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Trapped-ion systems are a leading platform for quantum information processing, but they are currently
limited to 1D and 2D arrays, which imposes restrictions on both their scalability and their range of
applications. Here, we propose a path to overcome this limitation by demonstrating that Penning traps can
be used to realize remarkably clean bilayer crystals, wherein hundreds of ions self-organize into two well-
defined layers. These bilayer crystals are made possible by the inclusion of an anharmonic trapping
potential, which is readily implementable with current technology. We study the normal modes of this
system and discover salient differences compared to the modes of single-plane crystals. The bilayer
geometry and the unique properties of the normal modes open new opportunities—in particular,
in quantum sensing and quantum simulation—that are not straightforward in single-plane crystals.
Furthermore, we illustrate that it may be possible to extend the ideas presented here to realize multilayer
crystals with more than two layers. Our work increases the dimensionality of trapped-ion systems by
efficiently utilizing all three spatial dimensions, and it lays the foundation for a new generation of quantum
information processing experiments with multilayer 3D crystals of trapped ions.
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I. INTRODUCTION

Quantum hardware is now coming full circle: Early
experiments studied quantum phenomena by trapping and
working with large ensembles of particles—typically sev-
eral thousands to even millions—but with a relatively low
level of control. Subsequent developments in laser cooling
and trapping, as well as in solid-state technology, paved the
way for studies of systems with just a single or a few
quantum units, and with a very high degree of control over
the small numbers of degrees of freedom of these systems.
In the last decade, there has been rapid progress in
combining the best of the previous two eras in order to
once again scale up quantum hardware but, at the same
time, also attempt to maintain a high level of controllability.

Paradigmatic systems in this so-called noisy intermediate-
scale quantum (NISQ) era [1] are composed of several tens
to hundreds of qubits arranged in 1D or 2D arrays with
varied and even reconfigurable connectivity graphs,
capable of reasonably high-fidelity quantum operations
and measurements, and are designed to explore genuine
quantum many-body features that are not easily tractable
with classical computers. Such systems have now been
realized on a wide variety of platforms, including but not
limited to trapped ions [2], neutral atoms in tweezers and
optical lattices [3], quantum dots [4], and superconducting
quantum circuits [5], to name but a few.
A further scaling up of controllable quantum hardware

will benefit from an efficient use of all three spatial
dimensions, e.g., by devising strategies to create multilayer
structures by stacking two or more 2D arrays of particles.
In addition, multilayer arrays open up new avenues for
quantum sensing applications, and their three-dimensional
order enables them to make contact with quantum simu-
lations of models that are relevant for condensed matter
systems, including but not limited to ladder arrays, bilayer
graphene, and Moiré materials [6–13]. Several platforms
have taken rapid strides in this direction, with the

*Contact author: samarth.hawaldar@ist.ac.at
†Contact author: athreya@physics.iitm.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 14, 031030 (2024)

2160-3308=24=14(3)=031030(32) 031030-1 Published by the American Physical Society

https://orcid.org/0000-0002-1965-4309
https://orcid.org/0009-0002-9295-8541
https://orcid.org/0000-0002-9040-5735
https://orcid.org/0000-0001-7176-9413
https://orcid.org/0000-0001-9117-7896
https://orcid.org/0000-0003-3822-976X
https://ror.org/04dese585
https://ror.org/02qyf5152
https://ror.org/05xpvk416
https://ror.org/008hybe55
https://ror.org/02ttsq026
https://ror.org/02ttsq026
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.031030&domain=pdf&date_stamp=2024-08-16
https://doi.org/10.1103/PhysRevX.14.031030
https://doi.org/10.1103/PhysRevX.14.031030
https://doi.org/10.1103/PhysRevX.14.031030
https://doi.org/10.1103/PhysRevX.14.031030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


demonstration of synthetic 3D arrays of atoms in optical
tweezers and lattices [14–17], layer-resolved arrays of
optically trapped polar molecules [18] and fermionic atoms
[19], and, very recently, atomic Bose-Einstein condensates
[20] in twisted-bilayer optical lattices. On the other hand, a
number of other leading quantum information processing
platforms appear to be limited to 1D or 2D arrays in the near
term because it remains a challenge to identify a scalable
route to produce multilayer structures in these platforms.
In particular, this challenge is very evident in the case of

trapped-ion quantum systems, which have emerged as one
of the major platforms for quantum information processing
in the NISQ era [2]. Typically, in these systems, a spin-1=2
system is encoded in two long-lived electronic states of
each ion, and lasers are used to couple these electronic
states to the collective normal modes of motion of the ions,
which mediate spin-spin interactions. State-of-the-art quan-
tum simulation and quantum sensing experiments have
been proposed and realized with linear chains of several
tens of ions in rf Paul traps [21–25] and also with planar
2D crystals of tens to hundreds of ions in both rf Paul
traps [26–30] as well as in Penning traps [31–39]. However,
studies exploring the possibility to realize and use 3D
arrays of ions for quantum information have been rather
sparse [40–42], and moreover, their practical feasibility
and/or scalability remain unclear.
In this work, we take a step towards addressing this

challenge by demonstrating that Penning traps can be used
to prepare bilayer crystal configurations of hundreds of ions
with well-defined layers. An advantage of Penning traps is
their well-established ability to produce and control large
ion crystals, as well as the absence of micromotion that
arises in rf Paul traps because of the time-dependent
trapping potentials. An example of a bilayer crystal we
obtain numerically under optimal trapping conditions is
shown in Fig. 1. Remarkably, such configurations do not
require intricate engineering of trap structures but are
instead obtained by including an anharmonic term in the
electrostatic trapping potential, which is straightforward to
achieve in practice. As we will demonstrate, the striking
crystal geometry is not just a cosmetic feature; instead, the
bilayer structure and the normal modes hosted by such a
crystal enable opportunities for quantum information
processing that are typically beyond the capabilities of
1D or 2D ion crystals. A crucial capability that the bilayer
structure adds to the system is the ability to generate and
detect bipartite entanglement between two spatially sepa-
rated ensembles, a capability that other platforms go to
great extents to achieve [43–45]. Bipartite entanglement
between spatially separated ensembles has been identified
as a crucial resource for several quantum information
processing applications [46], and furthermore, it enables
the demonstration of conflicts with classical physics in a
very pronounced manner [43]. Moreover, each layer of
the bilayer system consists of a large number of spins

and hence can be effectively described using continuous
quantum variables [47]. Hence, this system opens a new
platform for continuous variable quantum simulation and,
potentially, even quantum computation. Although our focus
in this work is primarily on the preparation and applications
of bilayer crystals, the techniques presented here may
enable the preparation of crystals with more than two
layers, as we briefly illustrate towards the end of our study.
We note that, although 3D crystals have been realized in
both rf Paul traps and Penning traps with purely harmonic
trapping potentials, their geometry is strongly affected by
surface effects for moderate ion numbers (see Sec. II A),
and only a small fraction of ions form a 3D periodic
structure, which becomes evident only for very large ion
numbers [48–51]. In contrast, our work shows a path for
preparing crystals with several hundreds to a few thousand
ions, where a majority of the ions form a layered, ordered
structure in 3D, thus enabling a range of quantum capa-
bilities and applications that benefit from such a structure.

A. Scope of work and summary

We undertake an extensive study of the classical and
quantum physics underlying the realization of bilayer
trapped-ion crystals and their use in quantum information
processing. In the following, we describe the different
aspects encompassed by our study and highlight our major
contributions.

(i) We explore the possibility of using a Penning trap to
realize crystals with two well-defined layers of ions,
which we refer to as a bilayer crystal (Sec. II).

FIG. 1. Bilayer trapped-ion crystals for quantum information
processing. We show a 3D view of a numerically obtained
equilibrium configuration of a bilayer crystal withN ¼ 200 trapped
ions in a Penning trap. Markers, color coded according to the ion z
coordinates, represent the ion positions. The trap center (not shown)
is taken as the origin. In the lab frame, the crystal rotates with a
controllable rotation frequency about a central axis that is normal to
the layers, i.e., along the z direction. The crystal configuration is
shown in the rotating frame. The trapping conditions under which
this configuration is obtained are discussed in Sec. II B.
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Although theory predicts the existence of a bilayer
phase in a purely harmonic trap [52–54], we find
numerically that the layers are not well demarcated
due to strong boundary effects arising from a finite
number of ions. Remarkably, we discover that these
boundary effects can be mitigated by the addition
of a quartic (anharmonic) trapping potential of
optimal strength, which results in well-defined
bilayer crystals even with moderate numbers of ions
½Oð100Þ�.

(ii) Quantum information protocols with trapped ions
utilize the shared motion of ions to mediate inter-ion
interactions. Therefore, we characterize and quantize
the normal modes of bilayer trapped-ion crystals and
compare their properties with the modes of single-
plane crystals (Sec. III). A prominent difference is
that the bilayer structure causes modes along the
magnetic field (axial modes) to acquire a chiral
character, which is only associated with the modes
perpendicular to the magnetic field in single-plane
crystals. This feature is exciting because quantum
information protocols typically utilize the axial
modes, whereas coupling to the perpendicular
modes is challenging because of the crystal rotation.
We note that chiral modes do not arise in crystals
formed in rf Paul traps.

(iii) The spin-motion coupling required to mediate inter-
ion interactions is typically implemented by creating
an optical lattice using a pair of lasers. This lattice
induces a spin-dependent force on the ions, which
we refer to as the optical dipole force (ODF) and
study in the context of the bilayer crystal in Sec. IV.
We show how the ODF provides an operationally
meaningful way to assess the bilayer quality. We
introduce the notion of an interlayer ODF phase,
which can be tuned by changing the incidence angle
of the lasers and serves as a powerful knob for
controlling the relative sign and magnitude of
interlayer to intralayer ion-ion interactions.

(iv) We discuss several prospects for quantum informa-
tion processing with bilayer crystals in Sec. V. We
show how to realize bilayer Ising models, where the
interlayer interactions can be tuned from ferromag-
netic to antiferromagnetic, and even switched off,
by simply adjusting the ODF incidence angle. We
further demonstrate that a two-tone ODF protocol,
where two axial modes are simultaneously used
for the spin-motion coupling, can enable on-the-fly
control over the interlayer as well as intralayer
couplings. Furthermore, we consider the addition
of a transverse field, which converts bilayer Ising
models into bilayer spin-exchange models. Here, we
demonstrate that the spin-exchange coefficients
between a pair of ions j, k can be made asymmetric,
i.e., Jjk ≠ Jkj, which enables the realization of chiral

spin-exchange models. For example, this method
can be used to engineer a complex amplitude for
the hopping of spin excitations between layers,
opening a path for engineering a 2D synthetic gauge
field [55–60] and for studying the interplay between
the nontrivial topology of a band structure and
interparticle interactions. We also outline several
other potential applications of the above capabilities
in various quantum sensing and quantum simulation
protocols.

(v) We identify and discuss practical challenges that can
limit the fidelity of quantum protocols with bilayer
crystals and outline some strategies to mitigate their
adverse affects (Sec. VI). In particular, we find that
the main challenges are likely to be off-resonant
light scattering (spontaneous emission) from the
ODF lasers and residual thermal motion of the ions.
Our analysis suggests that the fidelity of quantum
protocols using bilayer crystals may critically rely
on near ground-state cooling of all the normal
modes, for which we briefly discuss some prospects.

(vi) We close with a conclusion and an outlook
(Sec. VII), where we demonstrate the possibility
of producing multilayer ion crystals beyond bilayers.
We also highlight interesting possibilities of employ-
ing bilayer crystals for simulating spin-boson mod-
els and additional simulation possibilities afforded
by employing a Mølmer-Sørensen gate. Finally, we
underscore the need for complementary efforts in
non-neutral plasma physics in the general context of
utilizing 3D ion crystals for quantum information
processing.

II. EQUILIBRIUM BILAYER CRYSTALS

In this section, we discuss the formation of bilayer
crystals in a Penning trap. We first consider the case of a
purely harmonic trap, introduce the system Lagrangian,
and briefly discuss the one-plane to two-plane transition.
Subsequently, we study the equilibrium crystal configura-
tion in the bilayer regime. We then demonstrate how the
addition of an anharmonic trapping potential greatly
improves the bilayer structure of these crystals.

A. Harmonic trapping potential

1. Preliminaries: Lagrangian of the system

We consider a collection of N ions of mass m in a
Penning trap [61,62]. The ions are trapped by a combina-
tion of a strong magnetic field B ¼ Bzẑ along the z axis
(Bz > 0) and an electric quadrupole field characterized by a
voltage amplitude Vz > 0 (units of V=m2). In the lab frame,
the combination of trapping fields causes the crystal to
rotate about the z axis, and the corresponding rotation
frequency ωr can be stabilized and controlled by applying a
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time-varying “rotating wall” potential with amplitude
VW > 0 [63]. In a frame rotating at ωr with the rotating
wall, the Lagrangian is time independent and given by

L ¼
XN
j¼1

�
1

2
mṙj · ṙj −

mω0
c

2
ðẋjyj − ẏjxjÞ − eϕj

�
; ð1Þ

where rj ¼ xjx̂þ yjŷ þ zjẑ is the position of ion j in the
rotating frame, with the trap center taken as the origin.
The first term describes the kinetic energy of the ions, and
the second term is the net Lorentz force in the rotating
frame, which is characterized by the effective cyclotron
frequency ω0

c ¼ ωc − 2ωr, where ωc ¼ eBz=m is the bare
cyclotron frequency. The third term is the effective poten-
tial energy of ion j, which contains terms arising from the
trapping potential and the inter-ion Coulomb repulsion, and
is given by

eϕj ¼
1

2
mω2

z ½z2j þ βðx2j þ y2jÞ þ δðx2j − y2jÞ� þ
kee2

2

X
k≠j

1

rjk
;

ð2Þ

where ke ¼ 1=ð4πϵ0Þ with ϵ0 the vacuum permittivity, and
rjk ¼ jrj − rkj. Furthermore, we introduce the axial trap-

ping frequency ωz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eVz=m

p
and express the radial

trapping terms using dimensionless parameters normalized
to ω2

z . In particular, the relative strength of radial to axial
trapping is characterized by the parameter β, defined as [64]

β ¼ ω2⊥
ω2
z
¼ ωrðωc − ωrÞ

ω2
z

−
1

2
; ð3Þ

where ω⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrðωc − ωrÞ − ω2

z=2
p

is the radial trapping
frequency. The expression for ω⊥ can be understood as
coming from an effective planar potential in the rotating
frame that includes contributions from the Lorentz force
(∝ ωrωc), the centrifugal force (∝ ω2

r), and the radially
outward electric quadrupole field (∝ ω2

z). Furthermore, the
strength of the applied rotating wall is parametrized by the
ratio δ, given by [65]

δ ¼ VW

Vz
: ð4Þ

We numerically obtain equilibrium crystal configura-
tions by minimizing the total potential energy appearing in
Eq. (1). Starting from a random configuration of ions, we
use a modified version of a basin-hopping algorithm that
involves several iterations of gradient-descent-based min-
imization interspersed with random perturbations to the ion
positions to nudge the crystal out of local minima. The
details of this procedure are described in Appendix A.

2. One-plane to two-plane transition

A single-plane 2D crystal is formed when the radial
trapping is sufficiently weak compared to the axial trap-
ping, which occurs when [64,65]

β < βc ≈ 0.665=
ffiffiffiffi
N

p
: ð5Þ

For β > βc, the crystal is no longer confined to a single
plane. Experimentally, the transition from a single plane to
a 3D crystal has been observed to occur via a series of
transitions in the crystal structure, which bifurcates into an
increasing number of layers as β is increased, e.g., by
increasing the rotation frequency ωr [53,54]. Here, we are
primarily interested in the regime where the crystal struc-
ture exhibits two prominent layers.

3. Crystal configurations

To study a concrete realization, we consider parameters
relevant for the NIST Penning trap, where single-plane
crystals of tens to hundreds of 9Beþ ions are routinely
prepared [32]. Here, we consider N ¼ 200 ions trapped
using a magnetic field Bz ¼ 4.4588 T [cyclotron frequency
ωc=ð2πÞ ≈ 7.5973 MHz] and an axial trapping frequency
of ωz=ð2πÞ ¼ 1.62 MHz. The critical value for the one-
plane to two-plane transition is βc ≈ 0.047. Typically,
planar crystals are prepared for quantum simulation and
sensing using a rotation frequency ωr=ð2πÞ ¼ 180 kHz
and wall strength δ ≈ 1.83 × 10−3, for which β=βc ≈ 0.186.
In the Supplemental Material [66], we demonstrate the one-
plane to two-plane transition by means of an animation that
shows how the crystal configuration changes as ωr (and
thus β=βc) is increased.
Here, we study representative bilayer crystals in the

regime where β=βc > 1. Figures 2(a) and 2(b) show the
side and top views of a crystal when β=βc ¼ 1.355
[ωr=ð2πÞ ¼ 200 kHz]. The ions are color coded according
to their z positions. The ions in the center of the crystal
approximately organize into two layers, one above and one
below the z ¼ 0 plane. With increasing distance from the
trap center, the ion positions gradually shift towards the
z ¼ 0 plane and eventually form concentric rings in this
plane at the crystal boundary. As seen in the top view,
the crystal has a square lattice structure in the center.
Furthermore, the lattices in the two layers are staggered
with respect to each other, i.e., ions in the bottom layer
are visible in the “voids” created by the top layer. As a
qualitative indicator of the bilayer quality, we show the
histogram of the z positions of the ions in Fig. 2(c). The bin
size is chosen keeping laser addressing in mind and will be
discussed in Sec. IV B. It is clear that the majority of the
ions are still located near the z ¼ 0 plane, although the
bilayer structure shows up as two smaller peaks close
to z ¼ �3 μm.
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In Figs. 2(d)–2(f), the system is pushed deeper into the
bilayer regime by speeding up the crystal rotation to
ωr=ð2πÞ ¼ 220 kHz, resulting in β=βc ¼ 2.518. From
the side view and the histogram, we observe that the
stronger radial confinement pushes the ions farther away
from the z ¼ 0 plane and reduces the number of ions
trapped in this plane. The crystal now has a hexagonal
lattice structure in the crystal center (see top view). Once
again, the lattices in the two layers are staggered since the
ions in the bottom layer are visible in the tetrahedral
“voids” formed by the top layer.
We note that the observed square lattice and the

subsequent transition to the hexagonal lattice are consistent
with prior experimental observations of structural phase
transitions in large crystals stored in Penning traps [53,54].
Although theory predicts the existence of a clean bilayer
phase [52] for a system that is infinite in the radial
direction, our simulations indicate that, in a purely har-
monic potential, finite-size effects (N ¼ 200 here) cause
the crystal to eventually taper into a single-plane configu-
ration near the crystal boundary, effectively forming a
lenticular structure.

B. Cleaner bilayers with anharmonic potential

In previous work, the addition of an anharmonic trapping
potential was shown to result in single-plane crystals with a
more uniformareal density [64].Motivated by this result, here
we study how anharmonicity affects bilayer crystal configu-
rations. First, we demonstrate that anharmonicity leads to a
remarkable improvement in the bilayer quality. Subsequently,
we provide an intuitive explanation for this effect.
We consider the addition of an anharmonic trapping

potential that modifies the potential energy (2) to
eϕj → eϕj þ eϕj;an, where

eϕj;an ¼
1

2
mω2

z
βC4

r2p;0

�
z4j − 3z2jðx2j þ y2jÞ þ

3

8
ðx2j þ y2jÞ2

�
:

ð6Þ

Here, we find it convenient to quantify the strength of
the anharmonic potential by the parameter C4, which is
made dimensionless by introducing a length scale rp;0 in
Eq. (6) [67]. The latter quantity is the radius of the crystal,

(a) (b) (c)

(d) (e) (f)

FIG. 2. Bilayer crystals in a harmonic trapping potential. Panels (a)–(c), respectively, show the side view, top view, and histogram of z
positions for a bilayer crystal with a staggered square lattice (which is evident in the central region of the top view). Panels (d)–(f) show
the corresponding plots for a bilayer crystal with a staggered hexagonal lattice, which is obtained at higher rotation frequencies.
Although both crystals exhibit a semblance of two layers, one above and one below the z ¼ 0 plane, they are neither clean planar
structures, nor are well demarcated, gradually merging into a single layer at z ¼ 0 at the crystal boundary, where a large number of ions
are trapped. These crystals are obtained using parameters relevant for the NIST Penning trap [see Eqs. (1)–(4)]: N ¼ 200 9Beþ ions are
trapped using an axial magnetic field of Bz ¼ 4.4588 T and an electric quadrupole potential characterized by the axial trapping
frequency ωz=ð2πÞ ¼ 1.62 MHz. For the crystal in the top row, the crystal rotation frequency is ωr=ð2πÞ ¼ 200 kHz, and in the bottom
row, ωr=ð2πÞ ¼ 220 kHz. The wall strength is taken to be δ ¼ 0.00183.
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called the plasma radius, in a purely harmonic trap, which
can be analytically derived [64] and is given by rp;0 ¼
ð3πN=4Þ1=3a0, and a0 ¼ ½kee2=ðmω2⊥Þ�1=3 is a length scale
where the Coulomb repulsion becomes comparable to the
radial trapping strength.
We consider a crystal withN ¼ 200 ions that has β=βc ¼

1.938 when the trap is harmonic, i.e., C4 ¼ 0, and study
how the histogram of z positions changes as C4 is
increased. Specifically, as a quantitative measure of bilayer
quality, we introduce the entropy

S ¼ −
X
k

fk ln fk; ð7Þ

where fk ¼ NðzkÞ=N are the normalized counts in the kth
bin with the center at zk. Figure 3 shows how the entropy S
changes with C4. Since our global minimization routine
(Appendix A) is not a deterministic algorithm, for each
value of C4, we generate the equilibrium configuration
50 times and plot the value of S averaged over only the
lowest ten energy configurations, with the associated
standard deviation as the error bar. The entropy decreases
as C4 is increased and is minimized at an optimal value of
C4 ≈ 1.65. Further increasing C4 leads to an increase in S.
We note that the precise location of the optimal C4 value is
sensitive to the bin size and the location of the bin edges
used to make the histogram, so the entropy measure should
be understood as a guide to identify a ballpark value of C4

required to produce clean bilayers. In the Supplemental
Material [66], we provide an animation of how the crystal
configuration progressively improves as C4 is increased by
plotting the lowest-energy configurations obtained for
different C4.
Figure 4 shows the side and top views of a bilayer

configuration obtained at C4 ≈ 1.63, along with the corre-
sponding histogram of z positions. The side view and
histogram demonstrate the remarkable improvement in the
bilayer quality. Not only are the two layers more planar as
compared to the crystals in Fig. 2, but the number of ions in
the “scaffolding” surrounding the two layers is also greatly
reduced. The top view shows that the lattice structure in this
configuration is still hexagonal, with the two layers’ lattices
staggered with respect to each other.
Our study above shows that high-quality bilayers with

minimal boundary effects and distortions are realizable in
Penning traps by the inclusion of an anharmonic trapping
potential. In Appendix B, we consider the practical
feasibility of generating a strong anharmonic trapping
potential term such that C4 ≳ 1. Although in the NIST
Penning trap, with ωz=ð2πÞ ¼ 1.62 MHz and for an
N ¼ 200 ion crystal, we find thatC4 ≲ 0.0035, our analysis
in Appendix B indicates that it can be strongly enhanced by

FIG. 3. Effect of anharmonic trapping on bilayer quality.
Entropy of the z distribution of ions, Eq. (7), versus the strength
of the anharmonic term in the trapping potential [Eq. (6)]. Here,
we choose ωr=ð2πÞ ¼ 210 kHz and take other trapping param-
eters to be the same as in Fig. 2. The entropy attains a minimum at
an optimal value of C̄4, showing that bilayer quality can be
improved by using anharmonic trapping potentials. The bin size
used to make the histograms for computing the entropy is 10
times smaller than that used for the histograms shown in Figs. 2
and 4 since finer bins lead to a more robust estimate for an
optimal C̄4 that is less sensitive to the choice of bin edges. Error
bars are standard deviations over ten equilibrium configurations
(see text for further details).

(a) (b) (c)

FIG. 4. Clean bilayer crystals with anharmonic trapping. The three panels show the side view, top view, and histogram of z positions
for a bilayer crystal obtained under anharmonic trapping with C̄4 ≈ 1.63. Other trapping parameters are the same as in Fig. 3. The layers
are now visibly planar and are well demarcated with minimal boundary effects, compared to the crystals in Fig. 2. In the rest of this work,
we study the properties of this crystal and its applications in quantum information processing.
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using larger ion numbers (C4 ∝ N3=2), lower axial trapping
frequencies (∝ ω−10=3

z ), and smaller trap dimensions
(∝ d−4). Hence, achieving C4 ≳ 1 is indeed experimen-
tally viable, in principle, even in the present trap at NIST.
Furthermore, the feasibility of operating Penning traps
with smaller dimensions has recently been demonstrated
with a trap whose diameter is 4 times smaller than the
NIST trap, where stable planar crystals in a different type
of anharmonic potential have been realized [68]. We
anticipate that trap heating rates will not increase dra-
matically in smaller traps since the ions are still a few
millimeters from any trap surface and heating rates in
Penning traps can be significantly lower than in rf traps of
comparable size [38].

1. Effect of anharmonicity: Qualitative explanation

The role of the C4 term in producing cleaner bilayer
crystals can be intuitively understood using qualitative
considerations of force balance. In a purely harmonic
potential, Fig. 2 shows that the two “layers” of the crystal
curve inwards as a function of radial distance ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
from the trap center. This curvature can be

understood as arising from the balance of the external
trapping and the Coulomb repulsion of the two layers:
Assuming each layer to be an approximately flat disk, the
harmonic trapping pushes each disk inward with a force
that is independent of ρ. However, the repulsive Coulomb
force of one disk on another along z is largest at the center
and decreases with ρ. As a result, the central region of each
layer tends to bulge outward along z, whereas they curve
inward with increasing ρ.
In the presence of an anharmonic term, the radial

decrease in the Coulomb force can be compensated by
the term∝ −z2ρ2 in Eq. (6), which leads to an outward force
on each layer that increases with ρ. The result is effectively
a more uniform force along the z direction over the entire
layer, thereby leading to the formation of flatter layers, as
seen in Fig. 4. Furthermore, we observe that, for values of
C4 beyond the optimal range, each layer has an outward
curvature, indicating that the anharmonic term is now
overcompensating for the radial reduction in Coulomb force
(see animation of the equilibrium crystal configuration
versus C4 provided in the Supplemental Material [65]).
We note that a similar argument applied along the radial
direction using the term ∝ ρ4 in Eq. (6) can be used to
intuitively understand the formation of single-plane crystals
with more uniform areal density, which has been previously
analyzed in Ref. [64].

III. NORMAL MODES OF BILAYER CRYSTALS

In order to use bilayer crystals for quantum information
processing, we study the properties of their normal
modes of motion. In this section, we first briefly recall

the normal-mode analysis for crystals in Penning traps
[61,62,69]. Subsequently, we compare the normal modes of
bilayers and single-plane crystals using multiple metrics
and show the dramatic difference in the nature of the
drumhead (axial) modes in the bilayer regime. With an eye
on quantum applications, we then quantize the modes using
a procedure that makes the quantized modes amenable to a
transparent physical interpretation.

A. Normal-mode analysis

The normal modes of motion are obtained by studying
the small-amplitude motion of the ions about the equilib-
rium configuration. We define a composite phase-space
vector jq⟫ ¼ ðjδr⟫; jv⟫ÞT, where jδr⟫; jv⟫, respectively,
denote the small-amplitude classical position and velocity
displacements of the ions [70]. The vectors jδr⟫; jv⟫ are
3N dimensional as they account for the x, y, z degrees of
freedom of all the ions. We note that, at this point, the
motion is treated as classical, and we are using the bra-ket
notation to represent vectors and inner products purely for
notational convenience. These quantities will be quantized
in Sec. III C, where, e.g., the corresponding vector of 3N
position operators will be denoted with hats as jδr̂⟫
[Eq. (18)]. These displacements can be expressed in terms
of the 3N normal modes of the crystal as

jq⟫ ¼
X3N
n¼1

ðAne−iωntjun⟫þ A�
neiωntju�n⟫Þ; ð8Þ

where ωn, jun⟫, and An are, respectively, the eigenfre-
quency, eigenvector, and complex amplitude associated
with the nth mode. Explicitly writing the position and
velocity components of the eigenvector as jun⟫ ¼
ðjurn⟫; juvn⟫ÞT , the eigenvalue equations can be obtained
by linearizing the Euler-Lagrange equations, and they are
given by

juvn⟫ ¼ −iωnjurn⟫;
−Kjurn⟫þmLjuvn⟫ ¼ −imωnjuvn⟫: ð9Þ

Here, K is the real, symmetric stiffness matrix, whose form
is given in Appendix C. A primary difference between
normal modes in rf Paul traps and Penning traps arises from
the Lorentz force, which introduces a velocity-dependent
force through the matrix L [62]. With the basis ordered
as fx1; y1; z1;…; xN; yN; zNg, it can be expressed as
L ¼ iω0

cdiagðM1;M2;…;MNÞ, whereMj is a 3 × 3 matrix
in the basis of xj, yj, zj given by

Mj ¼ M ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA: ð10Þ
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This structure of Mj arises from the fact that the magnetic
field is along the z axis and only introduces Lorentz forces
in the x-y plane.
The total energy associated with the small-amplitude

motion can be expressed in terms of the normal modes as

H ¼
X3N
n¼1

jAnj2ð⟪urnjKjurn⟫þm⟪uvnjuvn⟫Þ: ð11Þ

Equation (11) shows that the total energy in each mode
consists of separate contributions from the position and
velocity components of the eigenvector, which can respec-
tively be identified as the time-averaged potential and
kinetic energies associated with that mode.

B. Bilayer vs monolayer normal modes

1. Monolayer crystal

For a monolayer, the linearized Euler-Lagrange equa-
tions decouple for the in-plane (x, y) and out-of-plane (z)
degrees of freedom, leading to a block-diagonal form for
the stiffness matrix K ¼ diagðKxy;KzÞ [61,62]. Therefore,
as shown in Fig. 5(a), the normal modes consist of 2N
in-plane modes, grouped into N low-frequency E ×B
modes (≲100 kHz) and N high-frequency cyclotron modes
(∼7.2 MHz), and N out-of-plane axial or drumhead modes
that are intermediate in frequency (∼1 MHz to 1.6 MHz
for typical NIST trapping parameters). In Fig. 5(b), we
show the fraction fzn of the mode that is contributed by
out-of-plane motion, i.e.,

fzn ¼
⟪uznjuzn⟫
⟪urnjurn⟫

: ð12Þ

As expected, fzn ¼ 0 for the E ×B and cyclotron mode
branches, whereas fzn ¼ 1 for the drumhead modes.

The Lorentz force has a nontrivial effect on the nature
of the normal modes. In contrast to crystals in rf Paul traps,
the normal modes of ion crystals in Penning traps do not,
in general, correspond to simple harmonic motion.
Consequently, the time-averaged potential and kinetic
energy content in a mode may not be equal. The metric
Rn [62], defined as

Rn ¼
⟪urnjKjurn⟫
mω2

n⟪urnjurn⟫
; ð13Þ

gives the ratio of the average potential to kinetic energy in
the nth mode. As shown in Fig. 5(c), Rn ≫ 1 (Rn ≪ 1) for
the E × B (cyclotron) branches. In the case of the drum-
head modes, Rn ¼ 1 identically since these modes decou-
ple from the in-plane motion and are simple harmonic in
nature; i.e., they are solutions to a system of coupled simple
harmonic oscillators, and they satisfy

Kzjuzn⟫ ¼ mω2
njuzn⟫: ð14Þ

2. Bilayer crystal

On the other hand, the linearized Euler-Lagrange equa-
tions for the in-plane and out-of-plane motions do not
decouple for bilayer crystals. In Fig. 5(a), we plot the
eigenfrequencies of the 3N normal modes for the clean
anharmonic bilayer shown in Fig. 4, and we find that,
similar to the monolayer, there are three distinct branches
of low-, intermediate-, and high-frequency modes. Hence,
we refer to these branches using the same terminology as
for the monolayer modes, viz., E × B, drumhead and
cyclotron modes. Compared to the monolayer, the
E ×B modes, in general, have higher frequencies in the
bilayer regime, with the exception of the lowest-frequency
“rocking” mode [71], which shifts to a lower frequency.

(a) (b) (c)

FIG. 5. Properties of normal modes of bilayer crystals. The three panels show (a) the normal-mode frequencies, (b) the fraction of the
mode contributed by out-of-plane motion [Eq. (12)], and (c) the ratio of the average potential to kinetic energy in the mode [Eq. (13)], for
the 3N ¼ 600modes of the N ¼ 200 ion bilayer crystal (green squares) shown in Fig. 4. For comparison, we also plot the corresponding
quantities for a single-plane crystal (red circles), which is obtained by choosing ωr=ð2πÞ ¼ 180 kHz and taking other parameters to be
the same as in Fig. 2. For both crystals, the normal modes can be classified into three branches: a low-frequency E × B branch (modes
0–199), an intermediate-frequency drumhead branch (200–399), and a high-frequency cyclotron branch (400–599).
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The drumhead modes now have an increased bandwidth,
and the separation between the E × B and drumhead
branches is smaller. On the other hand, there is no
significant difference in the frequencies of the high-
frequency cyclotron modes, on the scale shown here.
An important feature of the E ×B modes in the bilayer

crystal is that they now have a non-negligible fraction
fzn ∼ 0.05–0.1 of out-of-plane motion. This feature implies
that, with bilayer crystals, the E × B modes can be
addressed using standard setups for quantum information
processing in Penning traps, where lasers are used to couple
the electronic states of ions to their out-of-plane motion in a
frequency-selective manner. Such a capability could be
beneficial, e.g., for improved laser cooling and thermom-
etry of the E × B modes and for using these modes to
engineer interacting spin models for quantum simulation.
On the other hand, the fzn values for the drumhead and
cyclotron modes do not change significantly compared to
the monolayer, but they are no longer identically equal to 1
and 0, respectively.
Similar to the monolayer, the E ×B (cyclotron) mode

branches are dominated by potential (kinetic) energy,
although the deviation of Rn from 1 is reduced for the
bilayer crystal. The drumhead modes are no longer simple
harmonic and are instead obtained as solutions to the full
set of equations (9). Nevertheless, they are still found to
have Rn ≈ 1; i.e., they have nearly equal average potential
and kinetic energies.

3. Complex drumhead modes in bilayer crystals

All the metrics considered so far, viz., the mode
frequencies, fzn and Rn, indicate that the drumhead modes
of a bilayer crystal are qualitatively similar to those of a
monolayer and only differ quantitatively. Furthermore,
the differences in metrics such as fzn and Rn are barely
noticeable since they only deviate very slightly from 1.
However, these deviations point to the coupled nature of the
out-of-plane and in-plane motions in the bilayer case,
which leads to a dramatic change in the nature of the
eigenvectors of the drumhead modes.
In the monolayer, the drumhead modes satisfy Eq. (14),

and hence the eigenvectors jurn⟫ are all real. However,
this is not generally true for an eigenvector satisfying
Eq. (9). As a measure of the mode complexity, we compute
the metric

In ¼
j⟪urnjurn⟫j − j⟪urnjur�n ⟫j
j⟪urnjurn⟫j þ j⟪urnjur�n ⟫j

; ð15Þ

which is identically 0 for real eigenvectors, as occurs, e.g.,
for simple harmonic motion, and can have a maximum
value of 1, as occurs, e.g., for perfect circular motion.
In Fig. 6, we plot In for all the modes of a monolayer as
well as a bilayer crystal. While the E ×B and cyclotron
branches generally have nonzero In values in both cases,

the remarkable feature is the emergence of complex
eigenvectors in the drumhead branch (mode numbers
201–400) in the bilayer crystal. The degree of complexity
is appreciable despite the drumhead modes still being
predominantly out of plane in nature, i.e., fzn ≈ 1. From
animations of drumhead mode motion (see Supplemental
Material [66]), we observe that, although the ion displace-
ments are mostly along the z direction, the complex
eigenvectors arise from a chiral propagation of the dis-
turbance associated with these modes in the bilayer crystal.
In other words, nontrivial phase relations are established
between the out-of-plane displacements of different ions. In
contrast, no such chiral propagation is observed for drum-
head modes of monolayer crystals, where, as the purely real
eigenvectors imply, the ions only move either in phase or
out of phase with respect to one another.
By supporting drumhead modes with complex eigen-

vectors, bilayer crystals in Penning traps provide a feature
that is not natively present in rf Paul traps or monolayer
Penning trap crystals, where all the normal modes used for
quantum information processing are associated with purely
real eigenvectors. This finding opens up a new potential
pathway to engineer chiral interactions, which occur,

FIG. 6. Complex eigenvectors of drumhead normal modes. The
two panels plot In [Eq. (15)] versus mode number n, for a single-
plane crystal (top panel) and for a bilayer crystal (bottom panel),
with the same parameters as in Fig. 5. The central difference is the
emergence of complex eigenvectors in the drumhead branch (mode
numbers 200–399) in the bilayer crystal. In contrast, all drumhead
modes have real eigenvectors in the single-plane crystal.
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e.g., in spin models with a Dzyaloshinskii-Moriya (DM)
interaction [72,73].

4. Some drumhead modes of interest

Quantum simulation and sensing applications enabled by
bilayer crystals rely on coupling the electronic states of the
ions to the drumhead modes. Hence, it is useful to gain
intuition about the nature of these modes. In Fig. 7, we
illustrate the eigenvectors of four such modes for the
anharmonic bilayer shown in Fig. 4. For each mode, the
size of the marker for each ion is proportional to the mode
amplitude (juzn;jj) supported by that ion, while the color
represents the phase [argðuzn;jÞ] of motion.
For this bilayer crystal, mode number 393 corresponds to

the center-of-mass (c.m.) mode, where all the ions move in
phase. However, because of the anharmonicity, the ions do
not all have equal amplitude, with ions at the boundary
(center) having smaller (larger) amplitudes. Furthermore,
unlike in a monolayer, the c.m. mode is not the highest-
frequency drumhead mode, which is instead found to be a
breathing mode (mode 399). In this mode, the ions in the
top and bottom layers move out of phase with respect to
each other, and the amplitude of motion decreases as the
distance from the center increases. This mode can be
viewed approximately as two monolayer c.m. modes with
a 180° phase shift between the two layers. In fact, several
high-frequency drumhead modes in the bilayer are actually
generalizations of well-known monolayer drumhead modes
with a 180° phase shift between the two layers. This feature
is very evident in the pair of bilayer tilt modes, one of
which (mode 398) is shown here. The out-of-phase tilting
motion is reflected in the color maps used to represent the
phase here.
The three modes discussed so far—viz., c.m., breath-

ing, and tilt modes—have predominantly real eigenvec-
tors, leading to In ≲ 10−2. This feature is reflected in the
corresponding phase maps, which predominantly have
values corresponding to only 0° or 180°. As a final
example, we consider mode 385, which has a complex

eigenvector with In ≈ 0.8 and hence represents a quali-
tatively different kind of drumhead mode that is not found
in a monolayer crystal. In this mode, both the layers
undergo a tilting motion with a common tilt axis that is
not fixed but is instead rotating with time. We provide
an animation in the Supplemental Material [66].
Remarkably, the phase of motion displays a clockwise
circulation (0° → 90° → 180°) in each layer, as shown in
Fig. 7. In fact, this mode is a bilayer analog of an
ðl ¼ 2; m ¼ 1Þ electrostatic fluid mode occurring in
spheroidal non-neutral plasmas [74,75]. Here, l and
m describe the mode eigenfunction, Pm

l ðξ2Þeimφ, where
Pm
l ð⋅Þ is an associated Legendre polynomial, ξ2 is a

generalized “latitude” (polar angle) coordinate, and φ
is the usual azimuthal angle coordinate. This mode is
accompanied by a corresponding mode with counter-
clockwise circulation (also shown in the animation),
which is the bilayer analog of an ðl ¼ 2; m ¼ −1Þ mode
of a spheroidal plasma.

C. Quantization of normal modes

A quantum description of the normal modes is required
in order to study their use in quantum information process-
ing. For a monolayer, the quantization of the drumhead
modes is straightforward since they are simple harmonic
oscillator modes. The quantization of the E ×B and
cyclotron modes was considered in Ref. [61] using for-
malism developed in Ref. [76] and was performed using an
involved procedure. Here, we present a unified method to
quantize the normal modes of a general single-species 3D
crystal in a Penning trap, using steps that make the physical
content of the quantization procedure transparent. We have
verified analytically that our method yields quantized
modes that are consistent with the results obtained in
Ref. [61] for single-plane crystals.
Our method involves substituting in Eq. (8) an ansatz

for the complex mode amplitudes An → cnân; A�
n → cnâ

†
n,

where cn are real coefficients discussed below and ân; â
†
n

are annihilation and creation operators. Subsequently,

FIG. 7. Representative drumhead normal modes of bilayer crystals. We show eigenvectors of four different drumhead modes, viz., the
breathing mode (mode number 399), a bilayer tilt mode (398), the center-of-mass mode (393), and a chiral mode with In ≈ 0.8 (385).
The eigenvectors are, in general, complex, and hence we use the size of the ion marker to indicate the amplitude of the ion participation
in a mode and the color of the marker to represent the phase of the ion’s motion. These modes correspond to the crystal shown in Fig. 4.
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we prove that if these operators satisfy the usual bosonic
commutation relations

½ân; â†n0 � ¼ δn;n0 ; ð16Þ

then the canonical commutation relation for the position
and canonical momentum of every ion is automatically
satisfied, i.e.,

½x̂j; p̂x;j� ¼ ½ŷj; p̂y;j� ¼ ½ẑj; p̂z;j� ¼ iℏ; ∀ j: ð17Þ

Here, α̂j; α ¼ x, y, z are position operators corresponding
to displacements of ion j from its equilibrium position, and
p̂α;j; α ¼ x, y, z are the operators corresponding to the
canonical momentum pα;j ¼ ∂L=∂α̇j, which is, in general,
different from the mechanical momentum Πα;j ¼ mα̇j
because of the magnetic field. The details of the proof
are presented in Appendix D. Here, we present a brief
summary of the central steps. First, the 3N commutators
in Eq. (17) are expanded in terms of the normal-mode
operators and simplified using the corresponding commu-
tation relation (16). Subsequently, the expressions reduce to
sums over terms involving the normal-mode frequencies
and eigenvectors alone, which must be shown to equal 1 in
order to satisfy Eq. (17). Intuitively, these 3N constraints on
the normal modes arise due to the equivalence in expressing
the total energy per degree of freedom of each ion (i) in
terms of the ion’s displacement and momentum or (ii) in
terms of its contribution to the different normal modes.
In Appendix D, we rigorously prove that these constraints
are satisfied by applying the equipartition theorem.
Using the quantized normal modes, the vector of 3N

operators representing position fluctuations can be
expressed as

jδr̂⟫ ¼
X
n

cnðâne−iωntjurn⟫þ â†neiωntjur�n ⟫Þ; ð18Þ

where the coefficients cn ¼ l0;n=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪urnjurn⟫

p
and l0;n is a

length scale that represents the root-mean-square (rms)
zero-point fluctuation of the nth mode; i.e., it is the total
rms fluctuation of all the ions in the crystal arising because
of mode n. It is given by

l20;n ¼
ℏ

mωnð1þ RnÞ
; ð19Þ

where Rn is given by Eq. (13). We note that, for any
drumhead mode of a monolayer, Rn ¼ 1, and the expres-
sion reduces to the familiar form ℏ=ð2mωnÞ for the zero-
point fluctuations of a simple harmonic oscillator.
Furthermore, the quantized Hamiltonian corresponding

to Eq. (11) can be shown to reduce to the expected form

Ĥ ¼
X
n

ℏωn

�
â†nân þ

1

2

�
: ð20Þ

From Eqs. (18) and (20), it can be seen that jδr̂⟫
corresponds to the position fluctuations in an interaction
picture taken with respect to the free evolution Hamiltonian
of the normal modes.

IV. QUANTUM CONTROL OF BILAYER
CRYSTALS

In this section, we set the stage for quantum informa-
tion processing with bilayer crystals by identifying the
resources available for quantum control on this platform.
After a brief description of single spin operations, we
model the application of the ODF for entangling ions
in bilayer crystals. We show how the analysis of the ODF
interaction provides a natural route to assessing the
quality of the bilayer.

A. Single-spin operations

A spin-1=2 system, described by Pauli operators
σ̂αj ; α ¼ x, y, z, is encoded in each ion j by utilizing the
two long-lived hyperfine states in the ground 2S1=2 mani-
fold of 9Beþ as the j↑i; j↓i states [77]. As illustrated in
Fig. 8(a), microwave driving of the two hyperfine states is
typically used to perform identical single-spin operations
on all ions in the crystal. Additionally, in bilayer crystals,
the large separation between the two layers (∼10 μm; see
Fig. 4) provides an opportunity to perform layer-selective
single-spin operations by addressing the two layers
with separate pairs of Raman beams from the side of the
crystal [78]. With the use of cylindrical optical elements,
these beams can be engineered to have an elliptical beam
waist, such that the waist along the z direction is a few
microns while the waist along the y direction is several tens
to hundreds of microns in order to cover the planar extent of
each layer.
The spatial separation of the two layers also allows for

performing layer-resolved readout of the spin states of the
ions via detection of fluorescence from the side of the
crystal, which is conceptually indicated using two side-
view objectives in Fig. 8(a). The layer-resolved side-view
readout also ensures that background fluorescence from
“scaffolding” ions in the region intermediate to the two
layers can be suppressed when measuring the spin states in
the different layers.

B. Entangling resource: Optical dipole force

The normal modes of motion, typically the drumhead
modes, serve as the quantum channels that couple the
spins and enable entanglement generation [31]. The
required spin-motion coupling is generated via an ODF
that is implemented using either a light-shift gate or a
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Mølmer-Sørensen (MS) gate [79]. Here, we focus on the
ODF implemented using a light-shift gate applied to bilayer
crystals and briefly comment on the MS gate in Sec. VII.
As shown in Fig. 8(a), the ODF is applied using a pair of

lasers with frequencies ωODF;ωODF þ μr that are incident
on the crystal at angles of �θODF with respect to the x-y
plane. The interference of these two beams results in a
traveling-wave optical lattice along the direction of their

difference wavevector, which in this configuration, is along
the z direction and has magnitude Δk ≈ 2kODF sin θODF.
Here, kODF is the laser wave-vector magnitude, which is
approximately the same for each laser. This lattice results in
the ions experiencing a spatially varying ac Stark shift [80],
which is described by the Hamiltonian

ĤODF ¼
XN
j¼1

F0

Δk
sinðΔkðz0;j þ ẑjÞ − μrtÞσ̂zj; ð21Þ

where F0 is the magnitude of the ODF, and the z position of
the jth ion is decomposed into its equilibrium position z0;j
and the displacement from this equilibrium described by
the operator ẑj. For small-amplitude displacement, i.e.,
Δkhẑ2ji1=2 ≪ 1, ĤODF can be approximated as

ĤODF ≈
XN
j¼1

F0 cosðμrtþ ϕjÞẑjσ̂zj; ð22Þ

where ϕj ¼ −Δkz0;j. Here, we have neglected the leading-
order term proportional to sinðμrtþ ϕjÞσ̂zj. This term does
not contain the position operator and hence leads to a
position-independent but time-varying ac Stark shift on the
ions. However, this Stark shift is rapidly oscillating since μr
is typically chosen close to the frequency of a drumhead
mode, and hence this term can be neglected.
The phase difference

Δϕjk ¼ ðϕj − ϕkÞmod 2π ð23Þ

is a key quantity that strongly affects the interaction of pairs
of ions j, k via the ODF. This quantity is trivially zero for a
monolayer, whereas it provides a new control knob in
bilayer crystals. While the mean intralayer phase difference
is zero, the mean interlayer phase difference,

Φ ¼ −Δkðzu − zlÞ mod 2π; ð24Þ

can be controlled by tuning the ODF angle θODF. Here, zu,
zl are the mean z positions of ions in the upper and lower
layers, respectively. In a similar spirit, we note that experi-
ments using linear strings of a small number of ions have
demonstrated the ability to tune the ODF phase at the
location of individual ions by adjusting the spacing of
the ions through changes in the trap frequency [81,82].
In Sec. V, we will demonstrate how tuning Φ provides a
way to control the relative strength and phase of interlayer-
to-intralayer interactions in this system.

C. Assessing bilayer quality

Although visual inspection of crystals such as in Fig. 4
suggests that clean bilayer crystals are produced, an
operationally meaningful way to assess bilayer quality is

(a)

(b) (c)

(d) (e)

FIG. 8. Quantum control of bilayer crystals. (a) Single spin and
entangling operations: Microwaves and Raman beams can be
used, respectively, for implementing global and layer-selective
single-spin (ion) rotations. The layer-resolved readout of the spin
states is conceptually indicated using two side-view objectives.
Spin-spin entanglement is enabled by an ODF that is generated
by a pair of lasers intersecting the crystal at angles �θODF to the
x-y plane. Their interference creates a moving optical lattice that
leads to spin-motion coupling, which in turn mediates effective
spin-spin interactions. Bilayer crystals present a new control
knob, viz., the mean interlayer ODF phase difference Φ
[Eq. (24)], which is a function of θODF and can be used to tune
the relative interlayer-to-intralayer couplings. (b)–(e) Histogram
of the ODF phase difference Δϕjk [Eq. (23)] between all pairs of
ions j, k in the crystal shown in Fig. 4 and for different values of
θODF. Sharp peaks in the histograms in panels (b) and (c) show
that each layer effectively appears as a near-perfect plane at
grazing incidence of the ODF lasers (θODF ∼ 1°).
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to examine how well the ODF lattice resolves the individual
layers. In Figs. 8(b)–8(e), we plot the histogram of phase
differences Δϕjk for all pairs of ions j, k in the crystal
shown in Fig. 4, and for different values of θODF.
We consider two cases, viz., where θODF is small [∼1°,
Figs. 8(b) and 8(c)] and where it is larger [∼10°, Figs. 8(d)
and 8(e)]. In turn, for each case, two panels are shown,
which correspond to the mean interlayer phase difference
Φ ¼ 0° and 180°, obtained by fine-tuning θODF. For
θODF ∼ 1°, the histograms are sharply peaked, implying
that the thickness of each layer is small compared to the
effective wavelength of the ODF lattice, λODF¼2π=ðΔkÞ¼
π=ðkODF sinθODFÞ. On the other hand, for θODF ∼ 10°, λODF
is 10 times smaller, and the thickness of each layer is
comparable to this wavelength, leading to a broad
distribution of intralayer as well as interlayer phase
differences. Indeed, the histograms of z positions
shown in Figs. 2(c), 2(f), and 4(c) are made by assuming
θODF ¼ 1° and using a bin size of λODF=20. In particular,
each layer in Fig. 4(c) is spread over approximately only
one bin, showing that the layer thickness is only around
λODF=20 for the anharmonic bilayer crystal in Fig. 4.
The above analysis implies that operating the ODF lasers

at grazing incidence to the x-y plane ensures that the crystal
can be approximated as a clean bilayer system to a very
good extent. Hence, we will use θODF ∼ 1° in the following
to demonstrate applications of bilayer crystals.

V. PROSPECTS FOR QUANTUM INFORMATION
PROCESSING

We now turn to an illustration of some of the capabilities
offered by bilayer crystals in the context of quantum
information processing. We first show how to generate
tunable bilayer Ising models by controlling the ODF
incidence angle. Subsequently, we discuss how the inter-
layer-to-intralayer coupling strength can be dynamically
tuned by simultaneous coupling to two normal modes.
Later, we present a route to engineer chiral spin-exchange
models by the addition of a transverse field. We also
discuss a number of potential applications enabled by these
capabilities.

A. Tunable bilayer Ising models

1. Control via ODF angle

As a first example, we consider the ODF interaction
when the difference frequency μr is tuned close to the c.m.
mode frequency ωc:m: so that the effect of other modes can
be neglected (see Sec. VI C and Appendix E 1). The unitary
operator for evolution under ĤODF for any time t can be
expressed as a product of a spin-motion unitary and an
effective phonon-mediated spin-spin unitary [83]. At spe-
cific “decoupling” times τ where jδjτ ¼ 2nπ; n ¼ 1; 2;…,
with δ ¼ μr − ωc:m:, the spin-motion unitary returns to the
identity operator, and only the spin-spin unitary acts on the

system. At these times, the state of the system can be
written as jψðτÞi ¼ ÛssðτÞjψð0Þi, where

ÛssðτÞ ¼ exp

�
−iτ

X
j≠k

Jzzjkσ̂
z
jσ̂

z
k

�
ð25Þ

is the spin-spin unitary and the exact expression for Jzzjk is
given in Appendix E 1. For our present discussion, the
crucial observation is that coupling to the c.m. mode gives,
to an excellent approximation,

Jzzjk ∝ Cjk cosðΔϕjkÞ; ð26Þ

where Cjk is a positive constant for δ > 0 and Δϕjk is the
phase difference defined in Eq. (23). Therefore, the
interlayer coupling can be tuned in magnitude and sign
by adjusting the ODF angle θODF, which is the knob that
controls the mean interlayer phase difference Φ, Eq. (24).
As a result, the interlayer coupling can be tuned from
antiferromagnetic (Jjk > 0) to ferromagnetic (Jjk < 0) and
also effectively turned off (Jjk ≈ 0) by changing θODF.
We explore these tunable bilayer Ising models using a

protocol inspired by Ref. [31] and depicted in Fig. 9(a).
Starting in j↓i, the spin state of all the ions is initialized at

(a)

(b)

FIG. 9. Tuning interlayer Ising interactions via ODF in-
cidence angle. (a) Protocol to measure spin precession
induced by Ising interactions as a function of the initial
rotation angle θ. (b) Fraction of total ions (in both layers) in
j↑i at the end of this protocol versus θ, for different values of
the interlayer phase difference Φ [Eq. (24)], which, in turn,
is set by θODF. In particular, the four values of Φ listed can
be realized by setting θODF ≈ 0.81°; 0.61°; 1.21°; 1.01° for
Φ ¼ 0°; 90°; 180°; 270°, respectively. Here, we use the crystal
shown in Fig. 4, ODF magnitude F0 ¼ 2.4 × 10−23 N, and
evolution time τ ¼ 750 μs, and we tune the ODF close to the
c.m. mode, such that δ=ð2πÞ ¼ 1=τ ≈ 1.33 kHz.

BILAYER CRYSTALS OF TRAPPED IONS FOR QUANTUM … PHYS. REV. X 14, 031030 (2024)

031030-13



different angles in the x-z plane by a global rotation about
the y axis by a variable angle θ. Subsequently, the system is
evolved under the ODF interaction for a time τ. Finally,
the population in j↑i is measured after rotating the state by
90° about the x axis.
For 4Jτ ≪ 1=

ffiffiffiffi
N

p
, where J is a typical value of Jjk, the

dynamics of each spin can be understood as a precession
around the z axis induced by the mean field established by
the N − 1 spins. The final rotation converts the accumu-
lated phase into a population difference between the j↑i
and j↓i states. The probability to find ion j in j↑i at the end
of the sequence is given by

Pjðj↑iÞ ≈
1

2
½1þ sin ðτBj cos θÞ sin θ�; ð27Þ

where Bj cos θ is the precession frequency for ion j with
Bj ¼ 2

P
k;k≠jðJkj þ JjkÞ. The expression (27) is derived in

Appendix E 2. The mean field established by the N − 1
spins is evident in the form of the precession frequency.
Furthermore, since the dynamics is mediated by the c.m.
mode, Bj has the approximate dependence

Bj ∝ ð1þ cosΦÞ: ð28Þ

In Fig. 9(b), we plot the average probability, Pðj↑iÞ ¼P
j Pjðj↑iÞ=N, of finding the ions in j↑i versus the

initialization angle θ for different ODF angles θODF, which
are characterized here by the value of Φ that they establish.
Although we have described a mean-field picture above to
facilitate a qualitative discussion, the curves in Fig. 9(b)
have been computed using exact expressions provided in
Appendix E. For Φ ¼ 0°, the intralayer and interlayer Jjk
coefficients are positive, and pairs of ions interact in
essentially the same manner regardless of which layer
the two ions belong to. This interaction leads to a strong
modulation of Pðj↑iÞ as a function of θ. In contrast, for
Φ ¼ 180°, the interlayer coefficients are negative. As a
result, a net cancellation of intralayer and interlayer
couplings occurs in the expression for the Bj of each
ion, leading to strong suppression of the mean-field
dynamics. In the case of Φ ¼ 90° and 270°, the interlayer
coupling is essentially turned off, and ions in one layer
barely couple to ions in the other layer, which results
in a reduced precession of the ion spins compared to the
Φ ¼ 0° case.

2. Dynamic control via two-tone ODF

The tunability offered by control over θODF is attractive,
but, at the same time, it requires mechanical adjustment
between experiments to adjust the incidence angle. Here,
we describe a technique to optically tune the relative
strength of interlayer-to-intralayer coupling on the fly by
exploiting the normal-mode spectrum of bilayer crystals.

Specifically, we propose to modulate one of the ODF
lasers in order to produce two tones at ωODF þ μr;0 and
ωODF þ μr;1. Interference with the other ODF laser, which
is maintained at ωODF as before, now leads to two optical
lattices, each with effective wavelength Δk but with differ-
ent beat frequencies μr;0; μr;1. The resulting ODF
Hamiltonian is given by

ĤODF ≈
XN
j¼1

½F0 cosðμr;0tþ ϕjÞ þ F1 cosðμr;1tþ ϕjÞ�ẑjσ̂zj;

ð29Þ

where F0 and F1 are the effective forces induced by the two
ODF lattices [84]. In this setting, we propose tuning μr;0
and μr;1 close to the c.m. and breathing modes, respectively,
such that jδ0j ¼ jδ1j ¼ δ, where δ0 ¼ μr;0 − ωc:m: and
δ1 ¼ μr;1 − ωbre. This choice ensures that the spin-motion
couplings induced by the c.m. mode and the breathing
mode decouple at the exact same times. Furthermore,
since ωbre − ωc:m: ≳ 2π × 100 kHz, and typical values of
δ ∼ 2π × 1 kHz, the effects of the two ODF lattices can be
independently evaluated, accounting for only the c.m.
(breathing) mode for the first (second) lattice (see
Appendix E 3 for a detailed discussion). For the crystal
shown in Fig. 4, there are only five modes lying between
the breathing and c.m. modes, and their effects can be
neglected in a first approximation since they are all well
separated by tens of kilohertz from these two modes.
The resulting spin-spin coefficient at a decoupling time
is of the form

Jzzjk;tot ¼ Jzzjk;c:m: þ Jzzjk;bre

∝
F2
0

δ0
Cjk þ

F2
1

δ1
Djk; ð30Þ

where Cjk and Djk are constants, given by Eq. (E16).
Hence, Jzzjk can be tuned on the fly by controlling the
relative strength of the two tones that determines F1=F0,
as well as by changing the signs of δ0, δ1 (which are
constrained to be equal in magnitude).
In Fig. 10(a), we illustrate some examples of the

coupling matrices Jzzjk (multiplied by the evolution time τ)
realizable using the two-tone ODF described above. We
tune θODF so that Φ ¼ 0, and we first consider the case
when δ0, δ1 > 0. When F0 ≠ 0, F1 ¼ 0, only the c.m.
mode contributes to the spin-spin interaction as in Sec. VA,
leading to positive coefficients between pairs of ions,
irrespective of whether the ions belong to the same or
different layers. A clear demarcation is visible in the matrix
between the coupling coefficients for ion pairs belonging to
the layer structure (square region approximately spanning
ion numbers 0–160 on each axis) and for pairs where at
least one ion belongs to the scaffolding structure of the
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crystal (see Fig. 4). In contrast, when F0 ¼ 0, F1 ≠ 0, only
the breathing mode mediates the spin-spin interaction, and
its mode structure (see Fig. 7) is clearly visible in the
resulting coupling matrix: The intralayer couplings, which

are on the diagonal blocks, are positive (orange) since all
ions in a single layer move in phase. On the other hand, the
interlayer couplings, which are on the off-diagonal blocks,
are negative (blue) since ions in different layers move out of
phase. An advantage of using the breathing mode is that the
scaffolding ions have negligible participation in this mode,
leading to nearly vanishing couplings between the layer
ions and the scaffolding ions.
The different forms of the coupling matrices generated

by the c.m. and breathing modes can be further exploited by
simultaneously applying F0 and F1 as shown in the lower
two panels of Fig. 10(a). When F0 ¼ F1 and δ0, δ1 > 0, the
interlayer couplings induced by the c.m. and breathing
modes strongly cancel each other. As a result, the coupling
matrix of the bilayer crystal resembles that of two mono-
layer crystals that do not interact with each other. In
contrast, if δ0 > 0 and δ1 < 0, the intralayer couplings
cancel, resulting in a bilayer with almost exclusively
interlayer interactions.
More generally, the relative strength of interlayer-to-

intralayer coupling can be continuously tuned by control-
ling the ratio F1=F0 and the sign of δ1. As a measure of this
relative strength, we define

Jrel ¼
2kJu;dkF

kJu;ukF þ kJd;dkF
: ð31Þ

Here, the notation kMkF denotes the Frobenius norm of a

matrix M, defined as kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jk jMjkj2
q

. The matri-

ces Jα;β appearing in Eq. (31) are submatrices of the
couplings Jjk between ion pairs, where the first (second)
ion belongs to layer α (β), with α; β∈ fu; dg and u, d
denoting the upper and lower layers. In Fig. 10(b), we
plot Jrel versus F2

1=F
2
0 for δ1 > 0 (blue) and δ1 < 0

(orange). The two curves together demonstrate that the
relative interlayer-to-intralayer coupling strength can be
tuned over 2 orders of magnitude using the two-tone ODF
technique described here.

3. Potential applications: Tunable bilayer Ising models

The ability to entangle, and verify entanglement
between, spatially separated ensembles is an important
requirement for several quantum information processing
tasks [46]. Here, we discuss a number of potential appli-
cations enabled by implementing Ising interactions in
bilayer crystals.
Generation of metrologically useful entangled states.—

The Ising interactions studied in Secs. VA 1 and VA 2 can
be used for the preparation of spin-squeezed states relevant
for quantum metrology applications [85–87]. The tech-
niques described here can be used to prepare a variety of
spin-squeezed states with varying degrees of intralayer and
interlayer entanglement. These states can range from a pair
of approximately decoupled spin-squeezed states in each

(a)

(b)

FIG. 10. On-the-fly control of intralayer and interlayer couplings
using two-tone ODF. (a) Matrix of ion-ion couplings Jzzjkτ generated
by a single tone coupling only to the center-of-mass mode, a single
tone coupling only to the breathing mode (“bre”), and two tones F0

and F1 of equal strength (F0 ¼ F1) respectively coupling to each
mode with identical detunings (“c:m:þ bre”) and with opposite
detunings (“c:m: − bre”). The ion numbers are assigned based on
whether an ion belongs to the top layer, the bottom layer, or the
“scaffolding” structure, which respectively correspond to the ranges
0–81, 82–163, and 164–199. (b) Relative strength of interlayer-to-
intralayer coupling,quantifiedby themetricJrel [Eq. (31)], versus the
relative weights of the two tones F2

1=F
2
0, for identical (c:m:þ bre)

and opposite (c:m: − bre) detunings. Here, we use the crystal shown
in Fig. 4, ODF magnitude F0 ≈ 3.39 × 10−23 N, detunings
jδ0j ¼ jδ1j ≈ 2π × 1.226 kHz, and τ ¼ 2π=jδ0j ≈ 816 μs.
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layer to the preparation of a global spin-squeezed state
involving ions in both layers. Such states may be relevant
for distributed quantummetrology [88,89] as well as for the
realization and characterization of two-mode squeezing,
Einstein Podolsky-Rosen (EPR) correlations, and EPR
steering [43,90–93].
Continuous variable quantum information.—The

capability to use large numbers of ions also enables the
use of the collective spin in each layer as a resource of long-
lived and controllable continuous variables, as previously
done with atomic vapors [94]. This mapping potentially
opens a path to store and retrieve quadrature information
transmitted by phonons between different layers of ion
arrays, as well as new avenues in quantum simulation.
Variational quantum circuits for quantum information

and metrology.—The ability to dynamically tune the relative
interlayer-to-intralayer coupling strength may enable the
realization of a diverse gate set for variational quantum
circuits [23,24,95,96]. For instance, it was recently shown
that the ability to implement both intra-ensemble and
global entangling operations in a two-ensemble system is
highly desirable for variational multiparameter quantum
metrology [97]. The bilayer system may enable the study
of such variational quantum metrology protocols on a large
system consisting of hundreds of spins, where classical
optimization is challenging.
Quantum information scrambling.—Applying a π pulse

only in one of the layers can allow for a change of the sign
of the interlayer interactions for the performance of time-
reversal protocols that are relevant for the study of scram-
bling of quantum information [98] and simulation of analogs
of quantum gravity [99]. For instance, the ability to realize
similar intralayer couplings in both layers and simultane-
ously vary the interlayer interaction may be useful for
quantum simulation of wormhole teleportation and operator
spreading in controllable trapped-ion arrays [100,101].

B. Spin-exchange models

1. Chiral spin exchange

The presence of a transverse field driving the spins
can modify the Ising interaction induced by the ODF into a
flip-flop interaction where pairs of spins exchange their
excitations. As we discuss below, in bilayer crystals, the
spin exchange can be made asymmetric; i.e., the exchange
coefficients produced by a uniform spin-dependent force
along the z direction [Fig. 8(a)] can be complex, and hence
the transfer of excitation from ion j to k and the reverse
transfer from k to j can occur with opposite phases.
Because of the broken directional symmetry, we refer to
this process as a chiral spin-exchange interaction.
We consider the addition of a uniform transverse

field with Rabi frequency B0 that resonantly drives the
j↓i ↔ j↑i transition of the ions. This drive can be
implemented straightforwardly with global microwave
addressing of the crystal. In an interaction picture taken

with respect to the free Hamiltonian of the spins and the
normal modes, the interaction Hamiltonian has the form

Ĥint ¼
XN
j¼1

ℏB0

2
σ̂xj þ

XN
j¼1

F0 cosðμrtþ ϕjÞẑjðtÞσ̂zj: ð32Þ

To see the emergence of a spin-exchange model, it is useful
to work in a spin space rotated about the y axis. The spin
operators in this rotated space are given by

τ̂zj ¼ −σ̂xj ; τ̂xj ¼ σ̂zj: ð33Þ

Assuming that the ODF difference frequency μr is tuned
sufficiently far from any of the normal modes and provided
that the transverse field B0 is sufficiently strong (see
Appendix F), the normal modes can be adiabatically
eliminated to arrive at an effective spin-exchange model
(denoted “ff” for flip-flop) of the form

Ĥff
eff=ℏ ¼

XN
j¼1

Hj

2
τ̂zj þ

XN
j;k¼1;j≠k

Jffjkτ̂
þ
j τ̂

−
k : ð34Þ

The derivation of Ĥff
eff is described in Appendix F.

Below, we focus on the form of the coefficients,
especially Jffjk.
In order to discuss the coefficients, it is useful to

introduce a normalized cross-amplitude Un;jk ≥ 0 and a
relative motional phase φn;jk for every pair of ions j, k, that
characterize their motion along z due to the nth normal
mode. These quantities are defined by the equation

Un;jkeiφn;jk ¼ uznjðuznkÞ�
⟪urnjurn⟫

: ð35Þ

In addition, we introduce the detuning δn ¼ μr − ωn of
the ODF difference frequency μr from the frequency of the
nth normal mode. The coefficients for the j ¼ k terms
appearing in Eq. (34) can then be expressed as

Hj ¼
X
n

F2
0l

2
0nUn;jjB0

2ℏ2ðδ2n − B2
0Þ
; ð36Þ

where l0n is the rms zero-point displacement of the nth
normal mode given by Eq. (19). This expression assumes
that the normal modes are initially in their quantum
mechanical ground state, and an additional factor of
ð2n̄n þ 1Þ appears for each mode when it is instead in a
thermal state with mean occupation n̄n (see Appendix F).
On the other hand, the Jffjk terms are independent of
temperature and have an expression of the form

Jffjk ¼ Jffjk;r þ iJffjk;i; ð37Þ
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where the real and imaginary parts are given by

Jffjk;r ¼
X
n

F2
0l

2
0nUn;jkδn

2ℏ2ðδ2n − B2
0Þ
cosðDn;jkÞ;

Jffjk;i ¼ −
X
n

F2
0l

2
0nUn;jkB0

2ℏ2ðδ2n − B2
0Þ
sinðDn;jkÞ: ð38Þ

Here, we have introduced a phase Dn;jk defined as

Dn;jk ¼ Δϕkj − φn;jk; ð39Þ

where Δϕkj is the ODF phase difference between ions k
and j, as described in Eq. (23).
Equation (37) shows that the spin exchange is not

symmetric, i.e., Jffjk ≠ Jffkj, whenever Jffjk;i is nonzero.
From Eq. (38), a nonvanishing Jffjk;i for an ion pair j, k
requires that B0 ≠ 0 (which is, in any case, a requirement
for deriving Ĥff

eff ) and additionally requires Dn;jk ≠ 0; π for
at least one mode n. As seen from Eq. (39), the latter
requirement can be satisfied in two ways: by coupling
to a mode with a complex eigenvector such as, e.g., the
mode 385 shown in Fig. 7, for which φn;jk ≠ 0; π; or by
controlling the ODF angle θODF so that the mean phase
difference Φ between ions j, k in different layers of the
bilayer crystal is different from 0 or π.
Here, we take the second approach described above

and demonstrate how tuning θODF can be used to engineer
complex Jffjk coefficients. We assume that μr is tuned close
to the highest-frequency drumhead mode, which is the
breathing mode, so the contribution of other modes can be
neglected. This is a reasonable assumption because we can
arrange for δbre ¼ μr − ωbre and B0 to be a few kilohertz
while the next mode occurs around 50 kHz below the
breathing mode. Under these conditions, the intralayer
spin-exchange coefficients are approximately real and
positive, whereas the interlayer spin-exchange coefficients
are approximately of the form

Jffjk ∝ −δbre cosðΦÞ þ iB0 sinðΦÞ; ð40Þ

for ions j and k, respectively, belonging to the upper and
lower layers. This expression has opposite signs compared
to Eq. (38) because of the breathing mode’s interlayer
motional phase φbre;jk ¼ π.
Figure 11 shows some of the possible structures of the

spin-exchange coupling coefficients as Φ is changed by
controlling θODF. For eachΦ, the couplings between all ion
pairs are shown as a scatter plot in the Jffjk;r − Jffjk;i complex
plane. For each pair, the markers are color coded according
to whether the ions j, k belong to the same layer (“intra”) or
different layers (“inter”), or have at least one ion from the
scaffolding structure (“others”). As mentioned previously,
the breathing mode does not have significant support in the

scaffolding ions, and hence couplings to ions outside the
two layers are small, as seen in all the panels of Fig. 11.
The intralayer couplings are predominantly real since all
ions in a single layer experience approximately the same
ODF phase; the small imaginary components arise because
of the deviations of each layer from being a perfect plane.
On the other hand, the interlayer couplings can be con-
tinuously tuned all the way from being predominantly real
(Φ ¼ 0°) to almost purely imaginary (Φ ¼ 90°), highlight-
ing the variety of chiral interlayer couplings possible in
bilayer crystals. We note that although the values of
the individual pairwise couplings shown here are rather
small (Jffjk ∼ 2π × 4 Hz), the interaction is all-to-all, and
hence the collective dynamics can occur at appreciable
rates (NJffjk ∼ 2π × 800 Hz).

FIG. 11. Chiral spin-exchange models. Scatter plot of the spin-
exchange coefficients Jffjk [Eq. (37)] in the complex plane, for all
pairs of ions j, k, when the ODF difference frequency is tuned
close to the breathing mode and an additional transverse field is
present. For each pair, the markers are color coded according
to whether the two ions belong to the same layer (blue circles) or
different layers (green circles), or have at least one ion that is not
part of either layer (red circles). The four panels show the variety
of spin-exchange couplings possible for different interlayer phase
differences Φ, which can respectively be realized by setting
θODF ≈ 0.81°; 0.71°; 0.61°; 1.32°, resulting in Φ ¼ 0°; 45°; 90°;
135°. Here, we use the crystal shown in Fig. 4, ODF magnitude
F0 ¼ 6 × 10−23 N, detuning δbre=ð2πÞ¼8 kHz, and transverse
field strength B0=ð2πÞ¼4 kHz. We note that, for these param-
eters, the ratio ðδbre − B0Þ=ðNJÞ ≈ 5.4, where J is a typical value
of the coupling, and hence the system is not deep within the
validity regime for adiabatic elimination of the breathing mode
(see Appendix F), which will therefore be excited to some extent
in an experiment.
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2. Potential applications: Spin-exchange models

Spin-exchange interactions emerging in the presence of a
transverse field can potentially open several further direc-
tions for the applications of bilayer crystals. We discuss
some promising avenues below.
Exploring Hilbert space with long-range interactions.—

The anharmonicity of the trapping potential results in a c.m.
mode that is not spatially homogeneous, leading to nonuni-
form spin-spin interactions across the crystal. The inhomo-
geneity opens the possibility to enjoy full connectivity but in
a model that breaks the permutation symmetry of the spins,
thus allowing the system to explore the full Hilbert space
without the speed bounds intrinsic to short-range models.
This feature could be an interesting avenue for the generation
of fast quantum information scrambling [102]. On the
other hand, the emergence of an energy gap from the
collective interactions can impose energy penalties between
the various sectors, enabling studies of Hilbert space
fragmentation [103] under appropriate initial conditions.
Quantum simulation of orbital magnetism.—The differ-

ent layers constitute an additional degree of freedom that
could be used for the simulation of iconic models of orbital
magnetism in solid-state materials possessing motional,
orbital, and charge degrees of freedom [104]. The Jordan-
Wigner transformation can be used to map the spin
operators in each layer onto fermionic creation and anni-
hilation operators describing interacting electrons that hop
on a momentum-space lattice. The orbital degree of free-
dom, which arises in solids from the shape of the electron
cloud, could be encoded in the layer degree of freedom.
The implementation of orbital levels in ion crystals could
provide crucial insights on strongly correlated physics
relevant for understanding a variety of phenomena in
solids, such as metal-insulator transitions, high-temperature
superconductivity, and colossal magnetoresistance [104].
The charge degree of freedom that makes electrons

respond to applied magnetic fields could be engineered
by taking advantage of the chiral (complex) interlayer spin-
exchange coefficients. The latter can be visualized as a
complex hopping amplitude between the layers via the
so-called Peierls substitution [105]. The chiral exchange
emulates an effective magnetic field or, more precisely, an
analog of the Aharonov-Bohm phase which is proportional
to the enclosed magnetic flux when a particle circulates
around a closed loop between the layers. Effective mag-
netic fields and complex-valued hopping amplitudes have
been implemented on ultracold atom-based platforms by
using laser-assisted tunneling in an optical superlattice
[106], Raman and optical transitions [107–110], Floquet
driving [111,112], and dipolar exchange interactions
between Rydberg atoms [113,114]. They have also been
realized using alternative platforms such as superconduct-
ing qubits [115] and photonic [116] or phononic [117]
systems. The implementation of a synthetic gauge field
in ion crystals will open exquisite opportunities to

study new forms of topological states of matter under
controllable conditions.
Spintronics.—In the context of spintronics, the complex

interlayer exchange coefficients demonstrated in Sec. V B 1
may enable the simulation of models with antisymmetric
DM interactions [118]. We note that the Hamiltonian (34)
can be written as

Ĥff
eff=ℏ ¼

XN
j¼1

Hj

2
τ̂zj þ

XN
j;k¼1;k<j

Jffjk;r
2

ðτ̂xj τ̂xk þ τ̂yj τ̂
y
kÞ

þ
XN

j;k¼1;k<j

Jffjk;i
2

ðτ̂xj τ̂yk − τ̂yj τ̂
x
kÞ: ð41Þ

While the second term in the first line corresponds to an XY
model, the second line corresponds to an antisymmetric
DM interaction Djk · ðτ̂j × τ̂kÞ with a DM vector Djk along
the z axis in spin space.

VI. PRACTICAL CONSIDERATIONS

In this section, we briefly analyze a number of factors
that can potentially limit the fidelity of quantum protocols
using bilayer crystals. We also outline possible strategies to
mitigate adverse affects.

A. Off-resonant light scattering

The spin-dependent force F0 is realized using lasers that
couple the spin states of each ion to higher electronic states
via dipole-allowed transitions [80]. Consequently, the same
lasers also induce scattering of photons into free space,
which can preserve the spin state (Rayleigh scattering) or
flip it (Raman scattering) [79]. This scattering rate Γ is
proportional to the laser intensity I used to generate F0. For
a fixed F0, the required laser intensity I is approximately
proportional to 1=θODF. In this work, we assume a small
ODF angle θODF ∼ 1° in order to ensure a nearly uniform
ODF phase across a single layer of the bilayer crystal.
Typical applications use a larger incidence angle,
θODF ∼ 10°. Consequently, the expected decoherence due
to off-resonant light scattering at θODF ∼ 1° is expected to
be 10 times larger than under typical operating conditions.
However, we note that the required laser power is approx-
imately the same at smaller θODF, although the required
intensity is greater. This is because, for a range of θODF
values, the laser can be focused to a cross section
approximately proportional to θODF in order to address
the entire crystal, which causes the intensity to scale as
1=θODF for fixed laser power.
Nevertheless, a number of strategies can be used to

decrease Γ for a fixed F0. One possible route is to
parametrically amplify the spin-dependent force, which
will allow for the use of lower laser intensities for the same
F0 [119–121]. We note that, although this technique has
been demonstrated for 1D chains and 2D crystals of ions, its

SAMARTH HAWALDAR et al. PHYS. REV. X 14, 031030 (2024)

031030-18



generalization to a bilayer or a general 3D crystal requires
further careful considerations, which we leave to future
work. A second option is to simply operate at a higher
θODF, which reduces the required I at the cost of reducing
the bilayer quality. Moreover, drawing parallels to
previous studies on the areal density of single-plane
crystals [64], it is possible that the inclusion of higher-
order anharmonic terms in the trapping potential, such as
a C6 term, may further reduce the thickness of each
individual layer and hence allow for larger θODF without
compromising the bilayer quality. We note, however, that
the optimal C6 term magnitude may be large; never-
theless, the trap electrode structure can be designed to
boost the anharmonic terms. Finally, we note that
decoherence due to spontaneous emission can also be
mitigated by implementing spin-dependent forces with
large detunings from resonant transitions, which will
however require high laser intensities [79].
We note that even in the worst-case scenario where

decoherence precludes operation at small θODF, quantum
protocols with bilayer crystals at θODF ∼ 10° may still be of
great value. Although the ODF lattice no longer “resolves”
the individual layers, i.e., the ODF phase is not homo-
geneous across each layer [see Fig. 8(b)], they are never-
theless resolvable as two distinct layers in the side-view
readout; hence, the capability to detect and characterize
bipartite correlations and entanglement in spatially sepa-
rated ensembles is unaffected. Furthermore, it may be
possible to realize effective collective interactions, even
if the underlying interactions are inhomogeneous, by taking
advantage of gap protection ideas or dynamical decoupling
protocols [122,123].

B. Thermal motion

Residual thermal motion of ions can impact quantum
protocols in trapped-ion systems in multiple ways. Here,
we focus on three effects that may be particularly important
for bilayer crystals.

1. Lamb-Dicke confinement

Spin-motion coupling protocols require the rms ampli-
tude of thermal motion of the ions along the ODF lattice
direction (z axis) to be small compared to the lattice
wavelength 2π=Δk. The quantity to assess the confinement

is the parameter ηj ¼ Δk
ffiffiffiffiffiffi
hẑ2j

q
i, for which we require

ηj ≪ 1 [124]. For a crystal in thermal equilibrium at
temperature T,

hẑ2ji ¼
X3N
n¼1

l20;n
juznjj2

⟪urnjurn⟫
ð2n̄nðTÞ þ 1Þ; ð42Þ

where n̄nðTÞ ¼ ½expðℏωn=ðkBTÞÞ − 1�−1 is the thermal
occupation of mode n. For the same T, the typical ηj

values are larger for a bilayer than for a single-plane crystal.
This increase can be attributed primarily to the E ×B
modes, which have high thermal occupation on account
of their low frequencies and acquire a nonzero mode fraction
along the z direction in the bilayer case, as shown in Fig. 5.
Nevertheless, a small ODF angle of θODF ∼ 1° ensures that
ηj ≲ 0.1 for T ≈ 450 μK (n̄c:m: ≈ 5), which corresponds
to the Doppler cooling limit of the drumhead modes, and
ηj ≲ 0.035 for T ≈ 50 μK (n̄c:m: ≈ 0.3), which corresponds
to the temperature after near ground-state cooling of the
drumhead modes [125]. We note that these estimates assume
parameters relevant for recent NIST experiments and that all
the modes are in thermal equilibrium at the specified T,
although these temperatures have only been measured on the
drumhead modes. In single-plane crystals, theE ×B modes
are typically poorly cooled and at much higher temperatures
of the order of 10 mK. However, we discuss prospects for
their near ground-state cooling in Sec. VI B 4.

2. Mode-frequency fluctuations

Thermal motion associated with low-frequency E × B
modes leads to large-amplitude position fluctuations of
the ions about their equilibrium positions. In turn, these
fluctuations lead to spectral broadening of the drumhead
modes [62], which reduces the fidelity of quantum proto-
cols. In a purely harmonic trapping potential, the c.m. mode
is an exception as its frequency is insensitive to position
fluctuations because the ion displacements due to this mode
are all identical, which decouples this mode from the
anharmonic effects arising from the Coulomb interaction.
However, the preparation of clean bilayers requires an
explicit anharmonic component in the trapping potential, in
which case the ion displacements due to the c.m. mode are
no longer uniform across the crystal. Hence, the c.m. mode
frequency is also sensitive to ion position fluctuations in
anharmonic traps. To estimate the extent of spectral broad-
ening, we use a procedure similar to the “thermal snapshot”
analysis carried out in Ref. [62]. For the crystal and trap
parameters chosen in Fig. 4, and assuming T ≈ 50 μK, we
estimate that the frequency fluctuations in the c.m. and
breathing modes can be around 10 Hz and 130 Hz,
respectively. We note that at T ≈ 50 μK, although the
drumhead and cyclotron modes are near their ground state,
the E ×B modes have considerable thermal occupation
much larger than unity owing to their low frequencies.
Further cooling of the E ×B modes to lower their thermal
occupation to n̄n ∼Oð1Þ can bring these frequency fluc-
tuations to the 1-Hz level. A detailed discussion of this
analysis and its extensions to general 3D crystals with large
numbers of ions will be presented in a future work.

3. Higher-order spin-motion coupling

The spin-motion coupling (21) induced by the ODF is
approximately linear in the ion displacements [Eq. (22)]
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only if the ions are confined sufficiently deep in the Lamb-
Dicke regime, i.e., Δkhẑ2ji1=2 ≪ 1, where hẑ2ji is a function
of temperature as given in Eq. (42). The adverse affects of
spin-motion coupling terms of order ẑ2j or higher may
become important when the modes are at a nonzero
temperature. These terms lead to residual spin-motion
entanglement at decoupling times and also modify the
effective spin-spin coupling coefficients, and they can be
particularly detrimental if the sum or difference frequencies
of two normal modes accidentally land on or near reso-
nance with the ODF difference frequency μr. Compared to
typical single-plane crystals, accidental resonances may be
more pronounced in bilayer crystals for two reasons. First,
the finite mode fraction of the E × B modes along the z
direction can lead to accidental resonances because of
drumhead-E ×Bmixing. Second, the increased bandwidth
of the drumhead modes can result in the sum frequency of
two low-frequency drumhead modes falling close to μr,
which is typically tuned close to one of the high-frequency
drumhead modes. Our preliminary estimates suggest
that for θODF ∼ 1°, and for a temperature T ≲ 50 μK, the
corrections to the effective spin-motion and spin-spin
coupling coefficients arising from the ẑ2j terms are small.
However, a critical assessment of the detrimental effects of
higher-order terms in the ODF interaction, and identifying
conditions under which they can be suppressed, is ulti-
mately a task for experiments, given the vast number of
normal modes intrinsic to large trapped-ion crystals.

4. Prospects for near ground-state cooling

The above practical considerations suggest that near
ground-state cooling of all the modes of the crystal may be
critical for implementing high-fidelity quantum protocols
with bilayer crystals. Efficient Doppler cooling, and even
near ground-state cooling of the drumhead modes using
electromagnetically induced transparency (EIT), has
already been demonstrated for single-plane crystals [125].
Theory and numerical work can explore whether these
techniques are readily applicable to bilayer and general 3D
crystals. The high-frequency cyclotron modes are effi-
ciently Doppler cooled to occupations of a few quanta
[71,126], and moreover, their high frequency and small
orbits make them effectively decoupled from the other
mode branches [62,65]. The main challenge is to design
efficient Doppler and sub-Doppler cooling schemes for the
low-frequency E ×B modes. In single-plane crystals,
Doppler and sub-Doppler cooling of the E × B modes is
complicated by the crystal rotation, which makes access to
the planar normal modes challenging. Recent numerical
studies have shown that it is possible to sympathetically
cool the E ×B modes of single-plane crystals to around
1 mK by resonantly coupling them with low-frequency
drumhead modes [127]. Although such a technique may
not directly apply to a bilayer crystal, where the two

branches have a frequency gap, a resonant coupling can still
be achieved by the application of suitable “axialization”
potentials [128,129]. Furthermore, an advantage of bilayers
that is absent in single-plane crystals is the nonzero
component of the E × B modes along the z direction,
which opens a route to address them without coupling to
the crystal rotation. As a result, it may be possible to use
EIT or other sideband cooling techniques to directly cool
the E ×B modes close to their motional ground state. We
note that sideband cooling has previously been demon-
strated on the E ×B mode of a single ion in a Penning
trap [130]. Another factor that may facilitate the cooling of
these modes is that the E ×B modes rapidly equilibrate
with each other [65]. As a result, efficient cooling of
even a small part of the E ×B mode branch may lead
to strong sympathetic cooling of the entire branch.
Alternatives to laser cooling may also help to mitigate
ion position fluctuations, such as the use of corotating
optical tweezers for pinning certain ions and stabilizing the
crystal structure [131].

C. Frequency resolution

For large ion crystals, frequency crowding of modes can
occur because of the large number of modes and limited
bandwidth. A large spectral isolation of the modes is
desirable for a number of quantum protocols to ensure
that residual spin-motion coupling from nearby spectator
modes is small. For the crystal shown in Fig. 4, the
breathing mode is the highest-frequency drumhead mode,
and it is well separated by approximately 50 kHz from the
next drumhead mode. The separation of the c.m. mode
from its nearest mode is smaller, around 15 kHz. However,
for sufficiently small detunings from the c.m. mode, such as
the value δ0=ð2πÞ ¼ ðμr − ωc:m:Þ=ð2πÞ ∼ 1 kHz used in
Sec. VA, the residual spin-motion coupling arising from
nearby modes can be neglected in a first approximation.
Moreover, the impact of frequency crowding can, in
principle, be mitigated by frequency and amplitude modu-
lation of the spin-dependent force. Such techniques have
been shown to enable high-fidelity generation of targeted
entangled spin states in the presence of crowded mode
spectra in small crystals [132–134].

VII. CONCLUSION AND OUTLOOK

The key contribution of our work is the demonstration of
a path for quantum information processing with structured
3D crystals of large numbers of trapped ions, which have
hitherto been restricted to 1D chains or planar 2D crystals.
Although our work has focused specifically on the reali-
zation and applications of a bilayer crystal, we note that it
may be possible to extend the ideas presented here to
realize multilayered trapped-ion crystals. As an illustration,
Fig. 12 shows an equilibrium trilayer crystal consisting of
N ¼ 500 ions in the presence of an anharmonic trapping
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potential. The realization of multilayered crystals beyond
bilayers opens further opportunities to use trapped-ion
systems to probe exotic 3D phenomena, such as the chiral
transport of spin excitations across a multilayer array of
atoms [135].
The capabilities discussed in Sec. V by no means

constitute an exhaustive toolbox for quantum information
processing with bilayer crystals. For instance, our examples
here focused on the realization of various types of effective
spin-spin couplings. By probing the system away from the
decoupling times, or by coupling (near) resonantly with a
normal mode, it is also possible to realize and explore
a variety of spin-boson models [136,137]. The bilayer
configuration can greatly enrich the variety of spin-boson
models that can be studied, by allowing for layer-resolved
state preparation and readout, as well as the realization
of chiral spin-motion coupling by manipulating the laser
incidence angle or by coupling to chiral drumhead modes.
Moreover, since the mode can be brought closer to
resonance for simulating spin-boson models, the spin-
motion coupling can be larger and can thus speed up the
simulation, thereby mitigating the adverse impacts of
off-resonant light scattering and higher-order terms in
the ODF interaction, which were discussed in Sec. VI.
We also note that the layer-resolved addressing allows
the study of dissipative protocols and open quantum
systems [138–141], e.g., by engineering dissipation in
one layer and coupling it to the second layer, which
undergoes purely coherent evolution. Furthermore, it is
possible to introduce individual-ion addressing in this
system by exploiting the staggered positions of ions in
the different layers to address individual ions using tightly
focused laser beams along the z axis or by using optical
setups based on deformable mirrors [142].
In this work, we explored the use of the light-shift gate to

engineer an optical dipole force. An alternative strategy is

to employ a MS gate, which can be configured in two
different ways, leading to different spin-motion couplings
[143,144]. This method enables us to, e.g., couple orthogo-
nal quadratures of a single normal mode to the same
component of the collective spin in each layer or, alter-
natively, couple a different component of the collective spin
in each layer to the same quadrature of a single normal
mode. Furthermore, along with an appropriate set of single-
qubit rotations, one of the MS gate configurations can
lead to dynamics that is effectively independent of ϕj or,
equivalently, the ion positions. As a result, uniform
entangling operations can be performed using this gate
for any ion crystal structure without loss of contrast, and
they can also be performed at larger incidence angles in
order to suppress spontaneous emission errors. The MS
gate could therefore be an additional powerful tool for
expanding the possible quantum operations in both bilayer
and larger 3D crystals in Penning traps.
More broadly, 3D crystals in Penning traps enable us to

use a well-established approach, viz., engineering spin-
motion coupling using 1D optical lattices along the z
direction, to open up new opportunities in quantum
information processing. At the same time, complementary
efforts are required from a non-neutral plasma physics
perspective to understand the limits for the preparation
and control of large ion crystals for quantum protocols.
For instance, our work motivates the need to rigorously
understand the role of anharmonicity in the realization
of clean multilayered crystal configurations and their
long-term stability, which may be impacted by processes
such as background gas collisions. Furthermore, given the
adverse effects of thermal motion, our work also under-
scores the urgent need to design efficient Doppler and
sub-Doppler cooling techniques for full 3D cooling of
large ion crystals, which may be possible using efficient
molecular dynamics simulations [145]. Finally, we
hope that our work can inspire analogous research into
preparing structured 3D crystals in rf Paul traps, where
anharmonic trapping potentials have previously been
employed to produce more uniformly spaced 1D chains
of trapped ions [146].
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APPENDIX A: ALGORITHM USED FOR
EQUILIBRATING THE CRYSTAL

For an N ion crystal, the equilibrium configuration
corresponds to determining the 3N position coordinates
of the crystal that minimize the total potential energy
given by U ¼ P

j eϕj, where eϕj is given by the sum
of Eqs. (2) and (6). In Ref. [61], a local gradient descent
optimization was employed to find the equilibrium
configuration of single-plane crystals, starting from a
seed lattice inspired by experimental observations.
However, this approach is not directly applicable for
large 3D crystals, where it is challenging to identify the
best crystal configuration because of the sheer number
of local minima and plateaus in which a solution can get
trapped. Therefore, in this work, we employ a variation
of a global optimization technique called the Basin-
Hopping algorithm.
A pseudocode for our minimization routine is described

in Algorithm 1. Standard basin hopping involves repeatedly
(i) nudging the current local minimum xold, (ii) determining
a new local minimum xnew starting from the nudged
solution using a gradient-based method, and (iii) choosing
between the current and new local minima based on a fixed,
preset temperature T using a Metropolis-Hastings accep-
tance step. Here, we use the Newton-conjugate gradient
(NCG) method as our local minimization routine. The
standard basin-hopping method has been shown to be
advantageous in landscapes where a single large valley is
additionally modulated by several local peaks and valleys. In
order to account for finer structure in these local peaks and
valleys, we modify the standard basin-hopping algorithm to
include a cooling (annealing) schedule on the temperature T,
which controls both the nudge step size and the acceptance
probability for the new local minimum. Our routine stops
when the annealing temperature reaches 0, and the solution
xbest with the lowest potential energy U is returned as the
equilibrium configuration.
In order to account for the potential energy landscape,

the nudge scale α is chosen to be different along the x, y,
and z directions, such that αx ¼ αy ¼ αz=β, where β is
given by Eq. (3). The value of αz is chosen such that for a
large range of temperatures, the acceptance probability is,
on average, 0.5.
We tested our algorithm against a simpler approach

where a new minimum is accepted only if it is lower in
energy than the current minimum, which corresponds
to standard basin hopping at T ¼ 0. We observed that,
for the same number of local minimization calls, both

algorithms reach configurations with similar final ener-
gies; however, our algorithm leads to a 3-times reduction
in the variance of the final energies attained. In other
words, it is more consistent in finding final configurations
with lower energy.

APPENDIX B: ANHARMONICITY
IN PENNING TRAPS

Here, we study the dependence of the dimensionless
coefficient C4 on the various trap parameters to understand
how optimal C4 values can be achieved in practice. For
cylindrical trap electrodes with perfect azimuthal sym-
metry, the potential arising from the electrodes can be
expressed at a point x, y, z in the trap in terms of Legendre
polynomials Pn as [64]

VðrÞ ¼
X∞
n¼0

V2nðr=dÞ2nP2nðz=rÞ; ðB1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the distance from the trap

center (taken as the origin), d is a characteristic trap length
scale (typically the trap electrode radius), and V2n; n ¼
1; 2;… are coefficients of the multipole expansion with
units of voltage. Here, we assume that the odd terms in the
voltage are heavily suppressed and hence can be ignored,
which can be ensured by appropriate trap design and
applied voltages. The V2n coefficients can be related to
the voltages applied at the trap electrodes through a linear

ALGORITHM 1. Modified Basin-Hopping For the minimiza-
tion, we used nsteps ¼ 20, Tstart ¼ 0.048, αx ¼ 1 and the position
vector r and energy U are made dimensionless by performing the

scaling r ¼ x · l0,U → E0Ũ where l0 ¼ ð2kee2mω2
z
Þ1=3, E0 ¼ 1

2
ml20ω

2
z .

The notation NCGðŨ;xÞ refers to a Newton-Conjugate Gradient
method applied using Ũ as the cost function to be minimized and x
as the initial point.

xnew ← Unif⊗3Nð− ffiffiffiffi
N3

p
;

ffiffiffiffi
N3

p Þ;
α ← Nudge Scale;
xnew ← NCGðŨ;xnewÞ;
xbest ← xnew for T ← linspaceðTstart; 0; nstepsÞ do

xold ← xnew;
xnew ← NCGðŨ;xnew þN⊗3Nð0; αTÞÞ;
if expððŨðxoldÞ − ŨðxnewÞÞ=TÞ > Unifð0; 1Þ then

if ŨðxnewÞ < ŨðxbestÞ then
xbest ← xnew;

end
else

xnew ← xold;
end

end
return xbest
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calibration [147–149]. The potential (B1) can be explicitly
written up to fourth order as

Vðρ; zÞ ¼ V0 þ
V2

d2

�
z2 −

1

2
ρ2
�
þV4

d4

�
z4 − 3z2ρ2 þ 3

8
ρ4
�
;

ðB2Þ

where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from the trap axis.

Comparing Eqs. (6) and (B2), we can relate

C4 ∝
N2=3V4

d4m5=3ω10=3
z β5=3

: ðB3Þ

This finding suggests that to achieve a desired value of C4

keeping ωz; β fixed, the required V4 can be decreased by
either increasing the number of ions or by decreasing the
trap size.
Furthermore, since the bilayer regime is characterized

not by the value of β but by the relative value β=βc, it is
reasonable to fix β=βc instead of just β. Since βc ∝ 1=

ffiffiffiffi
N

p
,

the scaling of C4 then becomes superlinear in N, i.e.,

C4 ∝
N3=2V4

d4m5=3ω10=3
z ðβ=βcÞ5=3

; ðB4Þ

suggesting that the required V4 can be greatly reduced
by working with larger ion crystals. For instance, for the
same C4, a crystal withN ¼ 1000 ions requires an 11-times
smaller V4 compared to an N ¼ 200 ion crystal.
Preliminary numerical simulations that we have performed
indeed provide evidence for a superlinear reduction with N
of the V4 values required to achieve clean bilayer crystals,
although the numerically observed scaling exponent is
somewhat smaller than 3=2.

APPENDIX C: THE STIFFNESS MATRIX

The stiffness matrix K of the system is a 3N × 3N real,
symmetric matrix that can be written as nine submatrices in
the following form:

K ¼

0
B@

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

1
CA; ðC1Þ

where Kαγ for α; γ ∈ fx; y; zg is an N × N matrix, such that
Kαγ ¼ Kγα. Additionally, each submatrix is symmetric in
the ion indices, i.e., Kαγ

jk ¼ Kαγ
kj .

The element Kαγ
jk can be determined from the Hessian of

the potential energy as

Kαγ
jk ¼ 1

2

∂
2U

∂αj∂γk
; ðC2Þ

where U ¼ P
j eϕj is the total potential energy of the

system and eϕj includes the harmonic and anharmonic
terms given by Eqs. (2) and (6). The contribution to K from
the Coulomb interaction leads to cross terms between ions,
while the contribution of the external potential is only to
terms of the form Kjj. Thus, it is useful to rewrite K as

Kαγ
jk ¼ Cαγ

jkð1 − δjkÞ þ
�
Eαγ
j −

X
i≠k

Cαγ
ik

�
δjk; ðC3Þ

where the C matrix denotes the off-diagonal contribution
due to the Coulomb interaction, and E denotes the con-
tribution due to the external field. The explicit expressions
for the different elements are found to be as follows:

Cαγ
jk ¼ ke2

2r3kj

�
δαγ − 3

ðαk − αjÞðγk − γjÞ
r2kj

�
; ðC4Þ

Exx
j ¼mω2

z

2

�
ðβþδÞþβC4

r2p;0

�
−6z2j þ

9

2
x2j þ

3

2
y2j

��
; ðC5Þ

Eyy
j ¼mω2

z

2

�
ðβ− δÞþ βC4

r2p;0

�
−6z2j þ

9

2
y2j þ

3

2
x2j

��
; ðC6Þ

Ezz
j ¼mω2

z

2

�
1þ βC4

r2p;0
ð12z2j − 6ðx2j þ y2jÞÞ

�
; ðC7Þ

Exy
j ¼ −

3

2
mω2

z
βC4

r2p;0
xjyj; ðC8Þ

Eyz
j ¼ −6mω2

z
βC4

r2p;0
yjzj; ðC9Þ

Ezx
j ¼ −6mω2

z
βC4

r2p;0
zjxj: ðC10Þ

APPENDIX D: DETAILS OF QUANTIZATION
OF NORMAL MODES

As described in Sec. III C, we quantize the normal modes
of the system by assuming an ansatz for the quantized
modes and by showing that it leads to the correct canonical
commutation relations for the ion position and canonical
momentum operators. In this appendix, we demonstrate
this consistency for the x̂; p̂x operators of the ions. A
similar procedure can be used to verify the consistency of
the approach for the ŷ, ẑ coordinates. To quantize the
system, we first find the explicit form of the canonical
momenta, which are given by

px
j ¼

∂L
∂ẋj

¼ mẋj −m
ω0
c

2
yj; ðD1Þ
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which can be written in terms of the complex amplitudes An
of the normal modes using Eq. (8). Making the substitution

An → ân
l0nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟪urnjurn⟫
p ; A�

n → â†n
l0nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟪urnjurn⟫
p ; ðD2Þ

and imposing ½ân; â†n� ¼ 1, we obtain (after some algebraic
simplifications) the commutator for the jth ion,

½x̂j;p̂x
j �¼ im

X
n

l20n
⟪urnjurn⟫

ð2ωnux�nju
x
nj−ω0

cImfuy�njuxnjgÞ:

ðD3Þ

This result is further simplified by making use of the
eigenvalue equations (9): We define j1xj⟫ as ⟪1xj jurn⟫ ¼ uxnj
and left-multiply the second equation of Eq. (9) with ⟪1xj j.
Now, using the fact that ⟪1xj jLjurn⟫ ¼ ω0

cu
y
nj, after simpli-

fication and complex conjugation, we obtain

−⟪1xj jKjur�n ⟫ −mωnω
0
cu

y�
nj ¼ −mω2

nux�nj: ðD4Þ

Multiplying both sides by uxnj and taking the real part gives

mωnω
0
cImfuxnjuy�njg ¼mω2

nuxnju
x�
nj −Refuxnj⟪1xj jKjur�n ⟫g:

ðD5Þ

Substituting this result, alongwith Eq. (19) and⟪urnjEjurn⟫ ¼
mω2

nð1þ RnÞ⟪urnjurn⟫, into Eq. (D3), we can write the
commutator in a more physically intuitive form,

½x̂j; p̂x
j � ¼ iℏ

X
n

mω2
njuxnjj2 þ Re

�
uxnj⟪1

x
j jKjur�n ⟫

�
⟪urnjEjurn⟫

: ðD6Þ

Intuitively, each expression in the sum can be thought to
consist of the energy Ex

jn of the xj; p
x
j degrees of freedom of

ion j in mode n in the numerator, i.e.,

Ex
jn ¼

mω2
njuxnjj2 þ Re

�
uxnj⟪1

x
j jKjur�n ⟫

�
⟪urnjurn⟫

; ðD7Þ

and the total energy of the mode En ¼ ⟪urnjEjurn⟫=⟪urnjurn⟫
in the denominator. In order for the canonical commutation
relation ½x̂j; p̂j� ¼ iℏ to hold ∀ j, we need to show that

X
n

Ex
jn

En
¼ 1∀ j: ðD8Þ

By energy conservation, the total energy in the xj; px
j degrees

of freedom of ion j can be written as

Ex
j ¼

X
n

Ex
jn ¼

X
n

Ex
jn

En
En: ðD9Þ

An equation like Eq. (D9) can be viewed through the lens
of the equipartition theorem, where each degree of
freedom—xj; px

j—of an ion contributes kBT=2 of energy
at temperature T so that the thermal average hEx

ji ¼ kBT,
whereas in the languageof normalmodes, everynormalmode
n ¼ 1;…; 3N has hEni ¼ kBT. In that case, taking a thermal
average of Eq. (D9) immediately proves Eq. (D8).
The above argument is somewhat heuristic because

of our intuition-based interpretation of the energies Ex
jn

and Ex
j . Below, we proceed to rigorously use the equi-

partition theorem to prove Eq. (D8).
We apply the equipartition of energy (i) on the linearized

classical Hamiltonian written in terms of the normal modes,
Eq. (11), and (ii) on the linearized classical Hamiltonian
written in terms of ion positions and canonical momenta,

H ¼ 1

2
⟪δrjKjδr⟫þ 1

2m

X
j

��
px
j þ

mω0
c

2
yj

�
2

þ
�
py
j −

mω0
c

2
xj

�
2

þ ðpz
jÞ2

�
: ðD10Þ

Using these two forms, we find the distribution of energy in
two different sets of variables, xj and An, respectively.
Applying the equipartition theorem with respect to An,

we find that the thermal average of the squared amplitudes
are given by [62]

hjAnj2i ¼
kBT

⟪urnjEjurn⟫
: ðD11Þ

Now, applying the equipartition theorem on Eq. (D10)
with respect to xj, we have hxj ∂H∂xji ¼ kBT or, more explicitly,

kBT ¼
X
n

hjAnj2ið2Re
�
uxnj⟪1

x
j jKjur�n ⟫

�

þmω0
cωnImfuxnjuy�njgÞ: ðD12Þ

This expression on simplifying using Eqs. (D5) and (D11)
directly leads to Eq. (D8). This result gives us the necessary
canonical commutation relation,

½x̂j; p̂x
j � ¼ iℏ; ðD13Þ

and shows that the substitution, Eq. (D2), is a consistent way
to quantize the modes.

APPENDIX E: CALCULATIONS FOR BILAYER
ISING MODELS

The unitary operator describing the evolution under
Eq. (22) is known to be analytically integrable and forms
the workhorse for implementing quantum gates with
trapped ions. In this appendix, we generalize this calcu-
lation for the case of complex eigenvectors and arbitrary 3D
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crystals, which is relevant for the study of Ising models
realized with bilayer crystals (Sec. VA). Subsequently, we
derive an approximate mean-field expression for the j↑i
state population at the end of the protocol described in
Fig. 9(a). Finally, we derive the effective Ising coupling
between ion pairs when two normal modes are simulta-
neously addressed using a two-tone ODF (Fig. 10).

1. Derivation of effective Ising coefficients

The unitary operator ÛodfðtÞ corresponding to the
Hamiltonian (22) can be computed using the Magnus
expansion as

ÛODFðtÞ ¼ exp

�
−
i
ℏ

Z
t

0

ĤODFðt1Þdt1

−
1

2ℏ2

Z
t

0

dt1

Z
t1

0

dt2½ĤODFðt1Þ; ĤODFðt2Þ�
�
:

ðE1Þ

This expression is exact, and not approximate, because,
for this Hamiltonian, higher commutators of the form
½ĤODFðt1Þ; ½ĤODFðt2Þ; ĤODFðt3Þ�� vanish. Computing the
integrals in Eq. (E1), we obtain the familiar form of
ÛODFðtÞ factorized into a spin-motion unitary and a
spin-spin unitary, i.e.,

ÛODFðtÞ ¼ ÛsmðtÞÛssðtÞ; ðE2Þ

where

ÛsmðtÞ ¼ exp

�X
j;n

ðαnjâ†n − α�njânÞσ̂zj
�

ðE3Þ

and

ÛssðtÞ ¼ exp

�
−i
X
j≠k

Θzz
jkσ̂

z
jσ̂

z
k

�
: ðE4Þ

The spin-motion and spin-spin coupling coefficients are
respectively given by

αnj ¼
F0l0nu

z�
nj

2ℏδn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪urnjurn⟫

p e−iϕjðe−itδn − 1Þ; ðE5Þ

Θzz
jk ¼

X
n

F2
0l

2
0nUn;jk

4ℏ2δ2n
ðδnt cosðDn;jkÞ

− sinðδntþDn;jkÞ þ sinðDn;jkÞÞ; ðE6Þ

where δn ¼ μr − ωn is the detuning of the ODF difference
frequency from the nth normal mode and Un;jk;Dn;jk are
defined according to Eqs. (35) and (39). In deriving these
expressions, we have used a rotating-wave approximation

to neglect rapidly oscillating terms at the frequencies
2ωn; 2μr, and μr þ ωn. We note that these approximations
break down when coupling to the low-frequency E × B
modes (which have a nonzero z component in bilayer
crystals), and hence these expressions need to be derived in
full generality in that case.
Furthermore, when the ODF is tuned close to a particular

mode n, such that jδnj ≪ jδkj ∀ k ≠ n, the effects of the
other modes k can be neglected in analyzing the dynamics
under ÛODFðtÞ. In this single-mode approximation, we can
observe that the spin-motion coupling vanishes (αnj ¼ 0)
at special “decoupling” times τ satisfying δnτ ¼ 2pπ
for p∈Z. At these times, the effective dynamics under
ÛODFðtÞ appears as an effective spin-spin interaction with
coefficients

Θzz
jkðτÞ ¼

F2
0l

2
0nUn;jk

4ℏ2δn
τ cosðDn;jkÞ: ðE7Þ

In particular, if the mode mediating the interactions is
predominantly real (In ≈ 0), such as the center-of-mass or
breathing mode, then

Θzz
jkðτÞ ≈

F2
0l

2
0nUn;jk

4ℏ2δn
τ cosðΔϕjkÞ; ðE8Þ

which demonstrates the proportionality to cosðΔϕjkÞ high-
lighted in Eq. (26) where Jzzjk ¼ Θzz

jk=τ.

2. Analysis of protocol described in Fig. 9

The probability of finding ion j in j↑i at the end of the
protocol shown in Fig. 9 is given by Pj ¼ ð1þ hσ̂zjiÞ=2,
where hσ̂zji ¼ hψfjσ̂zjjψfi and jψfi is the final state at the
end of the protocol, given by

jψfi ¼ R̂x
π=2ÛODFðτÞR̂y

θj↓i⊗N; ðE9Þ

and R̂α
θ is a rotation about axis α ¼ x, y, z with angle θ. In

writing Eq. (E9), we have assumed that τ is a decoupling
time so that only the Ûss part of ÛODF contributes and the
initial motional state can be ignored for the analysis.
Analytically evaluating hσ̂zji, we find

hσ̂zji¼Sj sinðθÞ;

Sj ¼ Im

	Y
k;k≠j

ðcosð4Θ̃zz
kjÞþ isinð4Θ̃zz

kjÞcosðθÞÞ


; ðE10Þ

where Θ̃zz
jk ¼ ðΘzz

jk þ Θzz
kjÞ=2 is the symmetric part of the

coupling between ions j, k.
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a. Mean-field spin precession

The expression in Eq. (E10) is exact; nevertheless,
it is possible to simplify it in the mean-field limit
4Θ̃zz

kj ≪ 1=
ffiffiffiffi
N

p
to an expression that is physically intuitive.

This can be done by first multiplying and dividing each
term in the product appearing in Eq. (E10) by the
corresponding magnitude, to obtain

cosð4Θ̃zz
kjÞ þ i sinð4Θ̃zz

kjÞ cosðθÞ
¼ exp½i sin−1ðtanð4Θ̃zz

kjÞ cosðθÞÞ�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð4Θ̃zz

kjÞ þ sin2ð4Θ̃zz
kjÞcos2ðθÞ

q
: ðE11Þ

For 4Θ̃zz
kj ≪ 1, the exponential is approximately

exp½4iΘ̃zz
kj cosðθÞ�, while the magnitude is approximately

γkj ¼ 1–8ðΘ̃zz
kjÞ2sin2ðθÞ. Taking the product over ion pairs

leads to

Sj ≈ Im

	
exp

�X
k;k≠j

ið4Θ̃kj cosðθÞÞ
�
�Y

k;k≠j
γkj

�
: ðE12Þ

For 4Θ̃zz
kj ≪ 1=

ffiffiffiffi
N

p
, we note that the product of OðNÞ γkj

factors is approximately 1. As a result, we obtain

Sj ≈ sin

�X
k;k≠j

4Θ̃kj cosðθÞ
�
; ðE13Þ

which when substituted into Eq. (E10) recovers the mean-
field formula (27).

3. Ising coefficients under two-tone ODF

It is straightforward to extend the analysis in
Appendix E 1 to account for the effect of two tones applied
to couple to different normal modes (Sec. VA 2). Similar
to the case of a single tone, the Magnus expansion for
the unitary operator corresponding to Hamiltonian (29)
truncates at second order, giving us the same form for
the unitary as in Eq. (E2) but with modified coefficients
given by

αnj;tot ¼ α0;nj þ e−iϕ0α1;nj; ðE14Þ

Θzz
jk;tot ¼ Θzz

0;jk þ Θzz
1;jk þ

X
n

O
�

1

δ0;nδ1;n
þ 1

δ0;nΔ
þ 1

δ1;nΔ

�
;

ðE15Þ
where αγ;nj;Θzz

γ;jk (γ ¼ 0, 1) are the coefficients obtained
when only the tone γ is applied and ϕ0 is a relative
phase between the two tones. Furthermore, Δ ¼ μr;0 − μr;1
is the difference between the two ODF difference frequen-
cies corresponding to the two tones, and δγ;n ¼ μr;γ − ωn

is the detuning of the tone γ from the nth normal mode.

In Sec. VA 2, we tune the γ ¼ 0, 1 tones close to the c.m.
and the breathing modes, respectively, which we label as
n ¼ 0 and n ¼ 1 for the present discussion. In this case,
jδ0;0j; jδ1;1j ≪ jΔj; jδ0;1j; jδ1;0j, because we typically choose
jδ0;0j ¼ jδ1;1j ∼ 2π × 1 kHz, whereas the c.m. and breath-
ing modes for the crystal used in Fig. 10 are separated by
approximately 2π × 154 kHz. Hence, the error due to the
cross terms shown as small corrections in Eq. (E15) are
expected to be 100 times smaller than the effective
magnitude of Θzz

jk;tot, and hence it can be well approximated
as the sum of the individual spin-spin coupling coefficients
coming from the coupling of tone 0 to the c.m. mode and
tone 1 to the breathing mode. Finally, comparing Eq. (E15)
to Eqs. (E7) and (30), we obtain that

Cjk ¼
l200U0;jk

4ℏ2
cosðD0;jkÞ;

Djk ¼
l201U1;jk

4ℏ2
cosðD1;jkÞ ðE16Þ

since δ0;0 ¼ δ0 and δ1;1 ¼ δ1.
In the case of αnj;tot, similar arguments using the relative

magnitudes of various detunings show that jα0;1jj; jα1;0jj≪1

and hence can be neglected at all times. Furthermore, since
we set jδ0;0j ¼ jδ1;1j, α0;0j; α1;1j vanish at identical decou-
pling times, given by τ ¼ 2pπ=jδ0;0j for p∈Z.

APPENDIX F: DERIVATION OF
SPIN-EXCHANGE MODEL

In this appendix, we derive the effective spin-exchange
model obtained when the ODF interaction is applied in the
presence of an additional transverse field. In an interaction
picture with respect to the free Hamiltonian of the spins and
the normal modes, the interaction Hamiltonian for the
system in the presence of a transverse field that is resonant
with the j↓i → j↑i transition is given by Eq. (32), which
we repeat below for convenience:

Ĥint ¼
X
j

ℏB0

2
σ̂xj þ

X
j

F0 cosðμrtþ ϕjÞẑjðtÞσ̂zj: ðF1Þ

To derive an effective spin model, we expand ẑjðtÞ
according to Eq. (18) and transform it into a second
interaction picture with respect to the HamiltonianP

jðℏB0=2Þσ̂xj . Furthermore, we work in a rotated spin
space for each spin by introducing operators τ̂xj ≡ σ̂zj and
τ̂zj ≡ −σ̂xj to obtain the Hamiltonian

Ĥð2Þ
int ¼

X
j;n

F0l0nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪urnjurn⟫

p cosðμrtþ ϕjÞ

× ðâne−iωntuznj þ â†neþiωntuz�njÞ
× ðτ̂þj e−iB0t þ τ̂−j e

iB0tÞ: ðF2Þ
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Wewrite the cos term as a complex exponential and expand
the product in Eq. (F2). Next, for jB0j ≪ μr;ωn, which is
the case in our work, we can neglect terms rotating at
μr þ ωn � B0 since they are rapidly oscillating. We then
obtain the Hamiltonian

ĤI ≈
X
j;n

F0l0n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪urnjurn⟫

p ðâ†nτ̂þj uz�nje−i½ðδnþB0Þtþϕj�

þ â†nτ̂−j u
z�
nje

−i½ðδn−B0Þtþϕj� þ H:c:Þ; ðF3Þ

where δn ¼ μr − ωn as before. This Hamiltonian forms the
starting point to derive an effective spin model using
effective Hamiltonian theory [150]. In this approach,
starting from a Hamiltonian with harmonic terms of the
form

Ĥ ¼
X
n

ĥne−iνnt þ ĥ†neiνnt; ðF4Þ

and coarse-graining the corresponding unitary operator
over fast timescales ν−1n ; ðνn þ νkÞ−1, we can obtain an
effective Hamiltonian of the form

Ĥeff ¼
X
n;k

νn þ νk
2ℏνnνk

½ĥ†k; ĥn�eiðνk−νnÞt: ðF5Þ

Applying this formula to the Hamiltonian (F3) and assum-
ing that the normal modes are initially in vacuum, so that
â†mân → 0 ∀ m; n, we obtain

Ĥeff=ℏ ¼
X
j

Hj

2
τ̂zj þ

X
j≠k

Jffjkτ̂
þ
k τ̂

−
j

þ
X
j≠k

ðJppjk τ̂þk τ̂þj e−2iB0t þ H:c:Þ; ðF6Þ

where the self-energy and flip-flop coefficients Hj; Jffjk are
given in Eqs. (36)–(38). This effective spin model is valid
providedNJff ; NJpp ≪ jδn � B0j, where Jff , Jpp are typical
values of the respective coefficients. The Jppjk terms corre-
spond to a pair production (pp) and annihilation of spin
excitations. They are given by

Jppjk ¼
X
n

F2
0l

2
0nδnUn;kj

4ℏ2ðδ2n − B2
0Þ
cosðDn;kjÞ: ðF7Þ

However, these terms are oscillating at �2B0. Therefore, if
additionally, NJpp ≪ 2jB0j, these terms are also rapidly
oscillating and can be neglected in a first approximation.
When the modes are at finite temperatures with mean

occupations n̄n, the normal-mode operators cannot be
removed from the self-energy terms, in general.
Specifically, Hj becomes time dependent with contribu-
tions from terms of the form â†mâneiðδn−δmÞt. However, if the

modes in the motional spectrum are well separated, we
can retain only the m ¼ n terms and replace â†nân → n̄n
to obtain

Hj ¼
X
n

F2
0l

2
0nUn;jjB0ð2n̄n þ 1Þ
2ℏ2ðδ2n − B2

0Þ
; ðF8Þ

which is, once again, independent of the mode operators.
On the other hand, the spin-exchange coefficients Jffjk are
independent of temperature and remain unchanged.
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