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SOLUTION OF THE ABEL INTEGRAL TRANSFORM FOR A
CYLINDRICAL LUMINOUS REGION WITH OPTICAL
DISTORTIONS AT ITS BOUNDARY *

Earl R. Mosburg, Jr. and Matthew S. Lojko

The use of orthogonal polynomial expansions in
the calculation of the Abel integral transform is dis-
cussed, Particular attention is directed to the effects
of optical and instrumental distortions when the lumi-
nous region is contained by a cylindrical glass tube.
An easily calculable solution of the Abel integral is
presented which reduces the effect of such distortions
by employing a weighting function which has a maxi-
mum at the center and vanishes at the boundary. This
approach results in a more accurate solution of the
Abel integral transform in the case where significant
optical and instrumental distortions are present near
the boundary of the luminous region.

Key Words: Abel transform, Abel inversion, plasma
diagnostics, emissivity profile, radiance
profile,

INTRODUCTION

In order to obtain the radial distribution of volume light
emissivity within a cylindrical, non-absorbing luminous region, we
must solve the Abel integral transform using the projected brightness
profile, measured by scanning the detector in a direction perpendicular
to the axis of the tube. If the projected brightness profile is f(x), where
x is the ratio of the distance off axis to the radius of the luminous
region, and if g(r) is the corresponding volume emissivity distribution,
where r is the normalized radius, then the Abel integral transforms

can be written as

*Work supported in part by the Advanced Research Projects Agency.
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glr) = -T rdr Jr (1a)
X -r
and
= [} BELZAE (1b)
r -x

or alternatively in the forms

2 J'-l £/(x) dx

A N 5 (1c)

X =-r

and

)|
f(x) = g(l)#l-x2 -[Vrz -xz g'(r)dr (1d)

where the primes indicate differentiation. A direct numerical solution
for g(r) using measured values of f(x) in Eq. (la) or Eq. (lc) is subject
to considerable error due to the behavior of the denominator in the
integrand and to the necessity for numerical differentiation. These
difficulties are considerably alleviated by first making a least square
fit of f(x) to a power series expansion as described by Freeman and
Katz. !

A more convenient expansion in terms of orthogonal polynomials
has been reported by Herlitz2 using Tchebycheff polynomials of the
second kind., Popenoe and Shurnaker3 have used Herlitz's method as
well as an expansion in terms of Legendre polynomials. The use of
orthogonal polynomial expansions is equivalent to a weighted least
squares analysis. But here, because of the orthogonality of the basis
functions, the coefficients can be independently calculated. Each

coefficient can then be tested for statistical significance and the



expansion appropriately truncated without any prior, ad hoc decision
about the number of terms to be used. The weighting function w(x)/v{(x)
of Eq. (5) is determined once a particular series of orthogonal poly-
nomials is chosen for the expansion.

Sufficient attention has not, however, been given to the use of
orthogonal polynomial expansions in the case where optical or instru-
mental distortions are introduced at the boundary of the luminous
region, as for example, by the presence of a glass container. In this
case, distortions due to the scattering and uneven refraction4 of light
in the tube walls may become important, These effects are a maximum
near x = 1 where a near grazing angle is involved in the measurement,
Furthermore, the finite size of the spectrometer slit introduces an
averaging over the normalized spacial resolution function of the
instrument, R{x-{), such that the measured curve becomes a function,
h({), where ¢ + D/2
h(C) = f(x)R(x-C)dx (le)

¢ - D/2
and +D/2 are the limiting values of (x-{) for which there is appreciable
contribution to the integral. The projected brightness profile, f(x),
can, in principle, be recovered from h({) by an appropriate inversion
of Eq. (le), but residual errors will be present, These errors will
also be larger near x = 1 where the differences between functions h(()
and f(x) are largest, i.e., where the second derivative of h({) is more
important. These distortions are particularly large when it is desired
to invert projected profiles approximating f(x) = l-xz, which corresponds
to g(r) = constant, Here the second derivative of h({) is even larger
near the boundary and the luminosity is now high in the region of

maximum distortion.




We wish to stress at this point that, in contrast to the distortions,
most projected brightness profiles of experimental interest vanish at
x = 1 and exhibit maxima at or near the center of the light source. It
is now clear that in order to reduce the effect of the distortions, we
would like a weighting function in Eq. (5) which vanishes at x=1 and
exhibits a maximum at x = 0,

In this paper we restrict our choice of polynomial to the general
class of Ultraspherical or Gegenbauer polynomials, which includes
Legendre and Tchebycheff polynomials as special cases. In what
follows we will use the notation of the Handbook of Mathematical

Functions. > We expand f(x) in terms of general Gegenbauer polynomials

as
N (o)
flx) =% a v(x)C_ (u(x)) (2)
n= 0 n n

where v(x) is some shape function to be chosen and u(x) is some

function of x. Substituting Eq. (2) into Eq. (la) we arrive at the

expression
N v(x)C (a)(u(x))x dx
(r)= - 2 z a d Fl L (3)
g - I n rdr ©r ’ 2 2 '
n= 0 X -7r

When the orthonormalization integral for the Gegenbauer polynomials

is written in the form

J“: wi(x) C(c;) (u(x)) c(‘:rz (ux) dx=h_ 6, (4)
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w(x) C(a)

then multiplying Eq. (2) by —— (u{x)) and using Eq. (4),
v{x) m g

we obtain

a = rb

n 7*1,; 1% 10 2 i) ax (5)

vix) n

which allows the calculation of the coefficients a_ needed in Eq. (3).
It is clear that the function f(x) can be written as the sum of an
experimentally significant part, fe(x), and a part due to optical and

instrumental distortions, fd(x); that is,

f(x) = fe(x) + fd(x). (6)

In many cases it may be convenient to further split the experimental
part into an easily soluble approximate form, fa(x), and a relatively

small perturbation to this form, fp(x), so that
f(x) = fa(x) + ffp(x) + fd(x)] = fa(x) + fc(x) . (7

Experimentally the terms are not, of course, separable from prior
knowledge, but we may arbitrarily separate out the approximate function
fa(x). The same final result is obtained by performing the Abel inversion
of these terms separately and then summing. Note that the polynomial
expansion used for fa(x) need not be the same as that used for the two
other terms of Eq. (7).

The problem then becomes one of reducing the effect of the
distortion contribution, fd(x), in treating the combined contribution,
f(x) of Eq. (6), or fc(x) of Eq. (7). When choosing a specific form of

Eq. (2) we wish therefore to satisfy two requirements:
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(A) Proper weighting factor, The weighting factor in Eq. (5)
should be such that the contribution to the calculation of a_ is reduced
where the distortion contribution, fd(x) is largest. One would therefore
like the weighting function w(x)/v(x) to approach zero as x~1 and be a
maximum at the center,

(B) Ease of calculation. In principle, Eq. (3) can always be
evaluated numerically, but the number of integrals that must be cal-
culated can be very large. To illustrate this point, if we wish to
calculate g(r) for S different values of r, then the number of integrals
becomes N(S+1) where N is the number of terms in the polynomial
expansion. For convenience, then, Eq. (3) should be directly integrable
in some closed form, or, this failing, it should be easily calculable
as, for example, by a recurrence relation between the integrals of
order n+2, n+l, and n. In this paper we have settled for the latter

condition in order to satisfy requirement A in full.

Once the form of Eq. (2) has been set, the weighting factor of
requirement A and the integrability or non-integrability of Eq. (3) in
closed form are fully determined. Thus the simultaneous satisfaction
of requirements A and B must be somewhat fortuitous. The number of
solutions of the Abel integral equation in terms of well-known polynomials
is severely limited. In rows 1l thru 4 of Table 1, we show the weighting
factors and solutions of the integrals of Eq. (3) for several choices of the
form of Eq. (2) where the function v(x) has been chosen to allow evaluation
of these integrals in closed form. All of these solutions can bé derived

by proper manipulation of the general equation
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We are not aware of any closed form solutions which are not specific
cases derivable from this equation. The form of v(x) in these solutions
is closely related to the normalization function w(x) and therefore the
weighting function w(x)/v(x) cannot be arbitrarily chosen. None of the
solutions listed has a weighting function of the form we desire. In this
paper we present a solution of the Abel integral equation which involves
a weighting function of the desired type and consists of an expansion in
terms of Gegenbauer (a=2) polynomials (Table 1, Row 5).

THE SOLUTION USING GEGENBAUER (a=2) POLYNOMIALS

If we choose an expansion of the form
2 2
f(x) = Zanﬂ/l - x CZ(n) (x) (9)

then Eq. (5)becomes

8

= +1 2 2
n 7(2n+ 3)(2n+ 1) .r_l f(x) (1 - x )CZ(n) (x) dx, (10)

a

and we immediately see that criterion A is satisfied, For the
sake of completeness, the first few polynomials of interest are given

below,

ng)(x) =1 C(ZZ)(X) - 12 x %22 cff)(x) - 80 x Y-48 x % +3

C(bz)(x) = 448 x 6-—480 b4 4+ 120 x 2-4
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It remains to evaluate the equation

{ 2 . (2)

N 1-x C (x) x dx -

g(r)= - 2 ¥ a 14 r 1 Zn ] (11)
Tp=g ©n r dr ' r /xZ_ rZ'

It can be shown that

2 (2) 1
J1-x"C (x) =2 ————=x [(2n+ 3) U_ (x)
2n 4 /1 - x yJ S 7 2n

-(2n+ 1)U (x)] (12)

2n+ 2

and therefore

-4 . 13
g (r) n?:O an[(2n+ 3)In(r) (2n+1)In+1(r)], (13)
where
I (==L 4! Dan P02 (14)
n 2n r dr r/l_xflxz_?
and thus Io (r)= OandIl(r)= -1, (15)
Substituting the recurrence relation
2
Uzn+ ¢ X)=2@x"-1)U, o (x)-U, (x)
- _ 2 (16)
= +2 U2n+2(x) Uzn(x)+4(x l)U2n+2(x)
. ) —
into Eq.(14),we obtain /1. x2 U (x) x dx
I, =21 -1 +2 L. d ] ent 2 (17)
n+2 "n+l1 n w radr Jr A . ’
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The integral of the last term has a closed form solution (see Table 1)

so that Eq., (17) becomes

I, ,00=21  (r)-1(r)-(2n+3)P 2r® - 1), (18)

n+1l

2
where Pn (2r -1) is also generated by a recurrence relation5

+1
given by
2 2n + 1 2 2
Pn+l(2r -1)= n+1(Zr -l)Pn(Zr -1)
n 2
-n+an-1(2r - 1 (19)

Using Egs. (15), (18), and (19), the desired function, g(r), can
readily be obtained from Eq. (13).

This approach was readily programmed for a computer solution.
The integral of Eq. (10) was evaluated using the trapezoidal rule and a
40 point Gaussian quadrature. The change in the values of the coefficients
using the trapezoidal rule was completely negligible. A listing of the
Fortran computer program using the trapezoidal rule is given in Appendix IL
The series of coefficients so calculated can be terminated by applying
the F-distribution significance test6 to each coefficient in turn, We
start by assuming that a is always significant. We then calculate
the mean square deviation, &, between the input curve f(xi) and the
curve defined by Eq. (2) using the coefficients known to be significant.
This calculation, when repeated using one additional coefficient to be
tested, yields § ", The quantity F*= (§ - § ’) x (number of points in the

input curve)/s’ is then compared with the value of F chosen from

10



Table V of Ref. 6, If F¥*> F then the additional coefficient is considered
significant and the procedure is repeated for the following coefficient. When
a non-significant coefficient is found, all subsequent coefficients are
then set equal to zero. This is done on the physical basis that fine
structure is not expected,

In treating the input curves we allowed for asymmetries by
following the approach of Freeman and Katz, 1 and thus did not force
the transformed curves to be symmetric. This was done, in spite of
the fact that no large asymmetries were expected, in order to obtain
a check on the symmetry of the discharge. In this approach, the

symmetric part of f(x) is contained in the even function

f(+x)+f(-x)

fg(X) = > (20)
and the asymmetric part of f(x) is described by the even function
_f(+x)-f(-x)

After the Abel inversion of these functions to obtain gg(r) and gu(r),

the radial distribution is constructed by using

g+r)= gg(r) + rgu(r) (22)

and

g(-r) = gg(r)-rgu(r)- (23)

11




CONCLUSION

The use and advantages of orthogonal polynomial expansions in
solving the Abel integral transform have been briefly discussed and a
new solution in terms of Gegenbauer (0 = 2) polynomials, which utilizes
a weighting function (l-xz) in the calculation of the expansion coefficients,
has been presented. In the presence of significant distortions near the
boundary of the luminous region, a condition which is particularly true
for projected profiles approximating f(x) = l-xz, or g(r) approximately
constant, the use of the Gegenbauer (a=2) polynomial expansion will
reduce the contribution of such distortions in the calculation of the
expansion coefficients, and in principle allow a more accurate solution
of the Abel inversion integral.
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APPENDIX 1
We present here a proof of the statement that the "impact
parameter' of a light ray is unchanged by passage thru the wall
of a uniform glass tube. Referring to figure 1, we write the law of

sines for triangle ABC as sin 92 = sin (180-83)/(1 +7), or
(1+T)s1n92= s1n63. (A-1)
The initial and final impact parameters are given by the relations
pi=(1+7)smel,andpf= sin 9 . (A-2)
The angles involved are related by Snell's law as follows:
s1n91/ sin 8, = s1n64/ sinf, = . (A-3)

Here m is the index of refraction of the glass tube relative to that of
air and the indices of refraction both inside and outside of the tube are
assumed identical. Combining these relations, we obtain

P = sin 84 = sin 91 (sin 63/sin 92) = sin el (1 +7)= Py Thus the impact
parameter inside the tube is identical with that of the incident ray. This
result is simply another expression of the conservation of angular
momentum. There is consequently no distortion due to refraction for
the case of a cylindrically symmetric light source, coaxial with a

cylindrical glass tube of uniform thickness.

14
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APPENDIX II

PROGRAM ABELTAPE

DIMENSION HED( 5)sX(500)sY(500)sRP(10N)RM(100)9XP{250)sYP(250),
1YM(25N0) 4 XF(S501) sFX(S501)sURL(501)sUR2(501) 4 YKN(251)sAN(20)+BN(20),
2ANN(20)38NN(20)sRAL20) +RBI2N)sRXI5N1) +CSISO1)9BS(501)sGP(100)
3GM{100) ¢KIND(322)sGR (201} sXJIP (25114 XIM(251) XX (251)sHEE(10)

TYPE INTEGER DATE

COMMON NPOINT

DATALIRUNO=0) s (1SETO=0)

DATALESPI=56092958 )9 (FSP=162732395) s ((KIND(191)9]1=1,2)=8H TCHEB»
15HICHEF) s ( (KIND(241)41=142)=8H LEGE y4HNDRE) s ((KIND(391)s1=142)=
28H GEGE s SHNBAUR)

112 FORMAT(ROSET=%,12+5X »¥RUN=#4124% NOT FOUND ON INPUT TAPE#)

READ(60,4,50S IHEE

505 FORMAT(10A8)

GENERATE RHO ARRAY
RZ=0.
RP(1)=401
RM(1)=-,01

DO 106 1=2+100

RP{I)=RP(1-1)+401
106 RM({T1)=-RP (1)

DATE=1DATE ( XDUMMY )

GENFRATE GR ARRAY

DO 500 I=1,100
IM=101~1
IP=101+1
GR{1)=RM{ M)
500 GR(IP)I=RP(I}
GR{101)=0

READ INPUT PARAMETERSsDATAs AND HEADING.

99 READ(604111)1ISETsIRUNINNsNXIHED INFLAG
111 FORMAT(415+5A8,411)
IF(EOF+60)98,501
8N1 IF(INFLAG.EQs0) GO TO 5073
READIBN153)UIXIT) oY1) sI=14NX)
153 FORMAT(8(F5403F541))
GO TO 9999
503 READ(604151)(X(1)eI=1sNX)s(Y(T)sI=1sNX)
151 FORMAT(8E1043)
9999 READ(60+152)NPOINTsNP+FVALUE» THICK» IPPP
152 FORMATI(21S5,2F1045411)

GENERATE ARRAYS FOR YM AND YP, THE CORRESPONDING Y
VALUES FOR =X AND +X RESPECTIVELY AND ASSUME THE

VALUES AT THE END POINTS ARE AVERAGFS OF THE MEASURED Y.
MH=NX/2 FOR EVEN NXe.

NH=(NX~1)/2 FOR ODD NXe

NT IS THE TOTAL NO. OF POINTS.

16



. e oA .

FIRST FIND THE AVERAGE DELTA X,

aNaNa)

6 DXA=24,/FLOATF (NX=1)

e

FIND N= NX MODULO 2.

[a¥Al

N=XMODF (NX2)
[F(NsEQeN)12413

N=0 IMPLIES NX IS EVFN,

[aRaNA)

12 NH=NX7/2
DXH=DXA/2e
NHPO=NH+1
DO 14 1=14NH
NHP =NH+T
YP(1)=Y(NHP)
XP(1)=DXA®FLOATF(I=1)+DXH
NHM=NHPO -1

14 YM(T)=Y(NHM)
YZ=eS®*(Y(NH)+Y(NHPO})
GO TO 16

N NOT 0 IMPLIES NX IS ODD,

2 Ya N

13 NH={NX-=-1)/2
NHPO=NH+1
DO 15 I=1,NH
NHP =NHPO+1
YP(I)Y=Y(NHP)
NHM=NHPO -1
XP(I)=DXA®FLOATF (I}
15 YM(I)=Y({NHM)
YZ=Y(NHPO)
DXH=DXA
16 XP(NH)=1,
YA=o5%(YP(NH)+YM{NH))
YP{(NH)=YA
YM{NH)Y=YA

APPLY RACKGROUND NOISE CORRECTION TO THE DATA.

aNaNe!

TP=THICK+1e
TPS=TP*TP
IF(THICKEQeNe) C=0s
IF{THICK o NEsNe) C=YA/SQRT(TPS-1,)
Y2=YZ-C®#THICK
DO 17 I=14sNH
XSQ=XP{1)*XP (1)
DXP=SORTF{TPS-XSO)I=SQRTF(1,-X%X5Q)
CO=CxDXP
YP{I)=YP(])=CD

17 YM{IYy=YM(1)-CD

17
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19
21
22
18

20

23

24

f e e e o e

TRANSFORM THE FUNCTION:-SO THAT IT IS ZERO AT THE
BOUNDARY AND IT IS NORMALIZED.

YZz=YZ=-YA

YMAXIN=Y?

DO 18 [=14NH
YP(I)=YP(T)-YA
YM{I)=YM(])=YA
IFIYP(])eGTeYMAXINILG,21
YMAXIN=YP(1)
IF{YM({I)eGTaYMAXIN)22,y18
YMAXIN=YM(])

CONTINUE

YZ2=YZ /YMAXIN

DO 20 I=14NH
YP(1)=YP({1)/YMAXIN
YM{I1)=YM(I)/YMAXIN

SET UP XF ANN FX ARRAYS USED BY THF
SIGNIFICANT COEFFICIENT TEST.

NHPO=NH+1
NT=NH+NHPO

DO 23 I=1sNH
NHM=NHPO-1
FX{I)=YM{NHM)
XF{I)==XP{NHM)
NHP =NHPO+1
FXINHP)Y=YP (1)
XF{NHP)=XP (1)
FXI{NHPOY=Y2
XF (NHPO) =N,

CALCULATE SYMMETRIC AND ASYMMETRIC PORTIONS OF FUNCTION.

NHPO=NH+1

XJP(1)=Y2Z

XJIM({11=N.

DO 24 1=2,4NHPO
XIP(1)=e5%(YP(I=1)4YM(I-1))
XIM(TY)=(YP(T=1)=YM(I=1))/(24%XP(]=11})

WRITE OUT FIRST PAGE OF OUTPUT,

WRITE(619121)HEE sHEDsDATE s ISET» IRUNSNNSNX s FVALUE 3 THICK 4NP 3K IND (NPO
1INT+1)sKINDINPOINT,2)

121 FORMAT(1H1+10ABs5A893X A8 J/76H SET=13,4Xs4HRUN=T13 44X

1+*TOTAL NO POINTS=%,1434X 9%#NO POINTS USED=#,14,4Xs8HF VALUE=F64296
2Xs6HTHICK=FB843+4Xs3HFORI341X4288.86H TERMS//)
WRITE(614122)

122 FORMAT(% THF LISTING OF THF INPUT DATA FOLLAWS*//)

WRITF(61,123)

123 FORMAT(5(10X e 1HX 98X s 1HYs2X))

18




124

125

91

')

100

198

199

101

104

105

103

102

2Nn0

298

WRITE(61+124)(X(])eY{I)sI=14NN)
FORMATI(5(F13444F9e4))
WRITE(619121)HEE +HEDsDATE s ISFTo IRUNSNNsNXsFVALUE s THICK yNP 4K IND (NPO
1INT 1) eKINDINPOINT2)
WRITE(61+125)

FORMAT(# THE LISTING OF THF NORMALIZED INPUT DATA FOLLOWS®//)
WRITE(AYs123)
WRITE(G61124)(XFIT)oFX(TYsTI=14NT)
GENERATION OF THE CQFFFICIEMTS FOR THE NFSIRED POLYNOMTAL
DXH=NXH/2? e

XX(13)=0,

DO 91 1=24NHPO

XX{11y=xP(I=-1)

GO TO (10N,42004+300)4NPOINT

NPOIMT=1y TCHEBICHEF CASE

DO 101 I=1.NHPO

UR2(I1=1,

URL(I)=xXX{1)+XX(1)
IF{TleFQel1)1984190
AN(1¥=xXJP (1) %DXH

BN({1Y=XxJM(]1)*DXH

GO TO 1M

AN(1)=AN(Y)+XJP (1) %DXA
BN{1Y=BN{1)+XIM(I)%*DXA

CONTINUE

AN(1)=AN(1)*FSP

BN{1)Y=BN({]1)*¥FSP

DO 102 J=24NP

DO 193 1=1,,NHPO

TX=XX (1Y +XX(])
URZ2(IV1=TX*®#URI(I1)-UR2( 1)
URI(II=TX#YR2(1)=URI(T)
IF(T1eFCal1) 104,105

URR=UR2{ 1) %D¥YH

AN(J)Y=XJP(])®URR

BN(JY=XIM( 1) ®URR

GO TO 107

URR=UR2(1)%*DXA
AN(JY=ANLJ)I+XJP (1) *URR
BN(J)Y=BN(J)+XIM(])*URR

CONT INUE

AN(JY=AN(J)RFSP

BN(J)Y=EN(J)*FSP

CONTINUF

GO TO N

NPOIMNT=2s LEGFNDRF CASE

DO 2N1 I=14NHPO

UR2(1)1=1e

YKN(T =2 ¥XX(T)%XX(1)=~10
URI(TYI=YKNI(T])

IF(leEGCe1)2984299

URR=DxXH=EXX (1)

AN(11)=XJP(1}*URR

BN(1)=XJM(1)*URR
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299

201

234

235

231

245

249
214

205

255

254

2n2

300

298

399

301

GO TO 201
URR=DXA#XX (1)
AN(1Y=AN(1)+XJP(I) *URR
BN(1)=BN(1)+XJIM{1) *JRR
CONTINUE
AN(1)=24.%AN(1)
BN(1)=2+%BN(1}
DO 202 J=24NP
IF({JeEQ4?21234,235
XN=J-1
GO TO 231
XN=J=-2?
XNl1=J-1
XN2=XN+XN+1e
DO 203 I=1sNHPO
IF(JeEQe2) 2064 +245
UR=UR1I(T)
GO YO 249
UR=(XN2*¥YKN(T)*®UR1 (T)I-XN®UR2 (1)) /XNl
UR2(I)=URI(T)
URLI(I)=UR
IF{T1eFQe11204,4205
URR=UR*DXH®XX (T)
AN{JY=XJP(1)*#URR
BN(J)=XIM(1)*URR
GO 70 203
URR=UR*DXA*XX(])
AN(J)Y=AN(J)+XJP (1) *URR
BN(JY=BN(J)Y+XIM{]) ®%URR
CONT INUF
IF(JeEQe2)2544+255
XN2=XN2+2
TX=XN2%2.
AN{J)Y=AN(J)%TX
BN{J)Y=RN{J)*TX
CONTINUF
GO TO 11

NPOINT =3,
DO 3201 1=1sNHPO
YKN({T)=1e=XX(TI%XX(T])
UR2tIVY=1,
URI{I)Y=44%XX(])
IF({leEQel) 398,399
URR=YKN(1)*DXH
AN(1)=XJP(1)*URR
BN(1)=sXUM{1)*UIRR
GO TO IM
URR=YKNI(1)®#DXA
AN(1)=AN(1)+XJP (1) *URR
BN{1)=BN({1)+XJIM(T)*URR
CONTINUE
TX=ESPI/3.
AN(1)=AN(1)%TX
BN(1)=BN(1)%TX

GEGENBAUR CASE
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XN=0,
DO 302 J=2 NP
XN=XN+1,
XNI-'-XN“’] °
XN2=XN1+1l.
XN3=XN2+1e
XN4=XN3+1.
TXRAT=XN2*XN&
DO 303 1=1sNHPO
UR2(T)=(2o#XN2%® XX(I)*URI(TI)-XN3#UR2(I))/XN1
URI(TI)I=(2+%XN3® XX(T)#UR2(T)-XN&*URI (1)) /XM2
UR=UR2 (T)Y®#YKNI(T)
IF(T1eFRe113044305
104 URR=UIR*DXH
AN(JY=XJP(1)*URR
BN(J)Y=XJM(T)#URR
GO TO 303
3N5 URR=UYR*DXA
AN(JY=AN(J)+XJP (1) *#URR
BN(J)=BN{J)+XIM (1) *URR
303 CONTINUE
TX=ESPI/TXRAT
ANUJY=AN(J)I®TX
BN{JY=RN(J)*TX
302 CONTINUF

C TEST FOR SIGNIFICIENT COEFFICIENTS,

11 DO 31 I=1,NP
ANN{(T)Y=AN( D)
BNN(I) =BN(1])
RA(1)Y=0,
31 RB(I1)=0,
RA(1)=FVALUE+1l.
GO TO (32432432)sNPOINT
23 DO 34 K=1,4NT
34 RX(K)=1,
GO 70 3%
32 DO 36 K=14NT
36 RX{K)I=SQRTF({le=-XF({K)¥XF{K))
35 DO 37 I=1,4NP
IF(14EQe1)38439
38 DO 41 J=1sNT
UR1(J)=1,.
UR2(JY=1,
41 RS(J)Y=ANI(1)
GO TO 26
39 IF(le€EQe2)8u3 444
43 DO 45 J=1,4NT
GO TO (51452953) ¢MPOINT
51 UR2(J)=4e%XF(J)EXF({J)=1"
URI(J)=XF(J)+XF (D)
GO TO 54
52 Z=2%XF(J)EXF{J)-1s
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53

54
45

44

61

62

613

64
47
46

48

26

68

37

6%

66

UR2(J)=2

GO TO 54

UR2(JI=T12%XF(J)®XF(J)=2.
URI(J)Y=4%XF(J)

Cs(J)Y=RBs(J)
BS(J)=RS{II+AN(I1I)®UR2(JIXRX (J)

GO TO 46

DO 47 J=1sNT

GO TO (61+62+63)sNPOINT
TXX=XF{J)Y+XF(J)
URLI(J)I=TXX*UR2(J)=UR1(J)
UR2(J)=TXX*UR1(J)-UR2(J)}

GO TO 64

XM2=1

XMN=1=-1

XM1=XM2+XMN

2=24%#XFLUYRXF(J)=1,

TXX=(Z®UR2 (J)EXMI-XMN®UUR1(J))/XM?
URL(J)I=UR2(J)

UR2(J)=TXX

GO TO 64

XM2=1+1-3

XM3=XM2+1,

XM&=XM3+1,

XM5=XM4L+] o

URL{J)I= (24 %XMIXXF(J)#UR2(J)-XMLXURT (J) )Y /XM?2
UR2(JY =2 %#XM4XXF( J)RURI(J)=XMSRUUR2(J) ) /XM2
CSt)=BS (D)
BS(J)=BS(JY+AN(T)®UR2(J)%RX (J)
AS=0,

DS=0.

DO 48 K=1sNT

ASR=FX(K)-CS5(K)

DSR=FX(K)}=-BS(K)

AS=AS+ASR®ASR

DS=DS+DSR*DSR
RA(I)=ARSF(100.*(AS-DS}/DS)

AS=0,

DS=0,

DO 68 K=1NT

CS(K1)=BS(K)
BSIK)=RBS(K)+BN(II*UR2 (K)®XF (K)*¥RX (K)
ASR=FX({K})-CS(K)}
DSR=FX(K)-BS(K)
AS=AS+ASR¥®ASR
DS=DS+DSR*¥DSR
RB(I)=ARSF(10N.*{AS-DS)/DS)
CONTINUE

1PP=1

DO 42 1=1,4NP
IF(RA(T)eLE«FVALUEYE5469
DO 66 J=T14NPO
ANN(J)=0.
BNN(J)Y=0,
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GO TO 85
69 GO TO (B4s42)1PP
86 IF(RBIT)eLESFVALUE)TY 442
71 DO 72 J=1,4NP
72 BNN(J)=0,.
1PP=?
42 CONTINUF
85 IPP=]

GENERATE F(RHO) VERSUS RHO,

67 CALL FGRHOI(RZ sANNs1+GZ sNP)
DO 73 I=1.100
CALL FGRHO(RP (1) sANNs1sGP (1) sNP)
CALL FGRHO(RM(I)sBNNs2+sGM(T)14NP)
73 CONTINUE

WRITE OUT SECOND PAGF OF NUTPUT,

WRITE(613121)HEE sHEDsDATE s ISFTs IRUNSNNJNXoFVALUE s THICK 9yNP 3K IND (NPO
1INT91)sKIND(NPOINT2)
WRITE(614+126)

126 FORMATI(BX ¢+ %#SIG COFFF#421XoRALL COEFF%324X o#RATIOS* /64Xy %2A(1)%,9X,%B
10T)% 913X e %A (T) ¥ X s %B(T)I ¥ 913X ¥RA(II*510X %R (1) //)
WRITE(619127)Y(ANNCT) 4RNN(T) 9 ANIT)4BNIT)I4RA(I)ISRR(I)sI41=14NP)

127 FORMAT(F10e63sF13e69F17e66sF13e63E19464E154446X412)

NORMALIZE F(RHO) AND SET TO ZERO IF IT 1S NEGATIVE,

81 DO 74 I=1,100
IM=101-1
IP=101+1
FX(I)Y=GP{IM)=GM(IM)
T4 FX(IP)=GP(I)+GM( )
FX(101)=GZ
T FMXOUT=FX(1)
DO 75 1=2,201
IF(FX(1)eGTeFMXOUT)T764+75
76 FMXOUT=FX(1)
75 CONTINUE
83 DO 77 [=1.201
FX(I)=FX(1)/FMXOUT
IF(FX{I)alTe0e) 78077
78 FX(11=0.
77 CONTINUE

WRITE OUT THIRD PAGE OF OUTPUT.

WRITE(619121 )HEE yHED sDATE s ISET 9 IRUNSNN SNX»FVALUE s THICK sNP 4K IND (NPO
TINTH1) oK IND(NPOINT,42)
WRITE(615128)
128 FORMATI(S5(9X43HRHOs 4X s 6HF {RHO) )/ /)
WRITE(61s124) (GRITV4FX(T)s1=1+201)
WRITE(61+s129)YMAXIN,FMXOUT
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129 FORMAT(#OTHE NORMALIZATION FACTORS ARE®//# INPUT/#,E1leb4s10Xy®#0UTP

98
131

506

11

12

13

1UT/%4E1144)
IF(IPPP.EQe1)9999,99
WRITE(61,131)

FORMAT (% END OF THIS RUN®#*)
WRITE (619506 )YHEE 4DATE
FORMAT({1H1s1NDAB8+20XsA8)
CALL EXIT

END

SUBROUTINE FGRHO (X sANyJsFOXsNP)
DIMENSION AN(20)

COMMON NPOINT
DATA(TP=6,2831853)
Y=z2e%X%X~10

XX=3,

GO TO (11+12413)sNPOINT
P2=1.

Pl1=Y

S=AN( 1)V+3 4 %AN{ 21 %Y
XN=0,

DO 1 I=34NP

XX=XX+2¢

XN=XN+1le

PN=((2:%#XN+14 ) *Y®*P]1~-XNEP2)/ (XN+1,)
S=S+XX*AN{ 1) #PN
p2=pP1

P1=PN

CONTINUE

GO TO (293)4J
FOX=.5*S

RFTURN
FOX==oeS%SEX
RETURN

XSQ=X#X
25Q=14-XSQ
T25Q=25Q+Z25Q
Z=SQRTF(Z25Q)
P2=1e
P1=23.-4,%XS5SQ
S=ANI 1)-AN{ 2Y%P1
SI=1.

DO 4 1=3,NP
PN=TZ<SQ*P1-P?2
pP2=P}

P1=PN

S=S+SI*AN{ 1)#PN
SI=-S1
DEN=145707963%7
GO TO (546)4J
FOX=S/DEN

RETURN
FOX=~S*X/DEN
RETURN

P2=1.
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T2==1,

Tlml q~648X%EX

S=AN( 1)+AN{ QIR (5,%#T2-3,%T1)
DO 8 1=34NP

XN=1-1

XNN=2XN=~-1,

XB=XN+XN+1le

XA=XB+2,

PN=( (XN+XNN)#Y®P ] -XNN®P2) /XN
TN=T1+T1~-XB*PN=-T2

S=S+AN( T)%#(XA%T1-XBR%TN)
T2=T1

T1=TN

P2=P1

P1=PN

GO TO (T749)sJ

FOX= S*X

RETURN

FOX=5

RETURN

END
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