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Integrated nonlinear photonics is a versatile engine to generate 
and control electromagnetic radiation, opening new applica-
tion directions and enabling fundamental studies. Second- and 

higher-order nonlinear susceptibilities now form the basis of 
many photonics technologies; a good example is harmonic-1 or 
difference-frequency2 generation, which realizes laser sources from 
the ultraviolet to the infrared. In particular, third-order Kerr pro-
cesses are ubiquitous in photonics due to intensity dependence of 
the refractive index, n = n0 + n2I, where n0 and n2 are the linear and 
nonlinear indices and I is intensity. They enable spontaneous for-
mation of stationary configurations of electromagnetic fields that 
effect conversion of a laser from one colour to another. More gen-
erally, modulation instability that arises from nonlinearity governs 
interesting behaviours in systems, ranging from quantum matter3 to 
desert sand dunes4.

Kerr resonators—optical cavities built from an n2 material—are 
attractive systems for fundamental studies and applications. We 
understand the formation of some patterns and pulse states from 
the Lugiato–Lefever equation (LLE) describing the intraresona-
tor field. A few states stand out among the diverse solution space 
of the LLE5,6: the constant-amplitude flat state energized by a suf-
ficiently weak pump laser; the Turing pattern that emerges when 
the flat state is unstable; and the dissipative Kerr soliton (DKS) that 
is a localized pulse coexisting with—but not emerging spontane-
ously from—the flat state. Microresonator soliton frequency combs7 
have been engineered to support a wide range of applications, 
including optical communication8,9, spectroscopy10 and ranging11. 
Group-velocity dispersion (hereafter GVD or dispersion) engineer-
ing via the cross-sectional waveguide dimensions offers powerful 
control of soliton properties12 and to suppress undesired high-order 
modes13. Moreover, exotic photonic states have been reported using 
unconventional resonator mode engineering14,15.

Here we explore rebalancing the LLE to cause Kerr soliton for-
mation from break-up of the flat state, replacing the Turing pattern. 

We design and fabricate edgeless photonic crystal resonators (PhCR) 
to accomplish this outcome, which are Kerr microresonators with 
their inner wall modified by an azimuthally uniform, nanopatterned 
shape oscillation. The ring geometry imposes the edgeless boundary 
condition on the photonic waveguide, opening the PhCR bandgap—
thus controllably shifting the frequency—for one azimuthal mode. 
This point-defect in the resonance frequencies is a generalization 
of optical dispersion beyond the conventional polynomial orders. 
We program the shift to directly phase-match the soliton with the 
pump laser nearly on-resonance of the pump mode. Moreover, 
this shifts the Turing pattern off-resonance, precluding its forma-
tion. We have realized and explored spontaneous soliton formation 
in wide-ranging experiments, including observing the immediate 
transition from the flat state to the soliton, soliton pulse bandwidth 
control by dispersion engineering through the bulk ring dimensions, 
and ultraprecise measurements of the soliton repetition frequency.

Our work draws on advances in nanophotonics and photonic 
crystal (PhC) devices that provide access to otherwise challenging 
or impossible to achieve phenomena; for example, the exotic refrac-
tive phenomenon16, strong light–matter interactions17 and coupling 
to radiofrequency or phonon modes 18. Moreover, photonic struc-
tures have been demonstrated to suppress19 and enhance20 nonlin-
ear effects, engineer small mode volumes21, create sophisticated 
GVD profiles22,23, realize slow-light effects24 and control resonator 
mode splittings25. Photonic crystal devices are dielectric structures 
with subwavelength spatial periodicity26 that restrict scattering to 
discrete momentum values km = k0 + 2mπ

Λ  not interacting with 
free-space modes, where Λ is the periodicity and m is an integer. 
In a photonic resonator, the bandgap imposes reflective boundar-
ies to confine light as in a Fabry–Perot cavity12. In our experiments 
we instead use the bandgap in an edgeless boundary condition—a 
complete ring without edges—to modify a select mode of the PhCR. 
This condition, combined with an even number of nanopattern 
periods, frequency-aligns the bandgap to a mode of the PhCR27.

Spontaneous pulse formation in edgeless photonic 
crystal resonators
Su-Peng Yu   1,2 ✉, Daniel C. Cole   1,2, Hojoong Jung1,2, Gregory T. Moille3,4, Kartik Srinivasan   3,4 and 
Scott B. Papp   1,2

Nonlinearity in complex systems leads to pattern formation through fundamental interactions between components. With inte-
grated photonics, precision control of nonlinearity explores novel patterns and propels applications. In particular, Kerr-nonlinear 
resonators support stationary states—including Turing patterns—composed of a few interfering waves, and localized solitons 
composed of waves across a broad spectrum. Although Turing patterns emerge from an unstable Kerr resonator with sufficiently 
intense excitation, Kerr solitons do not form spontaneously under constant excitation, making this useful state challenging to 
access. Here we explore an edgeless photonic crystal resonator (PhCR) that enables spontaneous soliton formation in place 
of Turing patterns. We design the PhCR nanopattern for single-azimuthal-mode engineering of a group-velocity-dispersion 
defect that balances Kerr-nonlinear frequency shifts in favour of the soliton state. Our experiments establish PhCR solitons as 
modelocked pulses through ultraprecise optical-frequency measurements. We show that nanophotonics expand the palette for 
nonlinear engineering, enabling new phenomena and light sources.

Nature Photonics | VOL 15 | June 2021 | 461–467 | www.nature.com/naturephotonics 461

mailto:supeng.yu@colorado.edu
http://orcid.org/0000-0003-1348-7447
http://orcid.org/0000-0002-6360-1319
http://orcid.org/0000-0003-2589-3688
http://orcid.org/0000-0001-8290-7076
http://crossmark.crossref.org/dialog/?doi=10.1038/s41566-021-00800-3&domain=pdf
http://www.nature.com/naturephotonics


Articles NATuRe PHOTOnICs

Results
Spontaneous formation of patterns from break-up 
of the flat state is a critical outcome in the LLE, 
∂τψ = −(1+ iα)ψ −

i
2 β∂2θψ + i|ψ|2ψ + F, where τ is time, θ is the 

resonator angular coordinate in the co-moving frame, i is the imagi-
nary unit, ψ is the intraresonator field, − i

2 β∂2θψ  is the dispersion, 
∣ψ∣2ψ is the nonlinearity, F is a travelling-wave pump laser field that 
originates outside of the resonator with a frequency lower than the 
resonator mode by α (see ref. 5 for further details). We study the LLE 
in the Fourier basis. A pattern forms spontaneously by four-wave 
mixing (FWM)5,28, constrained by a balance of the Kerr frequency 
shift Δμ of the comb mode number μ and the phase-mismatch from 
dispersion, 1

2 βμ2. We count the comb modes and the resonator 
modes with respect to the mode closest to the pump laser (hereaf-
ter the pump mode, μ = 0). Importantly, Δμ for each mode depends 
on the intraresonator field according to Δμ = g(2N − ∣aμ∣2)28, where 
aμ is the Fourier decomposition amplitude for μ, g the per-photon 
Kerr shift and N the total photon number. The term g = 1 is a stan-
dard normalization of the LLE. Beginning with the flat state, all 
aμ′ ̸=0 = 0 and Δμ=0 = 2N− N =

1
2Δμ′ ̸=0, where the modes μ′ are 

not pumped. The difference between self- and cross-phase modu-
lation results in a reduced Kerr shift for the pump mode by a fac-
tor of two compared with other modes. This reduced Kerr shift 
enables FWM for the Turing pattern at modes ±μ′, characterized 
by 1

2 β|μ′
|

2
− Δ±μ′ = −Δμ=0. Conversely, the soliton is a collec-

tive state with many μ′ that reach phase matching only at large α 

where the flat-state amplitude is insufficient to support spontane-
ous FWM processes. These phase-matching conditions result in the 
disparate generation behaviours of Turing patterns and solitons. 
We engineer the resonator mode frequency structure to modify  
the phase-matching condition, therefore controlling which state  
can form.

Figure 1 introduces the mode frequency structure of a 
ring resonator and a PhCR, emphasizing how modifying the 
pump mode affects Turing-pattern and Kerr-soliton genera-
tion. Figure 1a–d plots the modal detuning ωμ − (ω0 + D1μ) 
for each μ (where ωμ is the angular frequency and D1 is the 
free-spectral range), showing the cold-resonator modes that cor-
respond to each μ (crosses) and hot resonator modes (open 
circles). The cold resonances follow the integrated dispersion, 
Dint = ωμ − ω0 − D1μ = 1/2 D2 μ2

+ ϵPhC (1− δ(μ)), where ϵPhC 
is the frequency shift of the pump mode and δ(μ) is the Kronecker 
delta function. We further shift the hot resonances by the Kerr shift 
Δμ, indicating phase accumulation from the Kerr effect. At the onset 
of flat-state break-up, Δμ=0 is half that for all other modes. A natural 
phase matching therefore exists for FWM to μ′, where the horizon-
tal dashed line matches the shifted Dint curve (Fig. 1a). Hence the 
Turing pattern emerges, initially composed of pump and ±μ′ modes 
(blue dots). The stationary soliton state (Fig. 1b) of the ring resona-
tor involves Kerr frequency shifts to balance dispersion across many 
equidistant comb modes (blue dots). The horizontal line in Fig. 1b 
indicates the pump laser; however, as the pump mode Kerr shift is 
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Fig. 1 | Mode structure for the Kerr resonator. Cold- and hot-cavity resonances are marked by crosses and open circles, respectively, the pump lasers are 
marked by dashed lines and the lights in each mode are indicated by filled circles; αS is the detuning of the DKS from the zero of the base ring dispersion 
curve. a,b, The Turing pattern (a) and DKS state (b) in the ring resonator (green circles) are shown along with ξKerr (red dashed arrow). c,d, The PhCR 
resonator (blue circles) is shown with photonic crystal shifts (dashed blue arrows) at the corresponding Kerr shifts, with c in the flat amplitude state and 
d in the pulse state. e, An illustration of optical pulse formation in a photonic ring resonator. f, Simulated peak pulse power versus pump laser detuning for 
the ring and PhCR resonators, the corresponding intensity profiles are shown to the right. The sweep rate is 8.8 × 10−3 half-widths per photon lifetime. The 
analytic flat amplitude (dashed grey curve) shows the intensities returning to the background for both cases without the comb states. The bistability range 
(shaded grey area) is shown for reference.
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reduced, only large α balances the Kerr mismatch ξKerr = Δμ≠0 − Δμ=0. 
This detuning precludes spontaneous formation of the Turing pat-
tern, but also the formation of solitons, as the flat state amplitude 
is too low to break into patterns5 (see Supplementary Section 2 for 
detailed calculations of ξKerr).

With a PhCR, we program the frequency shift ϵPhC to alleviate the 
ξKerr of the soliton state. The negative shift of both the cold and hot 
resonator at comb mode μ are apparent in Fig. 1c,d. Under this con-
dition, the Turing pattern no longer emerges from the flat state when 
the pump mode is energized, as the natural FWM phase matching is 
removed (see the horizontal line in Fig. 1c). Importantly, ϵPhC shifts 
the cold pump mode towards a lower frequency by an amount com-
mensurate with ξKerr, thereby compensating for the reduced Kerr 
shift on the pump mode, bringing it approximately onto resonance 
with the pump laser. Without the Turing pattern as a competing 
state, the flat amplitude deterministically breaks up into the soliton 
state, the unique stable state for the PhCR. In summary, the high flat 
amplitude on resonance must break into patterns5, the soliton state 
is one pattern it could create due to phase matching by the PhCR, 
and it is the only state available as the Turing patterns are elimi-
nated; thus, the flat amplitude deterministically breaks into the soli-
ton state. Operationally, soliton formation in a PhCR proceeds with 
the configuration shown in Fig. 1e. We integrate a PhCR device and 
a coupling waveguide with a silicon chip. The frequency shift ϵPhC 
is controlled by the nanopatterning on the ring, whereas the pump 
laser field F couples evanescently into the PhCR from a waveguide. 

The continuous-wave pump laser energizes the PhCR and creates a 
stable soliton pulse-train at the output.

We use the LLE to calculate ψ during a sweep of the pump laser 
frequency across the pump mode to verify the physical understand-
ing presented above (see Supplementary Section 1 for an LLE with 
the mode shift). Figure 1e shows the peak intensity ∣ψ∣2 versus 
detuning for the ordinary ring resonators and PhCRs. All frequency 
variables including α and ϵPhC are in unit of half-width-half-max 
linewidths unless otherwise specified, and all intensities are shown 
in units of F2, the resonant flat amplitude intensity. Aside from 
changing ϵPhC from 0 to 2.8 to activate the PhCR frequency shift, 
both simulations are performed with the same conditions, namely 
F = 1.5, β = −0.17. The ring resonator produces the five-lobe Turing 
pattern (lower panel) as the pump detuning is swept completely 
across resonance, corresponding to a range of α from −2 to 4. We 
then introduce the PhCR case and carry out the same α sweep. In 
contrast to the ring resonator case, a single pulse forms with abrupt 
onset. Neither Turing patterns nor chaotic states form during the 
sweep. Furthermore, the pulse demonstrates two distinct sections 
of oscillatory stages, known as breather soliton states7. The curious 
reappearance of the breather state at the end of the sweep also con-
trasts with ring resonator soliton behaviour, and we observe this in 
our experiments.

Figure 2 presents our PhCR devices and experimental evidence 
for spontaneous soliton formation, according to the principles laid 
out above. We create a PhCR device with the oscillatory nanopattern 
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indicated in Fig. 2a. A unit cell of the pattern is defined by a sinusoi-
dal shape, characterized by the pattern periodicity and peak-to-peak 
amplitude APhC. The periodicity enforces a photonic bandgap that 
necessarily overlaps one particular PhCR mode (denoted as the 
pump mode μ = 0) in the 1,550 nm wavelength range, owing to an 
equal azimuthal mode number of pattern periods and optical-mode 
fringes. The bandgap lifts the degeneracy of counter-propagating 
light in the PhCR, creating modes that are shifted to higher and 
lower frequencies by ϵPhC. As the nanopattern is edgeless (that is, 
circumferentially uniform), high resonator Q is maintained. The 
properties of the other PhCR modes (μ ≠ 0) with ϵPhC ≈ 0 (including 
nonlinearity and GVD) are preserved under the geometric modifi-
cation. In particular, the GVD depends sensitively on the thickness 
and ring-waveguide width (RW) as in a ring resonator. We fabricate 
our devices from a 570-nm-thick tantalum pentoxide (Ta2O5, here-
after tantala) photonics layer29, which is deposited on an oxidized 
silicon wafer. We use electron-beam lithography to define the pho-
tonics pattern for a wafer, and we transfer it to the tantala layer by 
use of fluorine reactive ion etching. A final ultraviolet lithography 
process defines several chips on the wafer, and we dry-etch facets in 
the tantala and oxide layers, and the silicon wafer (see Methods for 
more details). In our experiments with PhCRs, we characterize ϵPhC 
by spectroscopy measurements. We fabricate up to ~75 PhCRs on 
a chip with a systematic variation of ϵPhC (few linewidths) and the 
waveguide-resonator coupling gap (~200 nm) to optimize the con-
ditions for spontaneous soliton formation. We couple light to and 
from the chip with a standard lensed-fibre system to measure ϵPhC. 
Using a 1,550-nm tunable laser as input, we record the transmission 

at the output with a photodetector. Figure 2b shows several PhCR 
mode resonances in the 1,550-nm band (with applied frequency off-
sets so the resonances coincide) that demonstrate a single mode fre-
quency splitting. We label the non-degenerate modes as upper and 
lower, with the latter at a setting of ϵPhC consistent with spontaneous 
soliton formation. Our experiments focus on gaps for near-critical 
coupling, and these data indicate a loaded PhCR Q of ~400,000. 
By adjusting the nanopattern amplitude through electron-beam 
lithography, we systematically vary ϵPhC (see Fig. 2c). In the range 
of APhC used in this work, the Q factors are unaffected, compared 
with ring resonators fabricated on the same wafer, but the ultimate 
Q reachable by the PhCR has yet to be explored. With a nanopat-
tern amplitude of only a few nanometres, we control ϵPhC for the 
μ = 0 mode, whereas the μ′

̸= 0 modes exhibit an anomalous GVD 
of D2 = 2π ⋅ 69.0 MHz per mode. The results confirm our fabrication 
process provides the high device geometry resolution and low opti-
cal loss to build PhCRs to support the pulses.

We search for spontaneous soliton formation in a PhCR 
with ϵPhC = 2.2 by sweeping the frequency of the pump laser with 
~36 mW of on-chip power; Fig. 2d presents a ~20 GHz sweep range 
from high to low frequencies that span the upper and lower reso-
nances. We use photodetectors to monitor transmission through 
the PhCR device (red trace) and the power of generated comb 
modes (blue trace), which we obtain by filtering out the pump. 
These data show the presence of thermal bistability effects—which 
distort the resonances into a triangle shape—and the effects of non-
linear comb generation. In particular, we observe no comb power 
at the upper resonance, as the upper mode is shifted away from 
the μ′ modes needed for FWM. Whereas at the lower resonance 
we observe immediate comb formation, corresponding to the step 
change in comb power in agreement with our simulation in Fig. 1f. 
We assess that this nonlinear state on the lower resonance (indi-
cated by the shaded area in Fig. 2d) is a DKS that spontaneously 
forms under certain conditions of pump power and laser detun-
ing. We also observe a nonlinear state on the lower resonance that 
exhibits relatively higher comb power variance, which is probably a 
breather state as indicated theoretically in Fig. 1f. The breather state 
at higher detuning than the stable state suggests a modified optical 
state phase diagram yet to be explored. Operationally, we adjust the 
pump power to maximize the pump frequency existence range of 
the low-noise spontaneous soliton step, and we hand adjust the laser 
frequency into this range. It is under these conditions that we record 
the optical spectrum (Fig. 2e) of the soliton comb, which exhibits 
a clear sech2(x) profile as shown by the grey line. So far we have 
observed spontaneous solitons in ϵPhC = 2–7 half-widths; we pres-
ent measurements of such spontaneous solitons in the remainder 
of this work.

We attribute the ease of spontaneous soliton capture to desir-
able thermal behaviours of the PhCR. Conventionally, in a ring 
resonator device, capturing and sustaining a soliton is difficult 
as a result of rapid heating and cooling of the microresonator30,31. 
Soliton initiation in the ring resonator under continuous-wave 
excitation is preceded by Turing patterns or chaotic states, which 
are multiple-pulse states with high average intensity. Conversely, 
the desired soliton state is a single pulse with a relatively low aver-
age intensity. The root of thermal instability is hence the transi-
tion of a nonlinear state in a microresonator. The spontaneous 
solitons of the PhCR resonator offer two primary advantages: first, 
in soliton initiation, we bypass the high average intensity states 
and avoid their heating effects to the resonator; second, we keep 
the pump laser on-resonance in the soliton state (note the drop 
in transmission trace in Fig. 2d as the pulse forms, indicating a 
more resonant condition), therefore minimizing changes to the 
in-resonator pump amplitude as the soliton forms. Together, these 
factors minimize the intensity changes in the PhCR, allowing 
pulses capturing by hand-tuning alone.
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To explore the universality of spontaneous soliton formation, 
we demonstrate soliton bandwidth control by tuning the GVD of 
the PhCR and the pump laser power. We control the GVD directly 
by varying the RW from 1.3 to 1.5 μm, providing decreasing 
anomalous GVD that we can understand from finite-element cal-
culation of the PhCR resonator mode structure. Based on the LLE, 
this change should affect an increasing soliton bandwidth. We 
tune into the soliton states on these devices by hand and acquire 
their optical spectra (Fig. 3a–c). The spectrum bandwidth broad-
ens with decreasing anomalous GVD as expected. Interestingly, 
we acquired a stable two-pulse state at lower detuning on the 
RW = 1.5 μm device (shown in Fig. 3d). The two-pulse state sug-
gests that the parameter space of the PhCR—an interplay between 
dispersion and mode shift—supports more steady states beyond 
the single spontaneous pulse. We also varied the pump laser power 
for the RW = 1.4 μm device (see Fig. 3e), resulting in widening of 
the spectral envelope consistent with the DKS; however, unlike the 
conventional case in which increasing pump power monotoni-
cally lengthens the soliton existence range32, the PhCR produces 
strong breather states at high power. More studies are underway to 
fully explore this behaviour. In this work, a typical ~75-device chip 
would yield ~10 devices in the correct parameter range, within 
which approximately half of the tested devices create the spon-
taneous pulses. The limit being some devices demonstrate high 
thermal shift rate for the upper mode, causing the lower mode to 
become obstructed. Ongoing work optimizing the annealing and 

processing of the tantala material is expected to reduce optical 
absorption and alleviate the thermal issue.

Stationary microresonator solitons output an optical pulse-train 
with a fixed period, which comprises a low-noise, equidistant fre-
quency comb suitable for optical–frequency measurements33,34. 
Verifying the spectral-noise properties of spontaneous solitons 
in PhCRs is therefore of utmost importance. Figure 4 presents 
intensity and frequency noise measurements (excluding the pump 
laser) of a spontaneous soliton, which we generate in a device with 
RW = 1.4 μm, ϵPhC = 3.0. The relative intensity noise (Fig. 4a) of a 
stationary soliton and a breather soliton is below −140 dBc Hz–1 
over a Fourier frequency range to 1.8 GHz. Here the photodetected 
soliton power is 282 μW and the spur-free dynamic range is excel-
lent, whereas the breather state manifests a single peak at 878 MHz 
and supports higher power and hence lower relative intensity noise. 
These measurements are currently limited by the comb power and 
the detector noise floor.

To measure the ~1 THz PhCR soliton repetition frequency, we 
apply electro-optic phase modulation to create a low-frequency 
heterodyne beat between two soliton comb modes34. We choose 
an electro-optic drive frequency such that the ±17th-order side-
bands (arrow in Fig. 4b) generate an optical heterodyne on a pho-
todetector after filtering out that pair. We identify the tone thus 
generated as the heterodyne, as it varies with the electro-optic 
drive frequency at 34.2 MHz/MHz in agreement with the sideband 
orders. We present the heterodyne spectrum in Fig. 4c, which 
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shows the typical lineshape with ~50 kHz linewidth and <1 MHz 
fluctuations. The thermal drift rate at ~100 kHz s–1 over the 1 THz 
repetition rate corresponds to an Allan deviation on the order of 
10−7 at 1 s. We attribute these properties to the thermal noise35 
and thermal drift of the microresonator under free-running con-
ditions. The timescales for such noise can be countered by feed-
back loops, for example, using the stabilized laser and the f–2f 
self-referencing methods34. The PhCR comb tunes at commensu-
rate rate as the conventional DKS devices both thermally and in 
response to pump laser detuning. With this in mind, we demon-
strate a PhCR device with optimized dispersion to create a sponta-
neous DKS with near-octave bandwidth (Fig. 4d). The F2 value for 
this trace is estimated to be 8.7, normalized to threshold power of 
μ = ±1 modes. We observe a dispersive wave at 273 THz, while the 
long-wave cut-off at 140 THz is a result of the air-clad bus wave-
guide losing guiding. We anticipate these optimized devices to 
enable f–2f self-referencing in the future.

In conclusion, we have presented spontaneous and determin-
istic generation of Kerr solitons in edgeless PhCRs, enabled by 
compensating ξKerr between the pulse state and its pump mode. 
Mode shifting by nanopatterning enables spontaneous gen-
eration, whereas we retain the capability to engineer broadband 
dispersion with the bulk ring geometry. The importance of the 
nanophotonic capabilities presented in this work is twofold: first, 
the ability to controllably shift modes while maintaining the bulk 
dispersion profile provides a tool to explore the physics occurring 
in a nonlinear process. Here the capability modifies the behaviour 
of the pump mode, but we envision applications such as direct 
engineering of dispersive waves36 or soliton crystals37, potentially 
enabling inverse design methods for arbitrary desired waveforms. 
Second, the spontaneous formation nature of pulses demon-
strated here considerably reduces the system complexity for a 
soliton formation and stabilization system, enabling low power 
consumption, packaging-friendly devices or integrated systems 
with multiple independent pulse sources. Future development 
towards a unified system with injection-locked devices38 using 
the controlled back-scattering of the PhCR and on-chip nonlinear 
isolators39 integrated to the same photonic platform as the PhCR, 
will facilitate laser integration. We envision that the spontane-
ous pulse devices such as the PhCRs presented in this work will 
become building blocks for future nonlinear optics and integrated 
photonics technologies.
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Methods
Optical testing. We use a C-band tunable external-cavity diode laser with 
fibre-coupled output as a light source for testing, which is passed through a fibre 
isolator and then to a set of fibre polarization controllers. A 90% fused fibre coupler 
is added between the laser and the polarization controller to tap the laser light for 
a Mach–Zehnder interferometer and a wavelength meter (wavemeter, 40 MHz 
resolution) for frequency measurements. We use the wavemeter to precisely 
measure modes frequencies within the external-cavity diode laser tuning range, 
to characterize the dispersion of PhCRs. For comb generation experiments, the 
laser is amplified using an erbium-doped fibre amplifier (EDFA), with a tunable 
band-pass filter to suppress the amplified spontaneous emission of the EDFA. 
For passive measurements, the EDFA and the filter are bypassed. We send the 
light into the photonic chip using a lens fibre mounted on a three-axis flexure 
stage, controlled by manual micrometers. The damage threshold of our devices is 
typically above 1 W incident power. The typical coupling efficiency between fibre 
and chip is ~25% per facet, limited by the mode mismatch between the air-clad 
waveguides and lens fibres. The chip is placed on a copper block for thermal 
contact. The output is collected with another lens fibre on translation stage. For 
passive measurements, we measure the outcoming power using an amplified 
photodetector, plotting the transmission versus frequency on an oscilloscope.

During the comb generation experiments, we continuously monitor a 
portion of the outcoupled light with an optical spectrum analyser (OSA). With 
photodetectors that have 150 MHz bandwidth, we also monitor the pump laser 
transmission of the resonator and the comb power, which we obtain by filter out 
the pump contribution. The comb power signal provides critical information on 
break-up of the flat background and soliton initiation, and for monitoring the 
intensity noise level of soliton states. To diagnose breather soliton oscillations 
and perform intensity noise measurements, we use a high-speed photodetector 
(1.6 GHz bandwidth) and a electronic spectrum analyser.

The comb power channel, after filtering out the pump, is used for the beatnote 
measurements. We pass the comb light through two cascaded electro-optic phase 
modulators, driven far above Vπ to introduce multiple sidebands to span the 
1 THz frequency spacing between the comb lines shown in Fig. 4b. We choose the 
electro-optic modulation frequency to be 28.000 GHz so the ±17th sidebands from 
adjacent comb lines will come into close vicinity. To improve the signal to noise 
ratio for the beatnote measurements, we amplify the electro-optic output with a 
semiconductor optical amplifier and select the overlapping modes using a tunable 
optical filter with a 50 GHz passband.

Design and fabrication. We begin the designing process by calculating the 
ring resonator dispersion and photonic bandgap using a finite-element method 
programme. All devices in this work are designed and operated using the 
fundamental transverse electric-like mode. The dispersion calculation yields 
the propagation constant keff for each RW, ring radius (R) and frequency. The 
azimuthal mode order (m) of the PhC is then calculated by the boundary condition 
keff × 2πR = 2mπ. The PhCR modulation is then introduced with the periodicity 
2πR/2m and sinusoidal peak-to-peak amplitude (APhC) on the interior of the 
ring. The sinusoidal shape is chosen as it can be fabricated reliably to very small 
amplitude using lithography and plasma etching. A bus waveguide approaches 
the smooth outer edge of the resonators. The strength of the evanescent coupling 
between the resonator and the bus is controlled by the gap between the two. On 
the edges of the chips where the bus waveguides terminate, the waveguides are 
inversely tapered to improve mode-matching to lens fibres. We generated the mask 
files using a pattern-defining script and the CNST Nanolithography Toolbox40. 
Typically, we place up to 70 PhCRs and their bus waveguides per chip in an evenly 
spaced array. Fine sweeps of APhC and the coupling gap are included to achieve the 
correct mode shifts and near-critical coupling41.

The fabrication procedure of our devices is as follows: we obtain 76.2 mm 
silicon wafers with 380 μm thickness and 3 μm thermal silicon dioxide on both 
sides. The tantala device layer is deposited onto the wafer to 570 nm thickness 
by an external supplier. For lithography, we carry out a double spin-coating of 
ZEP520A resist to reach a total resist thickness of 1 μm, and then expose the resist 
by electron-beam lithography operating at 100 kV, with a 4 nm step size and an 

approximately 30 nm spot size. We attribute the substep size control of modulation 
amplitudes to averaging effects of the many unit cells around the ring. All device 
patterns are defined on this electron-beam lithography step. We develop the 
resist and transfer the pattern using plasma etching with an inductively coupled 
plasma etching tool, and a CHF3 + CF4 + Ar chemistry. The ratio between CHF3 
and CF4 is varied to achieve vertical sidewall, while the argon gas was found to 
improve sidewall smoothness. The etch selectivity is sufficient to clear the device 
layer with the resist thickness used. A dicing pattern is put onto the wafer using 
ultaviolet lithography and the SPR-220 photoresist. We etch through the bottom 
thermal oxide layer using a plasma etch with CHF3 + O2 chemistry. The resist is 
stripped using solvents, and the ultaviolet lithography step is carried out again for 
the deep-RIE dicing using the C4F8 + SF6 chemistry. We then clean the wafer of 
the fluoro-polymer deposited during the RIE steps using DuPont EKC265 solvent, 
followed by a Cyantek Nanostrip soak for final cleaning. The chips are then 
mechanically removed from the wafer and are ready for testing.
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