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Abstract—In this paper, we introduce an algorithm that uses 

the ‘Total’ approach as a means of filling gaps between live 

measurements. The Total approach extends a T-length data run 

by a backward, inverted replica before and after it, which in 

essence triples the data length to 3T as in Fig. 1.  This operation is 

a way of obtaining long-term ADEV(�) beyond its � = T/2 limit 

with better overall confidence [1].  Ostensibly, the extensions 

convert the linear convolution of ADEV(�) to circular but with an 

additional nuance: Total extensions are iid, i.e., independent, 

identically distributed while furthermore preserving intrinsic 

clock noise models [2].  We aptly call the gap-filling algorithm a 

‘Total imputer.’ It has been tested on sets of 513-point simulated 

data runs in which 150 points (30%) were removed halfway into 

the runs.  In Monte Carlo trials of ADEV(�) plots for each of five 

f α, integer power-law noise models, i.e., where -2 < α < +2, the 

imputation algorithm proved successful in yielding consistent 

ADEV(�) responses in recovering the 150-point gaps with 90% 

confidence between original and recovered data [3].  We provide 

well-developed Python code and example data that enables 

analysts to test the algorithm on data which they may have or wish 

to study with simulation on specific patterns of missing data.  
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I. INTRODUCTION 

 The Allan deviation (ADEV), phase noise (L(f)) and 

general PSD characterizations of clock and oscillator noise, rely 

on equally-spaced time series data without gaps (dead time) [4].  

A large gap or several gaps extending over many data points 

presents a severe obstacle because they can render ADEV(�) 

and L(f) estimation with substantial errors especially at large � 

or low f , respectively.  

Every effort should be made to obtain clock and oscillator 

phase measurements with no gaps.  If measurements have gaps, 

the analyst should seriously consider retaking the data or 

revising the measurement methodology.  But when this is not 

possible, the Total-derived algorithm provided in this paper is 

                                                           
1 Work of the US Government, not subject to copyright. 

the first practical imputer for obtaining sample ADEVs and 

PSDs that can readily fill large and multiple gaps without 

making any assumptions as to the data’s missingness patterns 

nor mixtures of different noise models.   

II. LIMITS OF TRADITIONAL REMEDIES FOR GAPS  

If gaps exist in measurements, the reason for them should 

be made clear. A few small gaps (such as those caused by 

outlier removal) can be handled by simply ignoring them.  But 

traditional solutions have diminished value for large gaps as 

studied in [5,6]. Ref. [5] requires a specific ratio of dead-to-live 

time. All methods need some a priori knowledge or a suitable 

determination as to which power-law noise model is dominant 

during gaps.   

III. PROCEDURE 

Total extensions of the live data are by an inverted mirror 

reflection at each of its ends as shown in Fig. 1. The extensions 

are used to fill gaps. A linear slope is added to an extension such 

that its last point matches the local mean of the start of live data. 

If not matched, the result is an artificial “sawtooth” pattern 

where a gap is filled [3]. Reflected + inverted Total extensions 

applied in this manner are iid because: (1) for phase noise and 

ADEV, blocks of T-length windows are processed while Total 

extensions produce a period = 2T which is outside window T, 

(2) extended data are not made up but are actual measured data, 

albeit carefully and strategically manipulated, and (3) iid 

persists in extensions to the same degree as the measured noise 

is inherently iid, quantified as self-similarity [7,8]. 

IV. LARGE GAPS 

Total imputer breaks traditional limits of Sec. II and can be 

applied to missingness patterns which have total gaps of over 

100% of a data run.  A case of filling gaps of over 100% of a 

data run that can use the Total approach would be the following.  

Suppose we have 10 measurements in the beginning of a time 

series, followed by a gap of 100 points, followed by 100 points 

of measurements, followed by another gap of 100 points, and 

ending with 10 measurements.  This scenario would have 120 

points of live measurements and 200 points of gaps, or a data 

run with 166% gaps.  Total imputer can be applied to these large 
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data gaps. Scenarios can vary, the main point being that 

imputation can be applied to patterns of small and large gaps.   

For example, referring to Fig. 2, the top plot is original data 

that are the time differences between a NIST H-maser and the 

NIST time scale, UTC(NIST).  Here, 3.5 x 103 measurements 

are taken with 240s between each measurement. Four large 

segments of the original data have been removed in the middle 

plot.  The imputation algorithm applied to the middle plot 

produced the bottom plot. 

V. COMPARARISON OF RESULTS OF L(F) AND ADEV 

We compare L(f) and ADEV of the original and recovered 

data as shown in Fig. 2.  The results are shown and described in 

Fig. 3. These results of comparisons of L(f) to the lowest 

original f of 8 µHz and full ADEV(�~1�) of samples of original 

and recovered data are indeed exemplary. To a significant 

degree, testing by you, the reader, is encouraged rather than 

compiling exhaustive tests of the myriad of gap patterns that 

would be broad, consuming and would not cover every case. 

Python code that is well-developed is provided to enable 

readers to try it on their data or on included examples and to run 

simulation.  

VI. ACCESS TO THE ALGORITHM 

The algorithm, called “fillgaps.py” written in Python, is 

available at: https://zenodo.org/record/5594587 and well-

developed for Ref. [9].  An executable version with a first-draft 

GUI that runs on Windows and takes a .csv input file is at: 

https://zenodo.org/record/5595200. The .exe is large (55Mb) 

because it includes all of the Python dependencies. A GitHub 

repository https://github.com/nkschlos/time-series-imputation. 

VII. CONCLUSIONS 

We introduce the Total imputer as perhaps the most effective 
method yet devised in filling data gaps for computations of 
ADEV(�) and phase noise levels over the fullest possible range 
of �-values and Fourier-frequencies, respectively. We include 
the algorithm in a Python repository so that analysts can use it 
directly on their data.   

 

 
Fig. 3. TOP: L(f) shows that original vs. recovered phase noise are virtually 

identical and that the recovered data extends to the same low Fourier frequency 

as the original. BOTTOM: Frequency stability using high-confidence TheoH 
of original vs. recovered data. 
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Fig. 2. TOP: Time-series measurements of NIST H-maser vs. UTC(NIST); 

MIDDLE: Four large gaps >100% of live data are intentionally created; 

BOTTOM: Test showing the gaps are filled in by the imputation algorithm.  
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