J ) + X J M ( I ) * U R R  

2n3 CONT INIF 
I F (  J * E Q * 2 ) 2 5 4 * 2 5 5  

2 5 5  XN2=XNZ+?e 
7 5 4  TX=XN2*7 

A N ( J ) = A N ( J ) * T X  
RN( J )  =PY ( J  ) * T X  

3 n 7  CONTIN!JF 
GO TO 11 

C 
300  DO 101 I = l r N H P O  

Y K N ( I ) = l . - X X ( I ) * X X ( I )  
lJR3t  I ) = 1  
U R l ( I ) = C * * X X I I )  
l F (  I.€Q*I)qQR*3?o 

2519 I I R R = Y K N ( I ) * D X H  
A N ( I I = X J P ( l ) * U P R  
RN(  1 )  =XJVA( 1 ) * I ! R R  
GO T O  mi 

7 9 0  IJPR=YKN( I )  * D X A  
A N ( I ) = P N ( 1 ) + X J p ( I ) * I J F p  
B N ( l ) = R N ( l ) + X J M ( I ) * U P 9  

3 0 1  CONTINUE 
T X = E S P I / 7 *  
A N ( l ) = A Y ( l l * T X  
B N ( l ) = R N ( l ) * T X  

N P O I N T z 3  9 GEGENBAUR C A S E  

20 



X N s n o  
DO 703 J = 7 r N P  
X N = X N + l o  
X N l = X N + I  
X N Z = X N l + l o  
X N 3 = X N 2 + 1  
XN4=XN3+1  
TXRAT=XN?*XN4 
DO 7 0 3  I = l t N H P O  
U R Z ( I ) = L ? o f X N 2 *  X X ( I ) * U R l ( I ) - X N 3 + U ~ 2 ( I ) ) / X N 1  
U R 1 (  I ) = ( 2 0 * X N 3 *  X X (  I ) * \ l R 2 (  I ) -XN4* IJR l  ( I  1 ) / X V 2  
IJR=l lR7 ( I  I * Y K N (  1 )  
I F ( I o E O a 1 ) 7 0 4 t 7 n S  

704 (IRR=IIR*DXH 
A N ( J ) = X J P ( I ) * I J R R  
BN ( J  1 = X  JM( I )  *URR 
GO TO 3 0 3  

A N ( J ) = A N ( J ) + X J P ( I ) * U R R  
3 n 5  IJRR=UR*DXA 

B N ( J ) = R N ( J ) + x J M ( I ) * u R R  
3 0 3  CONT INIJE 

T X = E S P I / T X R A T  
A N ( J ) = A N ( J ) * T X  
P N ( J ) = R N ( J ) * T X  

7 0 2  CONTINI IF  
c 
C TEST FOR c I C N I F I C I F N T  COEFFIC IENTS.  
c 

11 DO 3 1  I = l * N P  
ANN( I ) = A N (  1 )  
B N N ( I ) = R N ( I )  
R A (  I )=0. 

7 1  R B ( I ) = O o  
R A ( l ) = F V A L U E + l o  
GO TO ( 7 2 * 3 ? r 3 2 ) r N P O I N T  

7 3  DO 7 4  Y=I,NT 

GO TO 7 5  
7 4  R X ( K ) = l o  

3 2  DO 36 K = l r N T  

3 5  DO 3 7  I = l * N P  

3 8  DO 4 1  J = l r N T  
U R 1  ( J ) = l o  

UR2 ( J ) = l  
41 R S ( J ) = A N I l )  

GO TO 76  

3 6  RX(K)=SORTF(lo-XF(K)*XF(K)) 

I F ( I * E Q * 1 ) 3 8 , 3 9  

39 I F ( I o E Q o 3 ) 4 3 * 4 4  
47 DO 45 J = l r N T  

GO T O  ( 5 1  9 5 2 9 5 7 )  r N P O I V T  
5 1  UR2(J)=4o+XF(J)*XF(J)-lo 

i i R l  ( J ) = x F (  J ) + x F (  J 1  
GO TO 5 4  

5 2  Z = Z o * X F (  J ) * X F (  J 1 - 1 0  



- -  . . *_._.._I. ---. 

U R 2 (  J)=Z 
GO T O  54 

5 1  I J R ~ ( J ) = ~ ~ * X F ( J ) * X F ( J ) - ~ O  
I J R l (  J ) = 4 o * X F (  J)  

5 4  C S ( J ) = S q ( J )  
4 5  R S ( J ) = R S ( J ) + A N ( I ) * V R 7 ( J ) + S X ( J ) * ~ X ( J )  

GO TO 46 
44 DO 47 J= l  N T  

GO TO ( 6 1 r 6 2 r 6 3 ) r N O O T N T  
6 1  T X X = X F (  J ) + X F (  J)  

I J R 1  ( J ) = T X X * I J R 2  ( J  ) - U R 1  ( J  1 
l J R 2  ( J  1 = T X X * I J R l  ( J  ) - l J R 2 (  J )  
GO T O  6 4  

X M N = I - 1  
X M l = X Y ? + X Y N  

T X X = ( Z * U R 2 ( J I * X M l - X M N * l I R l ( J ) ) / X Y 2  

6 7  X M 2 = I  

Z = 2 0 * X F (  J ) * X F (  J 1 - 1 0  

U R l ( J ) = U R Z ( J )  
U R 2 ( J ) = T X X  
GO TO 64 

63  X M 2 = I + I - 3  
X M 3 = X M 2 + 1  
X M 4 = X M 3 + 1  
X M 5 = X M 4 + 1  
(JR1  ( J )  = (2 .  * X M ? * X F (  J ) * U R 2  f J ) - X M 4 * I J R  1 ( J  1 1  / X M 2  
U R 2  ( J ) = ( 2 * X Y 4 * X F  ( J *IJR 1 ( J ) - X M  5 *IIR 2 ( J 1 ) / X w ?  

6 4  C S ( J ) = R S ( J )  
4 7  B S ( J ) = R S ( J ) + A N ( I ) * U R 2 ( J ) * R X ( J )  
46  AS=!). 

D S = O o  
D O  48 K = l r N T  
A S R = F X  ( K 1 -CS ( K 1 
D S R = F X ( K ) - B S ( K )  
A S =  A S + A S R +  A S R  

48  D S = D S + D S R * D S R  
R A ( I ) = A R S F ( 1 0 0 o * ( A S - D S ) / D S ) / D ~ )  

26 AS=n.  
D S = n o  
DO 68 K = l r N T  
C S ( K ) = R q ( K )  
8 S ( K  1 = R S (  K )+BN ( I ) * U R 2  ( K  ) * X F  ( <  ) * R X  ( K 1 
A S R = F X ( K ) - C S ( K )  
D S R = F X ( K ) - R S ( K )  
A S = A S + A S R * A S R  

68 D S = D S + D 5 R * D S R  
R R ( I ) = A R S F ( l O n o * ( A S - D S ) / D S ) / D S )  

3 7  C O N T I N U E  
IPP=1 
DO 42 I = l , N P  
I F ( R A ( I ) o L E o F V A L I J F ) 6 5 r 6 9  

6 5  DO 66 J = I * N O  
ANN( J ) = T ) o  

66  B N N ( J ) = n o  



, . , , / . . . . . , .  L.. 

GO TO 8 5  
69 GO TO (R4*42)*IPP 
8 4  
71 DO 72 J = I * N P  

I F  ( R R  ( I )  oLEeFVALIJE 171 942 

7 2  R N N ( J ) = O e  
I P P = 2  

42 CONTINUF 
85 I P P = 1  

C 
C GENERATE F ( R H O I  VERSUS RHO. 
C 

67 C A L L  FGRHO ( R Z  *ANN* l * G Z * N P  1 
DO 73 I = l r 1 0 0  
CALL F G R H O ( R P ( I ) , A Y N * l r G P ( I ) t ~ P )  
CALL G'q ( 1 1 9 YP 1 FGRHO ( R M  ( I ) t PNN 9 2 

73 CONTINOF: 
c 
c WRITE O\JT ?€CON0 PAGF OF OIJTPIJT. 
C 

WRITE ( 6 1  1 2 1  )HEE ~ H F D I D A T F  I S F T  IRlJN *NN,NX * F V A L U F I T H I C K * N P  r K  I N D ( N P 0  

W R I T E ( 6 1 r 1 2 6 )  
1 I N T 9 1 )  r K I N O ( N P O I N T t 2 )  

1 2 6  F O R M A T ( 8 X * * S I C  C O F F F * * Z l X * * A L L  C O E F F * ~ 2 4 X ~ + F A T I O S * / 4 X , r A o r r 9 X , + B  
1 ( I ) * r l 3 X ~ + A ( I ) * ~ 9 X t r B I I ) + r l 3 X , + R A ( I ) * ~ l ~ X ~ ~ F 3 ~ ! ) + / / ~  

W R I T E ~ 6 ~ ~ 1 2 7 ~ ~ A N N ~ I 1 ~ R ~ N ~ I ~ , A N o r P N ~ I ~ ~ ~ N ~ I 1 ~ R A ~ I ~ ~ R ~ ( I ) ~ I ~ I ~ l ~ N ~ )  
127 F O R M A T ~ F 1 0 ~ 6 ~ F l ? ~ h ~ ~ l 7 ~ 6 ~ F l ~ * ~ ~ E l ~ ~ ~ ~ € l 5 ~ 4 ~ ~ X ~ I 2 ~  

C 
C NORMALIZE F ( R H 0 )  ANCI S E T  T O  ZERO I F  IT TS N F G I T I V E .  
c 

81  DO 74 T=i,inO 
I IH= 101 - I  
I P = l C I l + I  
FX ( I 1 =GP ( I M 1 -GM 

74 F X ( I P ) = G P ( I ) + G M ( I )  
F X ( l O l ) = G Z  

. FMXOUT=FX ( 1 )  
00 75 I = 2 * 2 0 1  
I F ( F X ( I ) . G T * F Y X O U T ) 7 6 , 7 5  

I M 1 

76 FMXOUT=FX( I )  
75 CONTINOF 
87 DO 77 I=1*701 

F X (  I )  = F X (  I )  /FMXOUT 
I F ( F X ( I ) . L T . 0 . ) 7 8 * 7 7  

7 8  F X ( I ) = O .  
77 CONTINUE 

C 
C WRITE OUT T H I R D  PAGE OF OUTPUT. 
C 

W R I T E ( ~ ~ ~ ~ ~ ~ ) H E E I H E D , D A T E I I S E T , I R U N I " , N X ~ F V A L U E ~ T H I C K ~ N P ~ K I N ~ ( N D O  

W R I T E ( 6 1 r 1 2 8 )  

W R I T E ( 6 1 r l 2 4 ) ( G R ( I ) ~ F X ( I ) , I = l r 2 0 1 )  
WR I TE ( 61 9 1 29  1 YMA X I N 

l I N T ~ l ) r K I N D ( N P O I N f , 2 )  

128 F O R M A T ( 5 ( 9 X , 3 H R H 0 , 4 X , 6 H F ( R H O ) ) / / )  

FMXOUT 

23  
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1 2 9  FORMAT(*OTHE NORMALIZATION FACTORS ARE*/ / *  I N P U T / * t E 1 1 . 4 ~ 1 0 X e + O U T P  
1UT/*  , E l  1.4 1 

I F (  IPPP.EQ.1)9999+99 
9 8  WRITE ( 6 1  9 131 1 

WR I T E  ( 6 I 9 5 0 6  1 HEE r D A T  E 

CALL E X I T  
END 
SIJBRO~JTINE FGRHO(X+AN,J,FOX*NP) 
DIMENSION A N ( 2 A I  
COMMON NPOINT 
D A T A ( T P = 6 . 2 8 3 1 8 5 3 )  
Y=2.+X*X-l. 
XX=3. 
GO TO ( l l r l 2 t 1 3 )  *NPOINT 

11 P2=1.  
P l = Y  
S=AN( 11+3.*AN( 2 ) * Y  
XN=Oe 
DO 1 I=?,NP 
x x = x x  +7. 
XN=XN+l  
P N = ( ( t . + X N + l o ) * Y + P l - X N + P 2 ) / ( X N + 1 . )  
S=S+XX*AN( I ) + D N  
P t - P I  
P l = P N  

1 CONTINUE 
GO TO ( 2 9 1 3 1 t J  

RFTIJRN 

R E T !  IRN 

Z S Q = l * - X S Q  

1 3 1  FORMAT(* END OF THIS RUN*) 

5 0 6  F O R M A T ( I H l , l n A R * 2 O X , A 8 )  

2 FOX=.S+S 

3 FOX=-.S*S+X 

1 2  XSQ=X*X 

TZSQ=ZSQ+Z SQ 
Z =SQR TF ( 2 SQ 1 
P2=1.  
P 1 = 3  0 - 4 .  *XSQ 
S=AN( ] ) - A N (  2)*P1 
SI=\. 
DO 4 I = 3 , N P  
PN=TZ qQ*Pl-PZ 
P 2 = P 1  
P1=PN 
S = S + S I * A N (  I ) *PN 

4 SI=-SI 
DEN=1.5707967*2 
GO TO ( 5 r 6 1 , J  

5 FOX=S/DEN 
RETURN 

6 FOX=-S*X/DEN 
RETIIRN 

I7 P7=1.  

24 
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P l - Y  
T Z m - 1 .  
T l + 1 * - 6 * * X * X  
S=AN( 1 ) + A N (  2 ) + ( 5 e * T 2 - 3 e * T l )  
DO 8 I = 3 , N P  
XNmI-1 
XNNSXN-1 e 
XB=XN+XN+l* 
XA=XR+2. 
PN=((XN+XNN)*Y+Pl-XNN*p2)/XN 
TNnT 1 +T l-XB+PN-T 2 
S=S+AN( I ) * ( X A + T l - X R * T N )  
T 2 = T 1  
T l = T N  
P 2 = P 1  

8 P l = P N  
GO TO ( 7 9 9 ) t J  

9 FOX= S*X 
R E  TlJRN 

7 F O X = S  
R E T U R N  
END 

25 
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