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Optical clocks have recently achieved inaccuracies below 1 part in 1018 [1], greatly surpass-
ing the performance of previous-generation microwave clocks. State-of-the-art for miniatur-
ization of these clocks is represented by so-called transportable optical clocks [2, 3], where
the clock components comprise ∼1 m3, allowing for such clocks to be transported from
place to place for clock comparisons, redshift measurements, and other operations. To date,
high-performance optical clocks compatible with space operation have not been developed.

Numerous tests of fundamental physics could benefit from launching high-performance
optical clocks into space. Several of these tests require networks or constellations of such
clocks, which would also improve the signal-to-noise ratio and reliability of any experiments
performed with space clocks. Space-based optical clock constellations will likely require
further miniaturization of current optical clock technology to the tens-of-liters scale or below
to avoid prohibitive launch costs.

In this white paper, we propose a Research Campaign targeted at aggressive development
of compact and high-performance optical clocks based on trapped ions. The goal of this
campaign is to develop an optical clock of mass no more than 30 kg with stability at the
10−14 /

√
τ level, to space-qualify it, and to prepare for a clock launch by 2032. We describe

the fundamental physics experiments that will be enabled by a constellation of such clocks,
the specifications that will be required, and technologies we propose NASA develop in order
to enable these optical clock constellations. We also propose further development of the
integrated technologies that will enable next-generation optical clocks at the few-liter scale,
allowing for many-clock networks to be deployed at even less cost in the future.

Fundamental physics tests with space optical clock networks — The nature of dark matter
(DM) is one of the biggest open questions in fundamental physics. Atomic clocks are sensitive
to ultralight scalar dark matter that can lead to either oscillatory or transient signals. If
self-interaction between dark matter particles causes clumping, a network of precision clocks
in Earth orbit could be one of the most straightforward methods for direct detection of dark
matter. The passage of such “transient” DM may be detected in a constellation of clocks via
desynchronization as the DM passes through the ensemble, followed by resynchronization
afterward. Multiple ion clocks in various orbits could be utilized to detect, or at least
further constrain the properties of, such topological dark matter [4]. Similar studies have
been performed using GPS atomic clocks [5] and earth networks [6]. However, Earth’s
presence can partially screen topological dark matter fields passing by [7], making a space-
deployed clock network far more sensitive to such effects than an Earth-based network of
the same accuracy. A network of ion clocks in geostationary orbit with reasonable frequency
instabilities near a part in 1014 at one second could detect frequency fluctuations at a part in
1016, a two-order-of-magnitude improvement upon existing studies. The search for oscillatory
dark matter (DM) signals can also be improved with a space-based clock network [8].

Networks of optical clocks in space may also serve as sensitive detectors for exotic low mass
fields (ELFs) that may be emitted by high-energy astrophysical events, such as black-hole or
neutron-star mergers. Such fields will arrive with some delay with respect to the gravitational
wave (GW) signal. GW detectors could thus provide a trigger for observation of ELFs as
part of a multi-messenger-astronomy approach to such events. As ELFs are hypothesized
to couple to the standard model in ways that would mimic changes in the fundamental
constants, atomic clocks will incur oscillating signals over the ELF passage duration, and
hence may be used as ELF telescopes [9]. Though ELF signals are delayed from GWs,
they are likely still extremely relativistic. Therefore, the signal seen by clocks on Earth
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would not provide information for localizing events, as laboratory optical clock updates are
typically relatively slow (∼1 s), and the transit time across the earth is approximately 40 ms.
However, an orbital constellation of optical clocks, with comparable stability to lab clocks,
may allow for the required time resolution to track propagation and perform triangulation
of ELF signals. The expected transit time is ∼200 ms across a GPS-like constellation,
and the baseline set by orbital distances suggested for future space-based GW detectors
(∼2.0× 109 m for LISA/SAGE [10]) would lead to an approximately 7 s transit time. This
application suggests several clocks in space, each a lower-interrogation-time clock with many
ions to utilize root-N scaling to allow fast response. For example, 10 ms interrogation of a
transition in a N = 102 ion clock can potentially achieve an instability of 10−16/

√
τ . Such a

composite array clock may be able to respond on the ten-millisecond timescale with 1×10−15

level instability, and address significant unexplored regions of ELF-energy phase space.

Space-based optical clock networks may enable several other fundamental physics studies.
These include improved resolution very-long-baseline interferometry (VLBI) systems able to
image nested black hole photon rings [11], observation of which can provide information about
a black hole’s angular momentum and provide a universal signature of general relativity.
Space-based ion traps may also be useful for confirming or rejecting signals for exotic dark
matter candidates, such as millicharged dark matter [12]. Furthermore, multiple clocks in
heliocentric orbits may be used as a gravitational wave detector [13], although clock stability
at the 10−20/

√
τ level is required to achieve performance beyond that expected for the

Laser Interferometer Space Antenna (LISA). The range of applications for space-based clock
networks speaks to the versatility of this sensor platform for fundamental physics studies,
and it is expected that improvements to clocks over time will yield improved stability.

Finally, we note that the proposals on how to detect ultralight dark matter with atomic
clocks are extremely recent. We expect many more ideas on using space clocks for funda-
mental physics searches to bloom in the next decade, as significant particle physics theory
efforts shift towards using quantum sensors.

Optical clock requirements — The aforementioned experiments require clocks with high
stability and accuracy that can operate in space. To achieve sensitive detection of transient
dark matter or exotic low-mass fields at levels beyond what can be achieved via other meth-
ods, clock stabilities at or exceeding 10−14/

√
τ are required, allowing the clock to detect the

signal in a limited time window. These levels of stability are achievable via optical clocks
based on narrow-linewidth transitions in ions or atoms, but exceed what has been achieved
so far in space-based microwave clocks [14]. Clock uncertainties at the 10−16 level or better
allow for measurements of the gravitational redshift exceeding previous efforts [15–17]. These
accuracy levels are likewise achieved only by a few clocks, including optical clocks [1–3].

To launch a space-based network of optical clocks for dark matter or ELF detection, the
size, weight, and power (SWaP) of each clock must be compatible with launching the net-
work’s many clocks into orbit without prohibitive costs. Geostationary orbits are required for
GPS-like clock constellations, while some applications may benefit from even larger orbits.
The current ∼ 1 m3 sizes of optical clocks are not compatible with launching a constellation
of many clocks into space. We anticipate that many-clock networks will not become real-
istic until optical clock weight and power draw approach the tens-of-kg and 100 W scale.
Furthermore, the clocks must be compatible with space qualification, as described later.

Trapped ions have several advantages over other optical clock technologies for space ap-
plications, particularly for many-clock constellations. Ion-based optical clocks have very
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small and well-known systematic frequency shifts due to environmental perturbations, al-
lowing for extremely high accuracy. Traps based on RF electric fields provide high motional
frequencies and ion lifetimes of days, potentially leading to a technology better-suited to
remote operation in harsh environments. Long lifetimes mean less frequent trap reloading,
and therefore more straightforwardly attainable specifications for ion source material and
loading apparatus. Similarly, the high motional frequencies provide vibration resilience, a
necessity in a spacecraft environment. Due in part to the use of RF trapping, the number of
lasers and required optical powers are quite low. For comparison, neutral-atom based optical
lattice clocks use high intensity lasers to confine atoms with sufficient trap depth for long
interrogation times, leading to substantial SWaP of the laser system. In contrast, ion clocks
require only sub-milliwatt-level optical powers at all required wavelengths, greatly simplify-
ing laser beam production in a compact platform. For several ion species, all wavelengths
can be produced with low SWaP laser diodes. Moreover, the use of integrated photonics
technologies [18, 19] for delivering light to ion arrays can produce near-diffraction-limited
beams at each ion’s location, potentially further reducing overall optical power requirements
if optical losses in waveguides can be made low.

Optical clocks based on trapped ions have seen rapid development in the past decade,
but scientific and technical obstacles remain before reliable clocks achieving the required
uncertainty can be flown in space. Here we describe key technologies that can enable such
operation, both in terms of the status of the field and the new research and development
needed to realize systems which can achieve the fundamental physics goals laid out above.

Ion trap arrays — While ion clocks naturally have very high accuracy compared to other
systems due to a high degree of isolation and to well-understood systematic effects, they often
suffer from higher absolute uncertainty in a fixed measurement time. This is because ion-
based optical frequency standards to date are almost exclusively based on a single trapped
ion. A route to faster averaging to a low uncertainty is to use multiple ions, but quadrupole
and second-order Doppler shifts can become larger when multiple ions are trapped in a
single potential well. Using an array of individually trapped ions is a potential solution to
this challenge; more ions are available for simultaneous interrogation, improving the signal-
to-noise ratio, and control over systematics can be maintained in each trapping site without
significant additional shifts due to the other ions. An additional benefit of a clock built up
from an array of individual ions is that subarrays may be used for staggered interrogation
to eliminate the Dick effect [20] caused by finite clock dead time; to perform simultaneous
subarray processing to cancel out systematic errors due to e.g. magnetic-field variations [21];
and to extend the spectroscopic probe times beyond the laser coherence time [22].

Integrated electronics, photonics, and detectors — The table-size optical systems used
for delivery of the many wavelengths required for clock ion control and state detection
pose one obstacle to the miniaturization of high-performance optical clocks. These optical
systems can also be subject to vibrations that degrade ion coherence and thus limit clock
performance. Recently, several proof-of-principle demonstrations highlight the possibility of
integrating optical control and detection systems into a microfabricated surface-electrode ion
trap, which could drastically reduce the system overhead required for light delivery. Low-
loss photonics platforms have been developed for multiple ion species of interest for optical
clocks [18, 19, 23]. Similarly, recent experimental results have shown that free-space photon
collection systems for ion detection may be replaced by high-efficiency on-chip detectors
[24, 25]. Further development of these technologies may allow for ion traps which do not
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require any free-space optical components for light delivery or collection, greatly simplifying
miniaturization. The focus should be on technology development that allows for combining
all of these elements in a way that is compatible with high-performance clock operation.

Along with integrated photonic elements, integrating control electronics into an ion-trap
chip substrate can reduce the size and complexity of control hardware required to operate
the clock. Initial experiments have demonstrated control of ion-trap electrode voltages with
integrated digital-to-analog converters (DACs) [26]. Several other operations, such as readout
circuits for integrated detectors, may also be integrated into the chip. Chip-integrated
electronics must be designed to minimize voltage noise and power required, and must mitigate
voltage drifts caused by transistor leakage. All electronics need to be radiation tolerant and
designed to mitigate Single Event Effects (SEE) from incident radiation.

Chip-based lasers and frequency combs — High-performance portable optical clocks re-
quire compact and vibration-tolerant clock lasers with linewidths below 100 Hz for ion inter-
rogation. Multiple pathways to achieve the necessary specifications are being investigated.
One approach is to miniaturize the ultra-low-expansion (ULE) glass cavities that have tra-
ditionally served to stabilize the clock oscillator. Recent work has demonstrated compact
optical cavities with sub-liter volumes and with low vibration sensitivity [27, 28], although
operation in vacuum is still required. An alternative approach, which may ultimately lead to
smaller sizes and improved vibration tolerance, is to use on-chip solutions for the clock laser,
such as stimulated-Brillouin-scattering lasers [29] or self-injection locking to an integrated
resonator [30]. Locking of a fiber Brillouin laser to a trapped clock ion has been demonstrated
[31], but translating this performance to a chip-based laser has yet to be achieved.

For applications such as space-based VLBI astronomy, an octave-spanning frequency comb
is required to translate the clock oscillator’s stability from the optical regime to the microwave
domain—at frequencies from hundreds of MHz to GHz—such that the timing signal can be
disseminated and directly read out [32]. Fiber frequency combs at the 10-kg scale have been
operated on suborbital sounding rocket flights [33], but recent developments towards fully
integrated on-chip combs [34, 35] may lead to significantly smaller, lower-power devices.

Compact vacuum hardware — Compact, robust ion trap packaging is important for ex-
isting and future applications of quantum-enabled technology and fundamental research.
Currently, laboratories construct one-off vacuum systems that tend to be large and are un-
suitable for deployed environments such as space flight. A non-trivial effort will have to be
made to improve the robustness of the atomic clock vacuum hardware including vacuum
performance improvements to enable long ion trapping lifetimes, new feedback mechanisms
for active control of the clock module temperature in the space environment, and upgrades
for compatibility with an integrated photonics platform.

Autonomous operation — Harsh and remote environments result in a variety of challenges
for atomic clock soft- and hardware including SEE, broadened data point distributions, and
environmentally induced frequency drifts. Both the clock and the electronics control system
will be required to withstand the shock, vibration, and radiation environments of space.

In all cases, the clock must be able to operate independently of human intervention from
a cold start. Methods must be adopted to trouble-shoot clock operations and all subsystems
autonomously. The laser system must be able to turn itself on and find the desired spectral
features of the clock ion unsupervised. Additional clock-shift-mitigation techniques may also
be required for autonomous operation, similar to some currently being researched [36].

Figure 1 shows our proposed schedule for this Research Campaign. Development of key
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enabling technologies for a 30-kg scale clock will be followed by a laboratory demonstration,
space qualification, and a single clock launch in 2032. A successful launch will allow multi-
clock networks to follow in short order. Development of compact clock technologies will
continue in the second half of the decade to enable future-generation clock networks.

We estimate a total budget of around $135M for this Research Campaign. Technology
development will require around $10M/year for the first three years to accelerate the core
capabilities in the early stages of the program, and an additional $5M/year for the next
five years, totaling $55M. Construction of the prototype 30-kg laboratory ion clock and an
initial space qualification design is expected to cost $20M over 2 years, with a sounding rocket
test costing $10M. Space qualifications to enable space-deployability is expected to require
another $20M. Space qualifications will include the development of autonomous control,
compact laser systems, and space-ready hardware upgrades. The development of deployable
sub-system and a successful sounding rocket test will culminate in a zero-gravity performance
verification costing $5M. The campaign will end with construction of a single space-ready
clock costing $5M and a subsequent launch, expected to cost $20M.

The development of compact optical clocks can have an outsized impact on the pace
of new scientific discoveries due to the achievable precision and the possibility of placing
constellations of these clocks in Earth and Sun orbits. In particular, orbiting clocks may aid
in detection of dark matter candidates, improve bounds on the existence of various exotic
beyond-standard-model fields, and revolutionize radio astronomy via enhanced-resolution
VLBI. Trapped ions are a very promising technology for such clocks, as they have high
intrinsic accuracy and their control systems can likely operate with lower SWaP requirements
than competing clock technologies. Moreover, their higher motional frequencies make them
more suitable for operation on accelerating platforms. Recent developments in integrated
control and vacuum technologies should allow the realization of high-precision space-based
sensor networks based on robust, reproducible integrated ion systems. Such a campaign
could reach launch readiness within a decade for comparably low cost, providing many
useful avenues for new science in the near term, while establishing a formidable distributed
frequency-measurement infrastructure for the pursuit of as-yet unforeseen future endeavors.

FIG. 1. Performance schedule for the development and launch of the first space optical clock.
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[33] B. J. Pröbster, M. Lezius, O. Mandel, C. Braxmaier, and R. Holzwarth, Fokus ii—space flight

of a compact and vacuum compatible dual frequency comb system, J. Opt. Soc. Am. B 38,

932 (2021).

[34] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, Octave-spanning

frequency comb generation in a silicon nitride chip, Opt. Lett. 36, 3398 (2011).

[35] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, S. Liu, G. Moille,

S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, and J. E. Bowers, Ultra-efficient

frequency comb generation in algaas-on-insulator microresonators, Nature Communications

11, 1331 (2020).

[36] V. Yudin, A. Taichenachev, M. Y. Basalaev, T. Zanon-Willette, T. Mehlstäubler, R. Boudot,
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