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The bandgap-detuned excitation regime in
photonic-crystal resonators

Yan Jin 1,2 , Erwan Lucas 3, Jizhao Zang 1,2, Travis Briles1, Ivan Dickson1,2,
David Carlson4 & Scott B. Papp 1,2

Control of nonlinear interactions in microresonators enhances access to
classical and quantum field states across nearly limitless bandwidth. A recent
innovation has been to leverage coherent scattering of the intraresonator
pump field as a control of group-velocity dispersion and nonlinear frequency
shifts, which are precursors for the dynamical evolution of new field states.
Yet, since nonlinear-resonator phenomena are intrinsically multimode and
exhibit complex modelocking, here we demonstrate a new approach to con-
trolling nonlinear interactions with bandgapmodes completely separate from
the pump laser. We explore this bandgap-detuned excitation regime through
generation of benchmark optical parametric oscillators (OPOs) and soliton
microcombs. Indeed, we show that mode-locked states are phase matched
more effectively in the bandgap-detuned regime in which we directly control
the modal Kerr shift with the bandgaps without perturbing the pump field. In
particular, bandgap-detuned excitation enables an arbitrary, mode-by-mode
control of the backscattering rate as a versatile tool for mode-locked state
engineering. Our experiments leverage nanophotonic resonators for phase
matching of OPOs and solitons, leading to control over threshold power,
conversion efficiency, and emission direction that enable application advances
in high-capacity signaling and computing, signal generation, and quantum
sensing.

Lasers are versatile and precise sources with diverse applications across
a range of industries and scientific disciplines, contributing to advanced
optical communication1, atomic and molecular spectroscopy2, and
quantum technologies3. The capability to generate laser sources with a
nearly arbitrary spectrum and quantum-limited noise properties is an
enduring challenge that stimulates exploration of new light-matter
interactions. Integrated nonlinear photonics plays a key role in enabling
the spectrum of light to be dramatically transformed from the input to
the output of a device. In particular, nonlinear waveguides transform a
mode-locked laser into supercontinuum outputs with exceptionally
broad bandwidth at low operating power4–6 and with complexmixtures
of nonlinear interactions7. Kerr microresonators enable the generation

of vastly broadband optical parametric oscillators (OPOs) and soliton
microcombs through the conversion of a continuous-wave (CW) pump
laser, according to a complex mixture of resonance conditions, group-
velocity dispersion of the resonator modes, and the intraresonator
pump field8–16.

Control of nonlinear interactions in microresonators offers the
opportunity to engineer new laser sources17. Group-velocity dispersion
(GVD, hereafter dispersion) engineering has been an important
advance, enablingdirect spectrumcontrol inmicrocombs18,19. Adjusting
the pump laser power and detuning also directly controls a soliton
microcomb20. Given that solitons are isolated excitations of the micro-
resonator, interacting soliton ensembles offer unique properties21.
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Moreover, ensembles of coupled microresonators enable fundamen-
tally new interactions, including solitons that coexist in several
devices22. Direct modification of the intensity-dependent refractive
index is also a natural tool for controlling solitons23,24. Among the
methods that have been explored to manipulate microcombs, a recent
innovation has been photonic-crystal ring resonators (PhCRs). These
employ a sub-wavelength nanostructure to couple forward and back-
ward propagation through backscattering, inducing mode-frequency
splittings associated with the backscattering rate18,25.

PhCRs offer direct control of the phase matching and nonlinear
dynamics of microresonators. In particular, pump-laser excitation of
the splitmode in PhCRs allows universal phasematching for four-wave
mixing in both the normal and anomalous dispersion regimes,
enabling OPOs26,27, bright solitons in anomalous dispersion25, access to
the dark-to-bright soliton continuum innormal dispersion28, and use in
nonlinear resonator circuits to optimize microcomb performance
metrics9. Recently, PhCR bandgaps for unpumped modes have been
used to define the output wavelength inOPOs29 and induce interesting
microcomb dynamics18,30. Although PhCRs intrinsically program
mode-by-mode dispersion, since the nanostructured waveguide
defines the optical mode, other approaches, including coupled reso-
nators, enable similar controls31,32. Still, the use of coherent back-
scattering in PhCRs opens excess optical loss channels, particularly
since practical devices operate in the large bandgap limit where for-
ward and backward propagation are strongly coupled. These devices
include specific limitations, such as increased threshold power,
reduced conversion efficiency, and predominant emission of newly
generated OPO and soliton light in the backward direction, i.e., emit-
ted toward the pump laser.

Here, we explore the bandgap-detuned excitation regime of
PhCRs in which we open optical bandgaps, mode-detuned from the
pump laser. Operating PhCRs in this regime avoids splitting the
pump amongst the forward and backward directions, yet we pre-
serve the capability for universal phase matching. Moreover, by
designing bandgaps to interact directly with mode-locked nonlinear
states of the resonator, we exploit the inherent multimode compo-
sition of target states in their construction. The ratio of forward and
backward coupling, and hence the effective excess loss toward the
backward direction, is tunable in the bandgap-detuned regime.
Through this effect, we introduce a new framework for nonlinear-
state engineering based on an effective integrated dispersion para-
meter, which directly characterizes phase matching of field states.
We explore benchmark OPOs and soliton microcombs in bandgap-
detuned PhCRs, demonstrating that these states are more effec-
tively phase-matched and can be created with reduced threshold
power, higher efficiency, and the control to realize predominantly
forward emission. Furthermore, we demonstrate a design process
for OPO lasers and soliton microcombs that could be used as sour-
ces for applications.

Results
A PhCR is a three-port nonlinear system with an input port receiving
the pumping field F, and two output ports with modal fields Aμ and Bμ
propagating respectively in the forward direction (i.e., the same as the
pump) and the backward direction, where μ is the mode number with
respect to the pumped mode. At a designated mode μs, coherent
backscattering from the periodic, sub-wavelength pattern of the PhCR
lifts the initial degeneracyofAμs

andBμs
, leading to a red-shifted (lower

frequency) and a blue-shifted (higher frequency) resonance, separated
by a bandgap Γμs

. The dispersion of the resonance frequencies is
perturbed and follows the integrated dispersion relation
Dint(μ) ≡ωμ −ω0 − μD1 =D2μ

2/2 ± Γμ/2, where ωμ is the resonance fre-
quencies of the ring resonator, ω0 is the pumpmode frequency,D1/2π
is the free spectral range,D2 is the second-order dispersion coefficient,
and Γμ = 0 ifμ ≠ μs. To describe the dynamicsof the PhCR,we introduce

the coupled-mode LLEs written in the spectral domain33:

_Aμ = � ð1 + iαÞAμ � iD2μ
2Aμ=κ + iΓμBμ=κ + iF ðjAj2AÞμ + i2AμPb + Fδμ, 0

ð1Þ

_Bμ = � ð1 + iαÞBμ � iD2μ
2Bμ=κ + iΓ

*
μAμ=κ + iF ðjBj2BÞμ + i2BμPa, ð2Þ

where F refers to the normalized pump field, α is the detuning, δμ,0 is
the Kronecker symbol, κ is the linewidth, Γμ/κ is the normalized half-
bandgap in mode μ, Pa =∑η∣Aη∣2, Pb =∑η∣Bη∣2, and _Aμ =dAμ=dτ where
τ = tκ/2 is the normalized time, and F ð�Þμ represents the Fourier
operator. Our framework for nonlinear-state engineering in PhCRs is
based on an effective integrated dispersion ~DintðμÞ, which charac-
terizes the frequency mismatch of the field states,

~DintðμÞ �Re i
dAμ=dt
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where Δμ � Re ðF ðjAj2AÞμ=AμÞκ=2 is the modal Kerr shift25, and ϵμ �
Re ð�Γμ

Bμ

Aμ
Þ=2 is the bandgap-induced frequency shift. The three main

contributors in Equation (3) are the background dispersionD2μ
2/2, the

Kerr nonlinearity Δμ, and the mode shift ϵμ due to coupling between
the counterpropagating fields. For F =0, Δμ =0, ϵμ = ±Γμ/2 indicates
two components of the split mode, one blue-shiftedmode (ϵμ >0) and

the other red-shifted mode (ϵμ <0), and ~DintðμÞ reduces to the
dispersion of the resonator modes D2μ

2/2 ± Γμ/2. The different signs
of ϵ indicate the frequency of the comb line at μ is greater (ϵμ >0) or
smaller (ϵμ <0) than the center of the two resonances at the splitmode.

In mode-locked states, ~DintðμÞ is linear with μ, denoting a stable and

stationary field configuration. Therefore, we express ~DintðμÞ=μδωrep,
where δωrep/2π = frep − FSR is the difference between the repetition
rate of the comb and the free spectral range, which is measured in the

cold resonator. Inmode-locked states,where ~DintðμÞ andD2μ
2/2 remain

constant, the relative field amplitudes Aμ and Bμ are influenced by the
interplay between the bidirectional coupling strength ϵμ and the Kerr
nonlinearity Δμ.

In the bandgap-detuned regime, we implement nonlinear state
engineering by introducing bandgaps in unpumped modes. First, we
consider the caseΓμ = Γδμ,μs

, whereμs ≠0 is the splitmodenumber and
δ is theKroneckerdelta. Due to the constraint of ~Dint for amode-locked
state, we can control each of the field amplitudes Aμ or Bμ with each
bandgap Γμ, which sets the bandgap-induced frequency shift ϵμ. This
arbitrary,mode-by-mode control parameter also sets the excesspower
“lost” to backscattering in the PhCR to directly shape nonlinear states.
Furthermore, in the bandgap-detuned regime, mode-locked states are
excited in either the red mode (ϵμ < 0) or the blue mode (ϵμ > 0),
allowing another new facet to control such states. In contrast, in the
conventional regime (Γμ = Γδμ,0) where the red-shifted resonance of
the split mode is pumped to generate OPOs or solitons25, only ϵ0 < 0 is
allowed.

To understand nonlinear-state excitation in this new scenario, we
present benchmark simulations of OPO states in the conventional
(Fig. 1a) and bandgap-detuned (Fig. 1b) regimes to directly show the
advantages of the latter regime. These simulations compare the
spectra of forward (∣Aμ∣2) and backward (∣Bμ∣2) emission and the
intraresonator pulse profiles.We set F as 2.6 and 2, and μs as0 and 10 in
the simulation for Fig. 1a, b, respectively. The forward spectraor pulses
are in blue, and the backward are in cyan. In conventional PhCRs, the
generated OPO light propagates backward, while in the bandgap-
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detuned regime it propagates predominantly forward. This difference
emerges because at the parametric threshold, the backward gain
exceeds the forward gain in the conventional regime, while the
bandgap-detuned regime is characterized by the dominance of the
forward gain. These results, based on the solution of the highly accu-
rate LLE, demonstrate the enhanced properties of the bandgap-
detuned regime; see Supplementary Information for details of the
parametric gain. Due to a stronger backward pump field in the con-
ventional regime, the OPOs only propagate in the backward direction.
In the bandgap-detuned regime, because of the coupling between the
forward andbackwardfields atμs = 10 inducedby thebandgap, there is

a backward-propagating OPO line only at μ = 10. The pulse intensities
in Fig. 1a, b present the corresponding ∣A(θ)∣2 (blue) and ∣B(θ)∣2 (cyan)
normalized to the pumppower F2 in arbitrary units (a.u.). They all have
10 oscillations in a round trip because the OPO lines emerge at μ = ±10
for both regimes. Comparing these two normalized intensity profiles,
it is clear that the bandgap-detuned regime has a higher efficiency.

Since the constraint on ~DintðμÞ is the basis for nonlinear-state
engineering, we show in Fig. 1c that this quantity explains the forma-
tion and advantages of OPOs in the bandgap-detuned regime. For
F =0, we plot the cold-cavity effective dispersion (blue)
~DintðμÞ=DintðμÞ=D2μ

2=2 ± Γμ=2, and the pump mode is indicated by

(a) (b)

(c)

(d)

(e)

CW
laser OSA

ESA

EDFA

Circulator PD

(f)

10 μm
100 μm

Fig. 1 | BenchmarkOPOs. aConventional PhCROPO (μs =0), where the red-shifted
mode is pumped and the combs propagate in the backward direction against the
pump.b Bandgap-detuned PhCROPO (μs = 10), where the combsmainly propagate
in the forward direction, i.e, the same direction as the pump. Both (a) and (b)
present the ring structure, Dint normalized to κ/2, mode structure, the forward
(blue) and backward (cyan) spectra with comb lines at μ = 10, and pulse intensity
profiles normalized to F2. c Effective integrated dispersion ~Dint for μs = 10 in the cold
cavity (blue) and hot cavity (orange). As we increase the pump power, the modal
Kerr shift Δμ compensates the original cold cavity dispersion Dint (blue) and the

bandgap-induced shift ϵμs
, and pushes the opticalmodes to a straight line (orange),

which achieves the phase-matching condition and generates the stable OPOs.
d Setup. EDFA: Erbium-doped fiber amplifier. OSA: optical spectrum analyzer. ESA:
electrical spectrum analyzer. PD: photodiode. e SEM images for PhCR. The ring
resonator designs shown in this paper are exaggerated so that the SEM images are
more clear. f Forward and backward spectra for μs = 10 for simulation (orange
dashed lines) and experiment (solid lines). Pump reflection from the input facet is
anomalously large, sincewaveguide coupling loss does not occur.We calibrate this
effect by tuning the pump off resonance.
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the red circle. The splitmode at μs = 10with 2 resonances indicates that
there is a coupling between the forward and backward fields, which
results in generating both the forward and backward OPO or comb
lines at that mode. In the experiment, we measure Dint(μ) in the for-
ward direction; see “Methods” section for more details. Since self-
phase modulation is half of cross-phase modulation in the flat state,
the modal Kerr shift at 0, ±μs obeys Δ0<Δμs

,Δ�μs
. Thus, the blue mode

atμs is excited so that ϵμs
>0, and ~DintðμÞ atμ = −μs, 0,μs connect directly

in a straight-line fashion (orange dashed line). This characteristic
stands in contrast to the conventional regime, where the red mode
of the pumped split mode is excited (ϵ0 < 0). The split mode μs targets
the frequency of the signal or idler, and ϵμs

>0 increases Δμs
. The

increased Kerr shift Δμs
implies that higher power accumulates in

the target mode μs and the symmetric mode −μs, which explains
enhanced conversion efficiency (“Methods” section) in the bandgap-
detuned OPOs.

We explore the generation of OPOs and soliton microcombs
throughout this paper with the experimental setup in Fig. 1d. We
generate the pumpwith a continuous-wave (CW) laser, amplified by an
erbium-doped fiber amplifier (EDFA), and we couple this light into a
tantala (Ta2O5) PhCR

34,35. An optical circulator separates the forward
propagating pump and the backward propagating field from the
resonator. We measure both the forward- and backward-propagating
fieldswith anoptical spectrum analyzer (OSA), andwe use an electrical
spectrum analyzer (ESA) to measure the relative intensity noise of the
forward spectra. We show the physical structure of the PhCR with
scanning electron microscope (SEM) images in Fig. 1e. The outer
sidewall of the ring is circular, while we create a spatial modulation on
the inner wall of the ring by a periodic nanostructure; see Methods.

To generate bandgap-detuned OPOs, we tune the pump laser
frequency to a mode of the PhCR and monitor the device output. Our
framework provides a specific expectation for the resulting state.
Figure 1f shows the simulated and experimental spectra for case
μs = 10, highlighting the close correspondence of the traces. The pre-
sented experimental spectra are measured with the OSA, and the on-
chip power is 14 dB greater, including 4 dB for the chip-to-fiber cou-
pling and a 10 dB attenuation. In the forward direction, both the
simulation and the experimental data corroborate that the pump is
almost fully depleted, with its power reduced below that of the signal

and the idler. In our simulation, only the comb mode at μ = μs is non-
zero in the backward direction, but in the experiment, the backward
comb lines at μ = 0, −μs also appear due to the reflection of the angled
waveguide facets at the edges of the chip. The backward comb line at
μ =0 is particularly strong because the pump is reflected at both the
front (input) and rear (output) facets of the chip, while the comb line
at −μs is only reflected at the rear facet of the chip. The reflection at the
front facet is much stronger for the pump because, at this point, the
pump hasn’t been attenuated yet. In our simulation, these comb lines
don’t show up because Equations (1–2) only describe the dynamics of
the fields inside the ring cavity.

The central characteristic that controls the generation of
bandgap-detunedOPOs is themodenumber of thebandgap relative to
the pump mode μs. In particular, we explore phase matching with
specific parameters (F, d2, μs, and normalized half-bandgap Γμ/κ) that
enable OPO generation. Figure 2a presents the OPO existence map
with respect to the split-mode number μs and the bandgap strength
Γμs

=κ for given driving F = 2 and dispersion D2/κ = −0.0185. The gray
region indicates the area in which no OPO is generated. The colored
region gives the values of δωrep that characterize the difference
between frep and FSR. Note that this map was not computed via LLE
simulations, but by exploring the steady state of the pump mode (a0)
and evaluating the dependence of the parametric gain at the modes
Aμs

, A�μs
and Bμs

as a function of μs and Γ/κ; see Supplementary
Information for detailed derivation. The brown circles (marked with
i–iii) and green dots are experimentally measured data points for
devices with different μs and Γ/κ, which represent our observation
points in Fig. 2b–d.

In the bandgap-detuned mode-locked regime, the unpumped
split modes make the integrated dispersion asymmetric, leading to a
non-zero slope coefficient δωrep in ~DintðμÞ. The mode detunings and
the strength of the bandgaps determine the sign of δωrep. For OPOs, if
μs >0, then δωrep > 0 and vice versa. This is illustrated by the phase
matching diagrams in Fig. 2b; for simplicity, we take (i) μs = 1 and (ii)
μs = −1. For either case, the blue mode at μ = μs is excited. When the
Kerr shift compensates for the original dispersion, if μs = 1, then ϵ1 > 0,
and the slope of ~DintðμÞ is greater than 0; while if μs = −1, then ϵ−1 > 0
and the slope is negative. To verify this, we select a device with
FSR = 398.078GHz and pump it into the modes adjacent to the split

(b)

(a) (c)

(d)

(i) μs= 1

(ii) μs= -1

(iii) μs= 15

(i) μs= 1

(ii) μs= -1

(i)(ii)

(iii)

Fig. 2 | Existence map and the corresponding Dint, spectra, and efficiency for
the measured devices. a Existence map with F = 2, D2/κ = −0.0185. The colors
indicate the values of δωrep as the signal and idler are excited, the brown empty
circles marked with (i–iii) are explained in (b) and (c), and the green dots refer to
the efficiency data points in (d). b Phase matching diagrams with (i) μs = 1 and (ii)

μs = −1. c Simulated (orange) and measured (blue) spectra with (i) μs = 1, (ii) μs = −1,
and (iii) μs = 15. Red circle: pump, green triangle: split mode at μs, purple square:
mode at −μs. d Forward efficiency of two devices (blue and green) as we pump
different modes. The solid lines are the simulated efficiency, and the dots are the
efficiency measured in experiments.
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mode so thatμs canbe 1 or −1. The cold cavity dispersionDint displayed
in Fig. 2b corresponds to the cases μs = ±1 for this device, and the first
two panels in Fig. 2c show the corresponding spectra when we pump
thesedifferent splitmodes. The green triangles point to the splitmode
μs, the red circles indicate the pump mode, and the purple squares
indicate the mode at −μs. We then measure the repetition rates (line
spacing) and find frep = 398.488GHz for μs = 1, and frep = 397.569GHz
for μs = −1. This corresponds to δωrep/2π = 410MHz (μs = 1), and δωrep/
2π = −509MHz (μs = −1). The difference in the values of δωrep is due to
different linewidths of the pump mode for μs = 1 or −1. In our simula-
tion, we found δωrep/2π = 392MHz and −459MHz, respectively, which

is close to our experimental results. It validates our prediction of the
behavior of ~Dint in Fig. 3 and showcases theprecise control of nonlinear
interaction in the bandgap-detuned regime.

In addition to nonlinear-state engineering, which involves con-
trolling the relative amplitude of Aμ and Bμ, the bandgap-detuned
regime provides the capability to efficiently generate forward-
propagating OPOs with varying bandwidth, while minimizing excess
loss resulting from backward reflection. We select a device with a split
mode wavelength around 1550 nm and μs ∈ { ±1, ±2, ±3, ±4}, and
another devicewith a splitmode around 1521 nm and μs∈ [6, 15]. Their
locations on the existencemaparemarkedwith greendots in Fig. 2a. In

(a) (b)

(c) (d)

(e)

(f)

(g)

100 μm
20 μm

Fig. 3 | Benchmark soliton microcombs. a Conventional regime of generating
combs in a photonic-crystal ring resonator. The red mode of the pumpmode is on
resonance, and the backward combs dominate. b Bandgap-detuned excitation
regime. Modes μs = ±1 are split, and the simulated spectra and pulse indicate the
forward-propagating combs. In (a, b), the blue traces indicate the forward spectra
or pulse, and the cyan traces indicate the backward spectra or pulse. c Phase-

matching diagram for the bandgap-detuned regime in the cold and hot cavities.
d SEM images. e Experimental (solid) and simulated (orange dashed) spectra in the
forward (∣Aμ∣2) and backward (∣Bμ∣2) direction for the bandgap-detuned regime.
f Measured dispersion and simulated pulse on the ring resonator. g Simulated
spectra with respect to α. The unit of the map is dB.
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particular, the data point with μs = 5 lies at the boundary of the exis-
tence map and is marked with a brown circle, showing the prediction
ability of the existencemap.We plot its forward spectra in panel (iii) of
Fig. 2c. The pump mode is well depleted and has a lower power than
the signal and idler, indicating good efficiency performance. Figure 2d
shows the efficiency of the two devices in the forward direction as a
function of μs, obtained by pumping different modes. See “Methods”
section for more details about the OPO conversion efficiency.

We now turn to the generation of soliton microcombs in normal
dispersion with the bandgap-detuned scheme. By designing PhCRs
with multiple unpumped bandgaps, we open up mode-locked-state
engineering of solitons, following the same analysis based on the fre-
quencymismatch operator ~Dint of the fields in the device. We begin by
comparing soliton generation in PhCRswith conventional (Fig. 3a) and
bandgap-detuned (Fig. 3b) excitation. With the same pump power
setting F2, we calculate the evolution of the forward (blue) and back-
ward (cyan) propagating comb as the pump tunes into themode μ =0,
into the lower frequency resonance in the conventional case (Γ0 > 0),
or to a bandgap-detuned scenario with equal symmetric bandgaps Γ±1
at μs = ±1. We obtain the comb spectra ∣Aμ∣2 and ∣Bμ∣2, and the corre-
sponding intraresonator temporal profiles in the forward (blue) and
backward (cyan) directions. In the conventional PhCR scheme, the
intracavity field evolves from primary OPO sidebands to a soliton
microcomb in the backwarddirection. In the case of bandgap-detuned
PhCR, parametric gain arises in the split modes μs, resulting in the
direct generation of sidebands. This initial modulation further evolves
into a deterministic, forward-propagating dark soliton, made possible
by the lack of splitting of the pumped mode, ensuring that most of its
power propagates forward. Conversely, the backward-coupled comb
modes at μs = ±1 give rise to a weaker 2-FSR spaced comb in this
direction.

To understand phase matching and the formation of bandgap-
detuned solitonmicrocombs, we plot ~DintðμÞ in Fig. 3c. Considering an
example where the bandgaps at μs = ±1 are not equal (Γ1 > Γ−1) high-
lights an important practical element of bandgap-detuned
microcombs30. In this case, Dint(μ) is plotted in blue, and the red cir-
cle indicates the pumpmode. At threshold, themodal Kerr shift obeys
Δ1≃Δ−1 >Δ0 because cross-phase modulation is larger than self-phase
modulation, which is shown by the black arrow. As we increase the
pump power (F = 2 in this case), the modal Kerr shift Δμ compensates
for the dispersion Dint with the help of the mode splittings at μs = ±1,
thus the phase matching is achieved and ~DintðμÞ evolves into a straight
line (orange). The mode in μ = 1 is more blue-shifted than in μ = −1,
therefore, ϵ1 > ϵ−1, thus ~DintðμÞ exhibits a positive slope in the mode-
locked state, increasing the repetition rate of the comb (δωrep > 0).

To experimentally explore the generation of bandgap-detuned
dark solitons, we study the PhCRdevice in Fig. 3dwith bandgapmodes
μs = ±1. We characterize Dint of the fabricated device by a calibrated
frequency scan of our tunable laser across several resonator modes;
see Fig. 3f. In particular, we resolve the resonator dispersion and the
bandgaps Γ1/2π = 1.04GHz, Γ−1/2π =0.94GHz, D1/2π = 397.848GHz,
and D2/2π = −12.3MHz. On the basis of this information, we simulate
the intraresonator intensity pattern of the bandgap-detuned soliton.
Experimentally, we pump this PhCR with a power corresponding to
F = 2.5 and slowly tune the pump laser frequency on resonance, start-
ing from the blue-detuned side. This procedure yields a soliton
microcomb propagating in the forward direction, which we char-
acterize by measuring the optical spectrum of the forward (solid blue
line) and backward (solid teal line) outputs from the device. Compar-
isons to our simulation (orange line in Fig. 1e) show a good match
between the predicted forward comb and the experiment, confirming
the close connection between the designed bandgaps, our mode-
locked state engineering with ~DintðμÞ, and the operational generation
of solitons in such devices. As we predict from ~DintðμÞ in Fig. 3c, the
larger bandgap at μ = 1 than μ = −1 leads to δωrep > 0, so there aremore

modes with positive Δμ for μ < 0 than μ >0, leading to an asymmetric
comb with a flatter comb profile for μ < 0, as shown in the forward
combs in Fig. 3e. Indeed, we measured δωrep/2π to be 21MHz, con-
sistent with our prediction that δωrep > 0 in this device. Regarding the
measured spectra and simulation in the backward direction, chip facet
reflections obscure the observation of the entire backward spectrum.
Nonetheless, characteristic spectral peaks in themodes ±1 are evident.
Figure 3g shows the simulated spectra, focusing on the first few lines,
upon scanning the detuning α. It verifies our prediction that the comb
lines at μs = ±1 are generated first and then trigger the development of
the entire comb, which is different from traditional soliton generation,
where the primary combs are formed away from the pump.

Expanding on this framework for mode-locked-state engineering
of dark solitons, we explore other states by way of design with ~Dint.
Important examples include soliton crystals21 and bright pulses in
normal dispersion28. To create a soliton crystal in the bandgap-
detuned regime, we place bandgaps at μs = ±3. Figure 4a shows the
phase-matchingdiagramwith thedispersionof thedesigned resonator
and the simulated ~Dint when soliton crystals are generated.We showan
exaggerated PhCR nanostructure with high-resolution SEM, and we
characterize Dint with a calibrated laser frequency scan. To generate
soliton crystal microcombs, we pump the device at the level of F = 2.4
by scanning the laser frequency into the mode μ =0. Figure 4b shows
spectra and soliton-crystal formation at an initial detuning setting (i)
and then at a different value of α (ii), where the laser frequency was
slightly reduced. Because phase matching is designed to occur on
modes μs = ±3, the initial modulation pattern (i) is composed of three
periods in the resonator, leading to the formation of a soliton crystal
with three pulses of equal temporal space in the resonator21. When the
laser frequency is decreased, the pulse spacing is perturbed, leading to
the appearanceof natively spaced lines in the spectra (see panel (ii)), as
observed in soliton crystal combs with a defect21. We attribute this
phenomenon to the interaction between the oscillating tails of the
switching waves that form dark pulses36.

We can form bright pulses in the bandgap-detuned regime by
splitting many modes of the PhCR except for the pump mode, as
shown in Fig. 4c. These split modes individually control the relative
amplitude of Aμ and Bμ, creating the dispersion profile needed for
bright solitons and controlling the excess loss to coherent back-
scattering.We study anexample inwhich twentymodes ∣μs∣≤10, except
the pump, are split by an equal amount to create a so-called meta-
dispersion in the mode spectrum18. Despite the large number of split
modes, the principle for phase matching remains the same, and more
phase matching pathways are enabled. At the parametric oscillation
threshold, the entire higher frequency branch of the Dint spectrum is
shifted to a lower frequency due to the Kerr effect. Therefore, a soliton
forms as the pumpmode and the blue-shifted branch align, creating a
~Dint profile that is a straight line. The associated photonic crystals form
a more intricate corrugated pattern in the ring resonator, as shown in
the SEM image in Fig. 4c. The measured dispersion verifies that the
targeted mode structure is implemented correctly and that the pump
mode is not split. Interestingly, this split-mode distribution con-
sistently creates a single pulse in the ring resonator. Figure 4d presents
the spectra from simulation and experiments, which allow us to
characterize the generated state with respect to the ~Dint design.
Despite an increased fraction of the comb power emitted in the
backward direction because multiple modes are split, more power
accumulates in the modes ∣μ∣ ≤ 10 and creates a bright pulse.

Discussion
In summary,we have explored the bandgap-detuned excitation regime
of PhCRs, demonstrating modelocked state engineering by design of
modal Kerr shifts. The bandgap-detuned regime supports a rich state
spaceofuniqueOPOs and solitonmicrocombs that offer low threshold
power, high efficiency, and control over forward and backward
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emission. In exchange for controlled loss directed backward, the
bandgaps on the side modes facilitate effective phase matching in the
forward direction, optimizing efficiency. The bandgap-detuned exci-
tation regime exhibits significant promise in realizing the application
potential of OPOs and microcombs, spanning areas such as spectro-
scopy, telecommunications, computing, and quantum sensing.

Methods
Bandgap-detuned nanostructure definition
For the PhCR with only one split mode, we denote the average ring
radius as RR, the average width as RW, and the inner corrugated wall is
parametrized as ρinðθÞ=RR� RW=2 +ρPHC sinð2mθÞ, where (ρ, θ) are
the polar coordinates, ρPHC is the amplitude of the photonic crystal and
m is the longitudinal order (number of wavelength) of the targeted
splitmode. In this paper, RR = 54.4 μm for all devices, so that the FSR is
approximately 400GHz. RW varies from 2 to 2.1μm, so that the dis-
persion coefficientD2/2π≃ −10MHz, ρPHC is around 5 nm, andm varies
to split the modes at different wavelengths. For the PhCRs that gen-
erate OPOs, we can writem asm =m0 + μs, wherem0 is the period that
corresponds to the pump mode.

For the ring resonator with multiple photonic crystals, we design
it by superposing several grating patterns in the inner wall of the

ring that are written as a parametric curve18,37: ρinðθÞ=RR� RW=2 +P
μ2μs

ρPHC
μ sinð2ðm0 +μÞθÞ. We visualize the fabricated pattern by ima-

ging a device with an exaggerated amplitude ρ, using a high-resolution
SEM. For Fig. 2d, μs= {−1, 1} (simply denoted as μs=±1 in the main text);
for Fig. 4a, μs= {−3, 3}; for Fig. 4a, μs= { ±1, ±2, …, ±10}.

By varying the longitudinal order of the split mode and the cor-
responding amplitude, we can obtain arbitrary control of back-
scattering by adjusting the bandgaps on each mode.

Estimation of conversion in bandgap-detuned OPOs and
microcombs
The efficiency of our devices is calculated by the ratio between the
comb power and the off-resonance pump power. Our simulations
match the experiments well, both indicating a high forward efficiency
for OPOs and combs. The efficiency in Fig. 2d is consistently above
20%, and the best forward efficiency alone can reach 48%, while in the
conventional regime, the best total efficiency can reach 41% in a
complex design that includes a waveguide reflector to recycle the
pump field27. The forward efficiency for the combs with μs = {1, −1} in
Fig. 3e is 37% (31% in simulation), and the backward efficiency is 15%
(22% in simulation). In Fig. 4d, the forward efficiency is 24% (19% in
simulation) and the backward efficiency is 14% (24% in simulation),

(d)

(c)

(a)

20 μm

(b) (i)

(ii)

Fig. 4 | Other designs of PhCRs that generate various types of soliton micro-
combs. a PhCRs with μs = ±3. The OPOs and soliton crystals generated with this
design are shown in (c).b PhCRswith μs = ±1, 2,…, 10. The bright soliton generated
with this design is shown in (d). From left to right: Phase matching diagram; pulse
shape; SEM images;measuredDint. c Spectra and pulses for design in (a) with (i) low

and (ii) high detuning. d Spectra and pulses for design in (b). For (c) and (d),
forward (∣Aμ∣2) and backward (∣Bμ∣2) spectra are plotted in solid lines, and orange
dashed lines are simulation results. The forward and backward pulses are plotted in
the same color as the spectra in the same direction.
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resulting from themore equal ratio of forward and backward emission
of this design.

Measurement of Dint

We use the standard way of measuring the integrated dispersion Dint.
We send the pump into the resonator from one end of the waveguide,
scan the frequency, and measure the transmission from the other end
of the waveguide. Examples of transmission can be seen from the
’Mode structure’ in the Supplementary Information. We fit the fre-
quency of each mode (for the split mode, we choose the central fre-
quency as the mode frequency) and get the FSR and D2. We should
note thatwhile there are forward and backward spectra, the dispersion
itself doesn’t have different forward or backward components. The
split mode in the dispersion has shown that there is coupling between
the forward and backward fields at that mode.

A deeper look at the coupled-mode LLEs in the stable states
Here we provide a more detailed description of the LLEs (Eqs (1) and
(2)). In the LLEs, A(θ, τ) (B(θ, τ)) describes the intracavity field in the
time domain, and Aμ(τ) (Bμ(τ)) describes the modal field in the fre-
quency domain. They are related by A(θ) =∑μAμeiμθ (same for B). The
modal Kerr shift Δμ can be written in the frequency domain as

Δμ � κ
2
Re ðF ðjAj2AÞμ=AμÞ=

κ
2

X
μ1 +μ2�μ3 =μ

Aμ1
Aμ2

A*
μ3
=Aμ, ð4Þ

where the summation symbol means the sum over all the μ1, μ2, and μ3
that satisfy μ1 + μ2 − μ3 = μ.

In the stable states, ∣Aμ(τ)∣ or ∣Bμ(τ)∣ don’t change with τ, so they
can be written as AμðτÞ= jAμðτÞjeiημτ and BμðτÞ= jBμðτÞjeiημτ , where ημ is
the normalized frequency at mode μ. Dividing Equation (1) by Aμ, we
have

iημ = � ð1 + iαÞ � iD2μ
2=κ + i

ΓμjBμj
κjAμj

+ i
X

μ1 +μ2�μ3 =μ

jAμ1
jjAμ2

jjA*
μ3
jeiðημ1

+ημ2
�ημ3

�ημÞτ=jAμj

+ i2Pb + Fδμ, 0e
�iημτ=jAμj:

ð5Þ

In the stable states, ημ should be real and not change with τ, which
requires ημ1

+ημ2
� ημ3

� ημ =0 for all μ1 + μ2 − μ3 = μ and η0 = 0. It’s
easy to see that ημmust be linear with μ tomake the states stable. Note
that ημκ=2 = ~DintðμÞ, so we have proved ~DintðμÞ=μδωrep in the main
text, and we can write ημ = 2μδωrep/κ. The linearity of ~DintðμÞ or ημwith
μ indicates the same line spacing between the comb (or OPO) lines in
the stable states.

In the time domain Aðθ, τÞ=PμjAμjeiμðθ+ 2δωrepτ=κÞ. Thus, in simu-
lation, if δωrep is not zero (usually caused by Γμ ≠ Γ−μ), we can see that
A(θ, τ) is moving at a constant speed as τ evolves.

Data availability
Source data have been uploaded. Additional information is available
from the corresponding author upon request. Source data are pro-
vided with this paper.

Code availability
All the simulation codes used in this study are available from the cor-
responding author upon request.
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