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ABSTRACT
The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons
make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation commu-
nications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry–Pérot resonators
with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized
multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry–Pérot resonators with a silicon photonic circuit.
This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound–Drever–Hall frequency
locking, while also suppressing unwanted back reflections from the Fabry–Pérot resonator. Using inverse design principles, we design and
fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the
circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface
several reflective off-chip devices.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0174384

I. INTRODUCTION

High-finesse Fabry–Pérot cavities are unmatched in their abil-
ity to deliver high frequency stability, quality factors, and power
handling, making them indispensable for a range of applications.1–6

To build next-generation quantum communications, computation,
and time-keeping systems,7 it will be necessary to bring these per-
formance advantages to compact, integrated platforms.8–10 Using
new wafer-scale fabrication techniques, it is now possible to make
arrays of high-finesse ( > 106) Fabry–Pérot resonators11,12 that have
been used to create sub-Hz linewidth lasers13 and low-noise oscil-
lators.14 However, to harness these performance advantages in
next-generation integrated photonic circuits, we also require strate-
gies to efficiently interface Fabry–Pérot cavities with photonic
circuits.7

The optimal strategy for the integration of Fabry–Pérot res-
onators depends heavily on the intended use case. When a
Fabry–Pérot resonator is used as a stable frequency reference for
high-performance laser systems and optical clocks, the frequency
of the cavity is typically measured using the Pound–Drever–Hall
(PDH) locking technique; in this case, laser light reflected from the
resonator must be separated from the incident wave and detected
with high efficiency to obtain a low noise error signal for feed-
back stabilization of the laser frequency. Hence, implementation of
on-chip PDH locking requires an integration strategy that maps
incident and reflected waves to distinct ports of an optical sys-
tem, permitting direct detection of the reflected wave.7 Ideally,
this same photonic interface would also protect the laser from the
frequency-destabilizing effects of back-scattered light by suppress-
ing back reflections from the Fabry–Pérot resonator.15 An optical
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FIG. 1. (a) Depiction of the traditional setup of a poor man’s isolator mechanism in free space, where PBS denotes a polarizing beam splitter. (b) Illustration of the circuit
interface, which is modeled after the poor man’s isolator and incorporates a the Polarization Splitting Grating Coupler (PSGC). PIC: photonic integrated circuits. (c) Schematic
of PSGC. Light input from arm 1 will be scattered into p-polarized light in free space, and that from arm 2 will be scattered into s-polarized light in free space. (d) Transfer
matrix schematic of the system.

circulator is a natural solution to this problem, as it maps incident
and reflected waves to distinct optical ports while offering some pro-
tection from back reflection. However, the fabrication of isolators
and circulators on photonic chips poses a significant challenge due
to the incompatibility of the requisite magneto-optic materials16–19

with CMOS foundries. To address this challenge, a variety of non-
magnetic isolators20–22 and circulators23 have been demonstrated,
which use time modulation to produce non-reciprocal response.
However, since these non-magnetic isolators and circulators are
complex and can consume a substantial amount of power, they are
not suitable for all applications.

New strategies for passive reflection cancellation could elimi-
nate the need for isolators and circulators in many instances, offering
a path to simpler and more power-efficient integrated photonic cir-
cuits. One such system that is widely used in free-space optics,
colloquially referred to as the poor man’s isolator, uses a quarter-
wave plate and a polarizing beam splitter to separate the incident
and reflected optical waves. This system, pictured in Fig. 1(a), is
frequently used instead of an optical circulator to implement PDH
locking since it offers lower losses and smaller back reflections.
Hence, photonic circuit implementation of such systems could serve
as a practical and efficient interface between Fabry–Pérot cavities
and other free-space systems.

In this paper, we demonstrate a novel reflection cancella-
tion circuit to efficiently interface high-finesse Fabry–Pérot res-
onators with a silicon photonic circuit. This system, whose operating
principle is modeled after the poor man’s isolator, is comprised
of an interferometer that interfaces to two separate ports of an

optimized polarization splitting grating coupler (PSGC) device.24–27

Light entering port 1 of the interferometer is reflected from a fiber-
coupled Fabry–Pérot resonator before exiting port 2 of the inter-
ferometer, yielding spatial separation of the incident and reflected
waves as required for on-chip PDH locking. Using inverse design
principles28,29 to optimize the 2D grating structure, we demon-
strate a peak fiber-to-chip coupling efficiency of 55%, yielding
5.8 dB of loss in a double-pass configuration of the on-chip inter-
face. Interferometric cancellation of reflections produced by this
system also yields >9 dB of back-reflection suppression, which
could help to protect an on-chip laser source from unwanted back
reflections.

Since the degree of back-reflection cancellation was limited
only by the imprecision of the splitting ratio of a directional coupler,
much higher (>30 dB) back-reflection suppression ratios should be
possible with further refinements.

II. SYSTEM CONCEPT
The reflection cancellation circuit that we use to interface a

high-finesse Fabry–Pérot resonator with a silicon photonic circuit
is illustrated in Fig. 1. The operating principle of the photonic
circuit interface [Fig. 1(b)] closely mirrors the free-space imple-
mentation of the poor man’s isolator shown in Fig. 1(a). In the
free-space implementation [Fig. 1(a)], p-polarized light entering
port 1 passes through the Polarizing Beam Splitter (PBS) and is
subsequently converted into right-handed circularly polarized light
after it traverses the Quarter Wave Plate (QWP). Upon reflection
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from the Fabry–Pérot resonator, this right-handed circularly polar-
ized wave is converted to a left-handed circularly polarized wave.
After traversing the QWP a second time, the left-handed circular
polarized wave is converted to an s-polarized wave and is subse-
quently reflected by the PBS to exit port 2 of the system. Hence, this
system protects the laser source from back reflections while yield-
ing spatial separation of the reflected wave as required for on-chip
PDH locking. While we use a Fabry–Pérot resonator in this system
demonstration, this scheme is applicable to any component with a
polarization-independent reflection response.

The circuit implementation of this poor man’s isolator system,
as shown in Fig. 1(b), is comprised of a balanced interferometer
that incorporates an optimized polarization-splitting grating cou-
pler (PSGC) device. In close analogy to the free-space polarizing
beamsplitter, the PSGC maps orthogonally polarized waves into
separate output waveguide arms. The 1(2) input arm of the PSGC
couples to p-polarized (s-polarized) free-space beams that are emit-
ted perpendicular to the grating coupler [Fig. 1(c)]. Light entering
port 1 of this interferometer is split between two waveguides by a
50/50 directional coupler before coupling to the PSGC. Since the
directional coupler induces a π/2 phase difference between the two
waveguides (each having identical path lengths), right-handed circu-
larly polarized light is emitted from the PSGC. Upon reflection from
the Fabry–Pérot resonator (which is assumed to have a polarization-
independent reflection response), the incident right-handed circular
polarization is converted into a left-handed circular polarized wave
before entering the PSGC for a second time. This left-handed circu-
lar polarized wave is projected into orthogonal linear polarizations
by the PSGC, meaning that the waves exiting the PSGC now have
a −π/2 phase difference. This phase difference causes these two
reflected waves to combine within the 50/50 directional coupler,
such that all of the reflected light exits port 2 of the interferom-
eter. Hence, this circuit interface yields spatial separation of the
incident and reflected waves (as required for on-chip PDH lock-
ing) while also producing interferometric cancellation of unwanted
back-reflections from port 1.

Next, we use the transfer matrix formalism to analyze the
response of this circuit interface. By mapping the bi-directional two-
port system in Fig. 1(b) onto an equivalent unidirectional two-port
system in Fig. 1(d), we can readily use 2 × 2 transfer matrices to ana-

lyze the system response. Denoting the incident waves as
⎡
⎢
⎢
⎢
⎢
⎣

a1

a2

⎤
⎥
⎥
⎥
⎥
⎦

and

the out-going waves as
⎡
⎢
⎢
⎢
⎢
⎣

b1

b2

⎤
⎥
⎥
⎥
⎥
⎦

, we can find the system response by

propagating the input waves through transfer matrices associated
with each component of the system, as follows:
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⎡
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⎢
⎢
⎢
⎣

R̃1 0
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⎥
⎥
⎥
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are transfer matrices that describe the

responses of the directional coupler, differential phase delay, PSGC,
and reflective device, respectively.

Here, μ and r =
√

1 − μ2 are the splitting coefficients of the
directional coupler, ϕ is the phase imbalance between two wave-
guide segments, α is the coupling coefficient for PSGC, and R̃1, R̃2
are the complex reflection coefficients for the external device (e.g.,
Fabry–Pérot resonator) for s- and p-polarized light.

Using this model, we make some basic observations about
this reflection cancellation scheme. Assuming that light is only
injected into port 1 (i.e., a2 = 0), we find reflected wave amplitudes
b1 = a1α2

(R̃1r2
− R̃2μ2e2iϕ

) and b2 = −a1α2rμ(R̃1 + R̃2e2iϕ
), from the

above transfer matrix model. From these expressions, we see that
it is possible to null b1 even in cases where R̃1 ≠ R̃2. However,
through experimental studies, we are interested in the case when the
reflection response is identical for both polarizations. Assuming that
R̃1 = R̃2 in the case of 50% power splitting ratio (r = μ = 1/

√

2), we
see that it is possible to null b1 while directing all of the output light
b2 in the case when ϕ = 0. Note, however, that the back-reflection
suppression ratio, ∣ b2

b1
∣
2
=

4μ2
(1−μ2

)

∣1−2μ2
∣
2 , is sensitive to the splitting coef-

ficient μ. For example, if μ deviates from 1/
√

2 by 14% due to
fabrication errors, the back-reflection suppression ratio will decrease
to 10 dB from perfect cancellation. Hence, tight control of the power
splitting ratio is necessary to obtain a high degree of back-reflection
cancellation.

III. RESULTS
To realize this circuit interface, we fabricate a silicon photonic

circuit from a Silicon-On-Insulator (SOI) wafer having a 250 nm
thick silicon layer and a three micron silica layer under cladding.
We use e-beam lithography and a reactive-ion etch (etch depth of
80 nm) to define both waveguide and grating structures, as shown
in Fig. 2(a). To accurately define the desired structure during e-
beam exposure, we implemented proximity effect correction,30 and
through dose tests using hydrogen silsesquioxane (HSQ), an e-beam
dose of 1050 μC/cm2 yielded the optimal performance. For details of
the fabrication process, see Ref. 31. The PSGC device is a key com-
ponent of this system, as the efficiency of circuit interfaces hinges on
the performance of this grating coupler.

To optimize the efficiency of the PSGC, we employ an inverse
design algorithm28 using the LUMOPT package with Lumerical
Finite-Difference Time-Domain (FDTD) software.32 Through the
design of the grating coupler, the parameter space of numerical
optimization is reduced by imposing a mirror symmetry plane, as
indicated by the diagonal white line in Fig. 2(b). We modified the
LUMOPT package in order to impose such a mirror symmetry. This
symmetry plane ensures that the grating coupler produces the same
scattering response when excited from either input port. The PSGC
structure [shown in Figs. 2(a) and 2(b)] is designed for vertical cou-
pling to SMF-28 optical fiber with a Gaussian beam waist radius
of 5.2 μm. Figure 2(b) shows the Finite-Difference Time-Domain
(FDTD) simulation of the Gaussian field profile produced by the
PSGC device layer when illuminated by a TE-like guided optical
mode.

To evaluate the optical performance of the fabricated PSGC
structures, a cleaved optical fiber (SMF-28) is vertically aligned
with the PSGC to enable fiber-to-chip coupling efficiency and
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FIG. 2. (a) Side view: The layered structure of the PSGC is presented, with a single mode optical fiber positioned perpendicularly to the PSGC. Top view: SEM image of the
PSGC. The pattern is symmetrical over the white line. (b) FDTD simulation showcases the scattered field 3 μm above the Si device layer, prompted by an incident waveguide
mode from the bottom port. (c) Empirical measurement of the coupling efficiency and crosstalk of the PSGC. Efficiency is characterized as the transmission from arm 1 to the
fiber, while crosstalk is defined as the transfer from arm 1 to arm 2. (d) Zoom in of the crosstalk data presented in (c). (e) Scatter plot indicating the performance among ten
distinct PSGCs fabricated on the same chip.

cross-talk measurements. The optical measurements shown in
Fig. 2(c) reveal a fiber-to-chip coupling efficiency of 55% (2.6 dB)
at a wavelength of 1550 nm over a 23 nm bandwidth. The crosstalk,
defined as the direct coupling from arm 1 to arm 2, displays a con-
trast exceeding 60 dB at 1550 nm. Figure 2(e) shows the measured
peak efficiency and 3 dB bandwidth of ten gratings fabricated on
the same chip, revealing high efficiency (>50%) and broad opera-
tional bandwidth (>20 nm) for the majority of fabricated gratings.
Adding reflective elements underneath PSGC will further help to
increase efficiency to nearly 100%, avoiding light scattered into the
substrate.33

Next, we use this optimized PSGC device to demonstrate the
proposed reflection cancellation circuit, and we use this system
to interface an off-chip Fabry–Pérot resonator with our circuit.
Figure 3(a) shows a schematic of the experimental apparatus that is
used to assess the performance of the reflection cancellation circuit.
The fiber circulator facilitates the measurement of system reflection,
enabling the characterization of the back-reflection suppression
ratio. Through these studies, we use a segment of SMF-28 fiber as
a fiber umbilical to flexibly interface the grating coupler to differ-
ent reflective devices. This fiber umbilical contains a polarization
controller (PC2) that compensates for any polarization distortion
occurring within the fiber. The state of the polarization controller is
chosen to ensure that the fiber umbilical produces a Jones matrix of
identity (i.e., does not alter the polarization state). Hence, the fiber
umbilical is a convenient way to couple to different devices under
test (DUT) to evaluate the performance of this circuit interface in
various scenarios.

We begin by using a commercial fiber mirror (FM) as a ref-
erence device (Thorlabs P5-SMF28ER-P01-1) to examine the per-
formance of the reflection cancellation circuit. The reflection and
transmission responses produced by the fiber mirror are shown in
Fig. 3(b). Power transmission from port 1 to port 2, denoted as ∣S12∣

2,
reveals a signal attenuation of −5.8 dB. Since the light exiting port
2 passes through the grating coupler twice, with 2.6 dB of loss per
pass, and the fiber mirror has a typical reflection loss of 0.6 dB, the
total transmission loss of 5.8 dB is in good agreement with the antic-
ipated transmission loss of 5.8 dB. Measurements of the reflection
response from port 1, denoted as ∣S11∣

2, reveal a back-reflection of
−14.8 dB from a fiber mirror with near-unity back-reflection effi-
ciency. Since the reflection efficiency, ∣S11∣

2, is 9 dB lower than the
transmission efficiency, these measurements reveal a back-reflection
suppression ratio of 9 dB, validating the operating principle of this
reflection cancellation circuit.

Replacing the fiber mirror with a fiber Bragg grating cav-
ity (FBGc), we next examine how the reflection response of this
Fabry–Pérot resonator is imprinted on the response of this multi-
port system. This FBGc is a commercial fiber Bragg defect cavity
(Teraxion C56514-0005) that consists of two fiber-Bragg grating
mirrors that support a standing-wave mode. The cavity produces a
single resonance at a 1550 nm center wavelength having a linewidth
of 85 MHz and a Q-factor of 2.3 × 106. Figure 3(c) displays the
reflection, ∣S11∣

2, and transmission, ∣S12∣
2, measurements produced

when this FBGc is coupled to the circuit. We see that the reflection
response of the resonator is clearly imprinted on the transmis-
sion response, as required for the PDH-locking of a laser to the
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FIG. 3. On-chip, poor man’s isolator demonstration. (a) Measurement setup for the characterization of the reflection cancellation circuit. DUT: device under test and PD: photo
detector. (b) and (c) Measurement results with fiber mirror (FM) and fiber Bragg grating cavity (FBGC) as DUT. (d) μFP array. (e) Fiber GRIN lens collimator assembled to
match μFP cavity mode. (f) Measurement results with fiber-GRIN-μFP as DUT.

cavity mode. A transmission efficiency of −5.8 dB is achieved,
while the cancellation circuit reduces back-reflection to −15.8 dB,
corresponding to a back-reflection suppression ratio of 10 dB.

Next, we couple this circuit to a compact, ultra-high finesse
micro-Fabry–Pérot (μFP) resonator that could serve as a chip-
integrated frequency reference for future compact optical clock
technologies. This μFP cavity [see Fig. 3(d)] is one of an array
of air-gap resonators that was created using a wafer-scale reflow
fabrication process described in Ref. 11. Through independent cav-
ity ring-down spectroscopy measurements, the μFP of interest was
found to have an optical linewidth of 60 kHz and an optical Q-factor
of 3.2 × 109. This resonator was designed to support a relatively
large Gaussian-beam diameter of 240 μm to reduce the impact of
thermal noise imparted by the mirror coating on the cavity mode.
As a demonstration of the potential for integration of a μFP cavity
with the chip, the 10.4-micron fiber mode was efficiently coupled
to the 240 micron resonator mode using a compact (1 × 0.5 mm2)
GRIN lens.

During transmission measurements [see Fig. 3(f)], the laser
sweeps through the cavity resonance over a time interval that is
much shorter than the cavity ringdown time, transforming the res-
onant response of the cavity into a ringdown response. This-type
of ringdown response is due to the interference between energy
transiently stored in the cavity and the transmitted laser light.34–37

The transmission response, ∣S12∣
2, reveals the ringing cavity response

atop a transmission response showing a 7 dB average transmis-
sion loss, consistent with a small amount of excess loss produced
by fiber-GRIN coupling to the resonator. Back-reflection, ∣S11∣

2, of

−17 dB shown in Fig. 3(f) corresponds to a back-reflection sup-
pression ratio of 10 dB, demonstrating the suppression of unwanted
back-reflections using such reflection cancellation circuits. As dis-
cussed in Sec. IV, a higher level of integration could be achieved
by eliminating the fiber umbilical and directly bonding the GRIN-
cavity assembly to the grating coupler.

Building on these results, higher grating coupler efficiencies
and lower optical losses could be realized by creating a highly reflec-
tive back-plane underneath PSGC. Moreover, further improvement
of the back-reflection suppression ratio could be achieved by using
tunable directional couplers and phase shifters, which are readily
available in Si photonics foundry processes,38 to tune the parameters
of the circuit to obtain a much higher (>30 dB) degree of reflection
cancellation.

IV. DISCUSSION AND CONCLUSION
In conclusion, we have demonstrated a circuit interface to effi-

ciently integrate off-chip components with photonic circuits. This
circuit interface maps incident and reflected waves to distinct ports
of an optical system, permitting direct detection of the reflected wave
for PDH locking to the cavity mode.7 The PSGC, a key component
of this system, was numerically optimized to realize a peak efficiency
of 55% (2.6 dB), enabling an insertion loss as low as 5.8 dB and a
back-reflection suppression ratio of >9 dB using this system. The
demonstrated back reflection suppression ratio was limited by the
imperfection of the splitting ratio of the 50/50 directional coupler.
Hence, much higher (>30 dB) back-reflection suppression ratios
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should be possible with further refinements. For example, the incor-
poration of a tunable directional coupler and an active phase shifter
would not only permit much higher back reflection suppression but
would also use such circuit interfaces to efficiently couple to a range
of off-chip photonic components.

Looking beyond Fabry–Pérot resonators, such reflection can-
cellation circuits can also serve as versatile interfaces for many
other off-chip systems, such as cavity optomechanical systems,
vapor cells, sensors, and quantum atomic systems. Such inter-
faces also possess the potential for integration within a visible light
system, which offers notable advantages for atomic and molecu-
lar optics applications. This can be achieved by using a different
waveguide material, such as silicon nitride, and redesigning the
PSGC. Leveraging inverse design algorithms empowers us to impose
constraints on the minimal feature, thus facilitating the design of
structures that are both efficient and amenable to fabrication. Fur-
thermore, the reduced index contrast of silicon nitride, compared
with silicon, also helps alleviate the feature size concern for visible
wavelengths.

Furthermore, we can adapt this system for devices exhibit-
ing polarization-dependent reflection response by substituting the
50/50 directional coupler and balanced passive delay with a tun-
able coupler and tunable phase shifter. Even when the reflection
response is not identical for both polarizations (R̃1 ≠ R̃2), provided
μ2
=

R̃1
R̃1+R̃2e2iϕ , the reflected wave energy can be directed into port 2,

thereby ensuring a null back reflection for port 1. This broadens the

FIG. 4. Schematic of co-packaged μFP with PIC. (a) Small PSGC with a GRIN
lens to help with mode matching. (b) Numerically optimized large PSGC to match
μFP mode directly.

scope of its application, extending it to a more general case of diffuse
scattering, as is often obtained in applications, such as LIDAR. Note
that the cancellation process relies on the presence of two modes
in free space, which, in the case above, correspond to two differ-
ent polarizations. If either R̃1 or R̃2 were to be zero, it would result
in vanishing ∣S12∣

2. While the reflection cancellation scheme that
we have demonstrated utilizes two polarizations of light, this same
concept can be implemented using only a single polarization, pro-
vided that two spatial modes of the same polarization are used to
implement reflection cancellation.

While we utilized a fiber umbilical to couple off-chip compo-
nents through this study, a higher degree of integration could be
achieved by directly attaching components to the grating coupler.
For example, by attaching a GRIN lens to the PSGC [Fig. 4(a)], a
compact μFP of the type used here could be integrated into the sys-
tem to enable compact new optical clock technologies.7 Moreover,
with further computational power, it should be possible to design a
PSGC with a larger beam spot size that can directly couple to μFP
without the need for a GRIN lens [Fig. 4(b)].

Passive reflection cancellation schemes of the type demon-
strated here could eliminate the need for isolators and circulators
in many instances, offering a path to simpler and more power-
efficient integrated photonic circuits. Hence, this work could pave
the way for heterogeneous integration between integrated photonic
circuits and high-finesse Fabry–Pérot resonators that are required
for next-generation quantum communications, computation, and
time-keeping systems.
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