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Abstract
We present protocols for dissipative entanglement of three trapped-ion qubits and discuss a
scheme that uses sympathetic cooling as the dissipation mechanism. This scheme relies on tailored
destructive interference to generate any one of six entangled W states in a three-ion qubit space.
Using a beryllium–magnesium ion crystal as an example system, we theoretically investigate the
protocol’s performance and the effects of likely error sources, including thermal secular motion of
the ion crystal, calibration imperfections, and spontaneous photon scattering. We estimate that a
fidelity of ∼98% may be achieved in typical trapped ion experiments with ∼1 ms interaction time.
These protocols avoid timescale hierarchies for faster preparation of entangled states.

1. Introduction

Dissipation arises in quantum systems through interaction with the environment and presents a challenge
for applications in quantum simulation, computation, communication, and metrology. However, controlled
dissipation can also be introduced and leveraged to manipulate quantum systems. Familiar examples in
atomic physics include optical pumping and laser cooling. These techniques allow removal of entropy and
approximate preparation of a desired pure state from an uncontrolled and unknown initial state. This
cannot be accomplished by unitary operations. Recently, attention has focused on using dissipation for
quantum information processing [1–3], and in particular for generating entanglement. While not
inherently superior to unitary entanglement-generation strategies, dissipative schemes are less sensitive to
certain error mechanisms. Moreover, they allow resource states to be created and stabilized in the presence
of noise so that they are available on demand. Dissipative protocols for generation and stabilization of
entangled and other nonclassical states have been demonstrated in a number of systems, including
macroscopic atomic ensembles [4], trapped ions [5–7], and superconducting qubits [8–10]. Numerous
proposals describe additional schemes to generate entanglement [11–17], perform error correction [18, 19],
and initialize quantum simulators [20]. Broadly, the full scope over which engineered dissipation may be
applied for quantum information processing is not yet clear, and practical protocols that can accomplish
new tasks expand the frontier.

A first set of experiments has demonstrated preparation of steady-state entanglement using couplings
that are applied continuously [6, 8]. An important ingredient in these schemes is timescale hierarchies, for
example the application of a strong dressing drive at rate G alongside other interactions with characteristic
rates gi. The dressing drive creates resonances that are resolved by the other drives in the limit gi � G, and
this hierarchy of timescales g−1

i � G−1 protects the target state. However, the steady-state entanglement
fidelity of this kind of scheme only asymptotically approaches unity as the relative strength r = G/max{gi}
of the dressing drive increases. Even more importantly, timescale hierarchies limit the speed of
entanglement generation, because the other interactions gi that populate the target state must be driven
slowly compared to experimentally achievable rates for G. This puts practical limits on the speed of state
preparation and the achievable fidelities in the presence of various error sources, and these limits are worse

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac09c8
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6360-1319
https://orcid.org/0000-0002-6360-1319
mailto:daniel.cole@nist.gov


New J. Phys. 23 (2021) 073001 D C Cole et al

than the fundamental limit determined by r. Recent proposals for generation of bipartite entanglement of
trapped ions [21] and superconducting qubits [22] avoid imposing timescale hierarchies. As a result, they
are predicted to generate entanglement more efficiently with the same experimental resources and achieve
unity steady-state fidelities for finite rates in the absence of errors. In this work, we describe how couplings
available in trapped-ion systems can extend these concepts for efficient dissipation engineering to the
preparation of tripartite entanglement.

We present concrete schemes for the dissipative production of three-qubit W states. For single-qubit
basis states | ↑〉 and | ↓〉, W states are N-qubit entangled states of the general form(
eiφ1 |↑↓↓ . . .〉+ eiφ2 |↓↑↓ . . .〉+ · · ·+ eiφN | . . . ↓↓↑〉

)
/
√

N, where each phase φi is defined modulo 2π and,
as usual, the state is defined up to a global phase. W states are notable in part because their entanglement is
particularly robust to particle loss4 [23]. Unitary trapped-ion W-state generation was first demonstrated in
2005 using 40Ca+ ions [24], and individual addressing of the ions was crucial to that demonstration. A
related proposal using rapid adiabatic passage and targeted addressing of a portion of an ion chain
demonstrated that this approach could be used to create generalized W states [25]. It has also been
proposed that W states can be generated using globally addressed composite pulses on the motional
sideband [26]. Another experiment using Hilbert-space engineering relied on global couplings and hence
did not require individual qubit addressing [27]; however, it imposed a hierarchy of timescales akin to those
in early dissipative state-preparation schemes. Dissipative preparation of W states was considered in
reference [28], which discusses quasi-local couplings that drive a multipartite quantum system into a steady
state. The dissipative protocols we present here require neither timescale hierarchies nor individual
addressing. Instead, they exploit symmetries to enable the efficient generation of any one of six target W
states in the three-qubit Hilbert space (section 1.1, equations (3)–(8)).

We structure our presentation as follows: in section 1.1 we present a useful notation for the W states of a
three-qubit system. This notation naturally describes the couplings that our schemes employ. In section 1.2
we review one possible application for these W states, the noiseless-subsystem encoding for a logical qubit.
In section 2 we describe the experimental platform in which we envision implementing these schemes. We
discuss a paradigmatic system, a mixed-species, five-ion linear crystal composed of three qubit ions and two
auxiliary ions of a different species for sympathetic cooling, and review the relevant features of the
interactions our schemes use: resolved-sideband couplings, Mølmer–Sørensen (MS) spin–spin interactions,
and sympathetic cooling. Section 3 describes dissipative protocols for W-state generation. In section 3.1 we
consider a natural attempt to extend the dissipative singlet-generation scheme presented by Horn et al [21],
and discuss the failure of this scheme to generalize efficiently to more qubits. Section 3.2 presents a scheme
for dissipative generation of W states of three ions that is more promising for experimental implementation,
in which dissipation is incorporated through sympathetic cooling of the collective motion. We discuss
expected error mechanisms, which indicate from simulations that dissipative W-state generation in a typical
trapped-ion experiment can be achieved with ∼98% fidelity and ∼1 ms interaction time. Section 4 presents
a concluding discussion.

1.1. W state notation
To span the eight-dimensional Hilbert space for three qubits, we choose orthonormal basis states |Wn↑s〉
parameterized by n↑, the number of qubits that are in the | ↑〉 state, and the chirality eigenvalue s = 0, +1,
or −1 under a chirality operator [29]:

χ =
1

2
√

3

∑
αβγ

εαβγσ
(1)
α σ(2)

β σ(3)
γ . (1)

Here the indices α, β, and γ run over x, y, and z, σ(j)
α is a Pauli matrix acting on qubit j, and εαβγ is the

Levi-Civita symbol, which contributes a factor of 0 or ±1 depending on the permutation αβγ . Explicitly,
the basis states |Wn↑s〉 are:

|W00〉 = |↓↓↓〉, (2)
√

3|W10〉 = |↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉, (3)
√

3|W1+〉 = w∗|↑↓↓〉+ |↓↑↓〉+ w|↓↓↑〉, (4)
√

3|W1−〉 = w|↑↓↓〉+ |↓↑↓〉+ w∗|↓↓↑〉, (5)

4 A straightforward example is the effect of measurement of a single qubit on a W state, in which case an (N − 1)-qubit W
state is preserved with probability (N − 1)/N. This compares favorably with the same measurement on a generalized Green-
berger–Horne–Zeilinger state, when entanglement is always destroyed.
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√
3|W20〉 = |↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉, (6)

√
3|W2+〉 = w∗|↓↑↑〉+ |↑↓↑〉+ w|↑↑↓〉, (7)

√
3|W2−〉 = w|↓↑↑〉+ |↑↓↑〉+ w∗|↑↑↓〉, (8)

|W30〉 = |↑↑↑〉, (9)

where w = exp(2πi/3) and phases are defined modulo 2π. The six W states are the states with n↑ = 1 or 2
(equations (3)–(8)), and we refer to the four of these states |Wn↑±〉 with chirality eigenvalue s = ±1 as
chiral W states, in contrast with the achiral states for which s = 0.

1.2. Noiseless-subsystem qubit encoding
Here we review one possible application for three-ion W states. In order to implement a practical quantum
computer or memory, it is necessary to employ either active error correction or encodings for logical qubits
that are inherently robust to noise, for which several strategies have been proposed and realized [30–36].
Chiral W states |Wn↑±〉 can be used in a noiseless-subsystem (NSS) qubit encoding [29, 37]. This encoding
generalizes a two-qubit decoherence-free subspace (DFS) encoding, which is robust against global σz

dephasing, to a three-qubit encoding that is insensitive to any global Pauli operator. Explicitly, the noise
operator against which the encoding is protected is:

(

σ1 · 
n(t)

)
⊗ 𝟙2 ⊗ 𝟙3 + 𝟙1 ⊗

(

σ2 · 
n(t)

)
⊗ 𝟙3 + 𝟙1 ⊗ 𝟙2 ⊗

(

σ3 · 
n(t)

)
, (10)

where 
σj is the vector of Pauli matrices and 𝟙j is the identity operator, each acting on qubit j, and the slowly
varying 
n(t) describes the magnitude and direction of the global noise as a function of time. Examples of
NSS encodings include an exchange-only qubit [35, 38, 39] and the related encoding that we discuss below,
which has been realized and explored in nuclear magnetic-resonance systems [40, 41].

In a subsystem encoding, a qubit is encoded in a tensor factor of a Hilbert (sub-)space. A noiseless
subsystem encoding is realized when the qubit degree of freedom does not couple to the global
environment; only the remaining ‘gauge’ degrees of freedom do. In the NSS encoding that we consider, a
qubit is encoded in the total-spin- 1

2 subspace that is spanned by the chiral W states. States within this
subspace can be factored into joint eigenstates of a gauge Sz degree of freedom with eigenvalues ±�

2 (related
to the label n↑) and a chiral qubit degree of freedom with eigenvalues ±1. Global noise of the form
described by equation (10) couples only to the former, so that the qubit is unaffected if the two degrees of
freedom are separable.

Concretely, we associate the logical state | ↓〉L with chirality s = +1 and | ↑〉L with chirality s = −1.
With this choice, the pair |W1+〉, |W1−〉 and the pair |W2+〉, |W2−〉 each constitute a DFS qubit that is
protected from global σz noise, and global σx and σy noise map between these qubits. Arbitrary logical
states are protected against any global noise as defined in equation (10) when they are encoded in terms of
gauge coefficients Gi (which do not affect the logical state) as:

αL|↓〉L + βL|↑〉L → G1

(
αL|W1+〉+ βL|W1−〉

)
+ G2

(
αL|W2+〉+ βL|W2−〉

)
, (11)

which can be factored into the gauge and qubit degrees of freedom as:

αL|↓〉L + βL|↑〉L →
(
G1|n↑ = 1〉+ G2|n↑ = 2〉

)
⊗
(
αL|s = +1〉+ βL|s = −1〉

)
. (12)

In the above, |αL|2 + |βL|2 = 1 and |G1|2 + |G2|2 = 1. Global noise only changes the coefficients Gi. The
separability represented in equation (12) is crucial. For example, (|W1+〉+ |W2−〉)/

√
2 is not a valid

encoding of (|↓〉L + |↑〉L)/
√

2 because the qubit and gauge degrees of freedom are entangled, and the logical
state is not preserved under global σz noise. The encoded logical qubit can be manipulated using suitable
operators [29], with the chirality operator χ (equation (1)) acting as the single-qubit logical Z operator.
This NSS encoding is illustrated schematically in figure 1.

Implicit in equation (10) is a choice about the orientation of each qubit’s Bloch sphere. The NSS can
protect against either spatially uniform noise or a noise field that has spatially uniform intensity but a phase
that varies with position, such as a laser field. In this case the orientation of each qubit’s Bloch sphere can
be fixed by stipulating the direction of the noise field at a given time so that equation (10) applies.

The NSS encoding improves upon the DFS encoding by adding immunity to collective σx and σy

rotations to the DFS’s immunity to collective dephasing. It is useful to consider under what circumstances
this might be particularly beneficial. One application that would use the full power of the NSS’s robustness
against general uniform noise would be to preserve quantum information during application of global
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Figure 1. W states and the noiseless subsystem encoding. (a) Couplings in the W-state basis under a global σx interaction,
indicated by the dotted black lines. The total-spin- 3

2 (|Wn↑0〉) and 1
2 (|Wn↑±〉) subspaces are closed under this interaction. The

logical qubit is made up of | ↓〉L, corresponding to the s = +1-chirality states (blue), and | ↑〉L, corresponding to the
s = −1-chirality states (orange). (b) A graphical depiction of the chirality eigenvalues s, with arrows indicating the direction in
which the phases of the terms | ↑↓↓〉, | ↓↑↓〉, and | ↓↓↑〉 (for n↑ = 1) traverse the unit circle depending on s. Here w = e2πi/3 and
∗ denotes complex conjugation. (c) Illustration of the noiseless subsystem encoding and the action of global noise operators.
Adjacent state pairs constitute decoherence-free qubits. Global σz noise leads to a phase change between these decoherence-free
qubits due to their different energies, displacing the n↑ = 2 qubit around the unit circle in the frame of the n↑ = 1 qubit (relative
phase indicated by gray shading). Global σx noise couples between the two qubits. In both cases, and for global σy = −iσzσx

noise, arbitrary superpositions of the logical states are preserved.

control pulses (the ‘noise’ field) that affect all physical qubits in a quantum register, including those making
up the logical NSS qubits. For example, the NSS encoding can protect against over- and under-rotation
errors in global pulses used for dynamical decoupling [42], which themselves can reduce decoherence due
to uniform or spatially varying fluctuations in, e.g. a quantization field. In this way, the NSS encoding can
be used as part of a strategy for mitigating nonuniform noise. The NSS encoding may also be used to realize
a reference-frame-free qubit for quantum communication [43].

2. Experimental ingredients

The dissipative protocols we present make use of standard techniques for ion-trap experiments: resolved
sideband transitions, effective spin–spin couplings driven by MS-type interactions, and sympathetic cooling
with an auxiliary species. In this section we introduce an example system that could be used, a linear crystal
of beryllium-9 (9Be+) and magnesium-25 (25Mg+) ions, and then review the relevant features of these
techniques.

2.1. Mixed-species ion crystal
We consider a system in which three qubit ions and two auxiliary ions in the same trapping potential form a
one-dimensional Coulomb crystal along the axis of weakest confinement [44]. The Coulomb interaction
leads to 15 quantized normal modes of collective motion. We assume that the ten modes of radial motion
along the dimensions of tighter confinement factor from the five axial modes, and that the interactions we
discuss below couple only to the axial degrees of freedom. For concreteness, we discuss an ion crystal of the
form 25Mg+–9Be+–9Be+–9Be+–25Mg+ (‘MBBBM’), but these schemes could be realized with a variety of
qubit and auxiliary species. Confining this crystal in a parity-symmetric axial potential provides symmetric
crystal geometry and axial mode eigenvectors that are either symmetric or antisymmetric under parity [45].
The lth eigenvector can be described by entries z(l)

j that specify the participation of ion j in the mode’s
zero-point motion in units of length.

2.2. Resolved sideband transitions
When ions of different species with optical transitions of different wavelengths are used for qubits and for
cooling, it is typically possible to address the two species independently. Here we consider driving
stimulated-Raman sideband transitions in a ground-state hyperfine qubit such as 9Be+. In the Lamb–Dicke
approximation and the interaction picture for the qubit and the vibrational levels, and neglecting rapidly
oscillating terms, a blue-sideband interaction resonant with mode l of the ion crystal driven by addressing
only the qubit ions can be described by the Hamiltonian [46, 47]:

Hsb = a†
∑

j=jqubit

(±)j
|Ωj|

2
σ

(j)
+ ei(Δk·Z0,j+Δφ) + H.c., (13)

and for a red-sideband interaction the creation operator a† for mode l is replaced by the annihilation
operator a. The notation j = jqubit indicates that the sum runs only over the qubit ions. The qubit raising
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Figure 2. An illustration of the phase-sensitive geometry for the Mølmer–Sørensen interaction, in which the spacing between
the ions or the magnitude of Δk may be used to control the induced chirality change. The 9Be+ qubit ions are indicated by small
orange spheres, and the 25Mg+ auxiliary ions are indicated by large gray spheres. The k vectors for laser beams of three
frequencies are depicted, with the red and blue beams (left) driving red and blue sideband transitions when combined with the
green beam (right). Each beam has a waist much larger than the ion crystal, so that the qubit ions are illuminated approximately
uniformly. Equiphase lines are indicated perpendicular to the beam k vectors. The magnitudes of the k vectors are nearly the
same for all three beams because ω0 � ωq � ωl + δ. The Δk vector is approximately axial and is nearly the same for the
red/green and blue/green beam pairs.

operator is σ(j)
+ = |↑〉j〈↓|j, and |Ωj| is the magnitude of the effective Rabi frequency of the interaction for the

jth ion. For a ground-state hyperfine qubit, the Rabi frequency Ωj is proportional to the electric field

strengths of the two laser beams driving a stimulated Raman transition and to η(l)
j = Δk · |z(l)

j |, the

Lamb–Dicke parameter quantifying the jth ion’s participation in the interaction. Here Δk is the axial
projection of the difference wavevector between the Raman beams. In addition to a global phase coming
from the phase difference Δφ between the laser beams, there is a j-dependent phase arising from the ions’
relative positions in the interference pattern between the beams. This phase is represented by

eiφj = (±)je
iΔk·Z0,j , where Z0,j is the equilibrium axial coordinate of ion j and (±)j = Sign

(
z(l)

j

)
. We can

control these phases by adjusting the ions’ relative positions along the trap axis or by adjusting the
magnitude of Δk. For particular values of these phases, the sideband interaction can induce definite
changes Δs in the chirality eigenvalue s. We associate Δs with the coupling:

|W00〉 ↔ |W1(Δs)〉 ↔ |W2(−Δs)〉 ↔ |W30〉, (14)

and then, for example, Δs = +1 for φj = 2π/3 · j for the MBBBM crystal.
Any non-uniformity of |Ωj| across the qubit ions will introduce errors in the schemes we describe below.

Important sources of non-uniformity are different participation amplitudes |z(l)
j | in the mode that is driven

by the sideband interaction and laser beam intensity differences across the ions. The latter effect can be
mitigated by illuminating the ions with beams that have approximately uniform intensity over the extent of
the ion crystal, and we address the issue of mode participation in section 2.4.

The Hamiltonian discussed above is also applicable to optical qubits with minor modifications: sideband
transitions on optical qubits are driven by a single beam whose axial wavenumber k replaces Δk
throughout, and whose phase φ replaces the phase difference Δφ. With these changes, equation (13) and
the discussion of the MS interaction in the following section apply to optical qubits, and our protocols may
be used to entangle these qubits as well.

2.3. Mølmer–Sørensen effective spin–spin interaction
In the MS interaction [48–52], an effective spin–spin coupling is driven by red and blue sidebands with
opposite detunings ±δ from resonance with mode l. Assuming that the Rabi frequency magnitudes |Ωj| are
uniformly equal to Ω for the qubit ions (and zero for the auxiliary ions), the near-resonant terms in the
Hamiltonian are:

HMS =
Ω

2

∑
j=jqubit

(±)jσ
(j)
+

[
a† ei(Δφb+Δkb·Z0,j+δt) + aei(Δφr+Δkr·Z0,j−δt)

]
+ H.c. (15)

Here Δkb, Δkr, Δφb, and Δφr (or kb, kr, φb, and φr for an optical qubit) represent the corresponding
quantities from equation (13) that describe the beams that drive each sideband. For interaction times
T = 2πm/δ for integer m, the MS interaction realizes the propagator for a spin–spin Hamiltonian on the
qubit ions, returning the motion to its initial state.

The exact propagator that is obtained depends both on the ratio Ω/δ and on the experimental geometry,
as follows. We consider an implementation of the ‘phase sensitive’ geometry for driving stimulated Raman
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Figure 3. Two possibilities for the static axial trapping potential for the MBBBM crystal described in the text. A harmonic
potential is shown in dashed blue, and a potential with significant but practical anharmonicity is shown in solid orange. The
confinement is chosen so that the frequency of in-phase oscillation is 0.81 MHz for both crystals. The ion crystals at equilibrium
for the anharmonic (top, orange) and harmonic (bottom, blue) potentials are shown, with the beryllium qubit ions
corresponding to the smaller spheres, along with relative participation vectors for the lowest-frequency (in-phase) mode of
motion (thicker, light-filled arrows) and the highest-frequency mode of motion (dark arrows) for each crystal. The zero-point
amplitudes of the in-phase mode in the harmonic potential are z(1)

harm = (9.56, 7.89, 7.62, 7.89, 9.56) nm, and for the
highest-frequency mode of the anharmonic potential, with 2.56 MHz frequency, they are z(5)

anharm = (−1.38, 8.35,
−8.35, 8.35,−1.38) nm. Because the latter has reduced center-of-mass motion, it is expected to have a heating rate due to
excitation by global fields that is 5.4% that of hypothetical in-phase motion at the same frequency (see appendix A).

transitions (see reference [47], the dependence of the propagator on the spacing between the ions would be
removed for the ‘phase insensitive’ geometry), which we illustrate in figure 2. In this configuration,
copropagating beams at frequencies ωo + ωq ± (ωl + δ) intersect on the ions with an orthogonal beam of

frequency ωo, such that Δ
k is axial for each orthogonal pair. Here ωo is an optical frequency detuned from a
transition between the ground-state qubit manifold and an electronic excited state, ωq is the qubit
frequency, and ωl is the frequency of the lth motional mode, upon which a and a† act. The phases and axial
wavenumbers for the beam pairs are approximately the same: Δφr � Δφb = Δφ and Δkr � Δkb.

In this configuration, population transfer between basis states is maximized for δ = 2Ω and interaction
time T = 2π/δ. The MS interaction is driven by simultaneous application of two detuned sidebands, and
the chiralities of these sidebands determine the chirality of the couplings under the MS gate. For red- and
blue-sidebands driving chirality change −Δs as described above, the MS interaction couples
|W00〉 ↔ |W2(Δs)〉. In matrix notation, the action of the gate on the state vector

(
|W00〉, |W1(−Δs)〉,

|W2(Δs)〉, |W30〉
)T

is:

U = eiπ/8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
0 −

√
3

2
u∗ 0

0 −1

2
0 −

√
3

2
u∗

−
√

3

2
u 0 −1

2
0

0 −
√

3

2
u 0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where u = e2iΔφ. The subspace spanned by the four other basis states is left invariant. For Δs = 0, the chiral
W states are left invariant. For Δs = ±1, two chiral and two achiral W states are left invariant. A maximum
of 75% population transfer can be achieved between the pairs of the remaining states separated by
Δn↑ = ±2.

2.4. Achieving uniform |Ωj| using anharmonic potentials
As discussed in section 2.2 and assumed in section 2.3, it is important that |Ωj| is uniform across the qubit
ions. The lowest-frequency, in-phase axial mode for the MBBBM crystal has nearly uniform participation.
However, this mode is especially susceptible to heating by homogeneous electric field noise [53] because of
the in-phase motion and the inverse scaling of the heating rate with frequency [54]. Therefore, it may be
better to use one of the higher-frequency modes in which some of the ions oscillate out of phase. Uniform
participation of the qubit ions in one of these modes can be achieved by introducing some controlled
anharmonicity to the trapping potential, as we illustrate in figure 3. The anharmonicity assumed here can
be realized in existing ion traps, e.g. the one described in reference [55] with ∼150 μm ion–electrode
distance. We discuss this issue in greater depth for a variety of ion species and configurations in appendix A.
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2.5. Sympathetic cooling
In section 3.2 we use sympathetic [56, 57] resolved-sideband cooling [58–60] as a dissipation mechanism
that allows one-way population flow into a target W state. Resolved-sideband cooling on auxiliary ions can
be used to ground-state cool any crystal mode in which they participate without disturbing the qubit states,
provided that the radiation used to manipulate the auxiliary species is far-detuned from the qubit-species
transitions.

3. Dissipative preparation of W states

In this section we present protocols for dissipative preparation of W states. First, we consider attempts to
extend the rapid, symmetry-based dissipative singlet-generation scheme presented by Horn et al in
reference [21] to more ions. This scheme incorporates dissipation through spontaneous decay from an
electronic excited state. Direct extension is not promising because the rate at which the target state can be
populated decreases exponentially with the number of ions. We then present a more promising approach in
which dissipation is provided by sympathetic cooling, and we provide an analysis of likely error sources.

The simulation results we present are obtained by numerical simulation of the quantum-mechanical
master equation in Lindblad form:

∂tρ = −i[H, ρ] + LDρ, (17)

where ρ is the system’s density matrix, H is the Hamiltonian (of the form prescribed by equations (13) and
(15) for a given interaction), and LD is the Lindblad dissipator:

LDρ =
∑

k

[
LkρL†

k −
1

2

{
ρ, L†

kLk

}]
, (18)

where Lk are the jump operators for the system that represent deliberate controlled dissipation and also
undesirable dissipation mechanisms such as heating of the crystal. Our simulations are carried out with
QuTiP’s master equation solver [61].

3.1. A natural extension of a scheme for dissipative singlet preparation
The scheme presented by Horn et al [21] generates a singlet state |S〉 =

(
|↑↓〉 − |↓↑〉

)
/
√

2 using engineered
decay through an electronic excited state. We briefly review the basic principle: a third stable ground-state
level |r〉 is pumped to an electronic excited state, which then decays back to | ↑〉, | ↓〉, or |r〉, randomly
populating the nine-dimensional two-qutrit Hilbert space. By implementing global carrier and
motion-adding (|n〉 → |n + 1〉) interactions that act on the qubits as |↓↓〉 ↔

(
|↓↑〉+ |↑↓〉

)
/
√

2 ↔ |↑↑〉,
and a motion-subtracting coupling from | ↑〉 to |r〉, population can be cycled through the excited state until
it becomes trapped in |S〉 ⊗ |n = 0〉, which is the sole dark state of the full system dynamics. A specific set
of levels must be chosen for this scheme so that the excited state can decay only to | ↑〉, | ↓〉, or |r〉. For the
concrete case of the 9Be+ 2S1/2 manifold, one possible choice is to use |F = 2, mF = 2〉 = | ↓〉,
|F = 1, mF = 1〉 = | ↑〉, and |F = 2, mF = 1〉 = |r〉, with a repumper laser driving the transition to the
excited state |r〉 → |2P1/2, F = 2, mF = 2〉.

Naively applying the same interactions on a three-ion system results in continuous population cycling
that leads to a steady-state distribution of population in a mixed state. So far we have not identified a
promising three-qubit protocol that uses spontaneous emission as the dissipation mechanism. However, we
briefly present one example scheme; this scheme’s flaw is that it is prohibitively slow.

We replace both the global qubit-manifold drive and the drive from | ↑〉 to the auxiliary state |r〉 of the
singlet scheme with MS interactions. For the drive to |r〉, an MS interaction enforces pair-wise transitions
and prevents one-up states |W1s〉 from coupling to states that include |r〉. Within the qubit manifold, an MS
interaction achieves for the three-qubit Hilbert space what a global interaction achieves for the two-qubit
Hilbert space: it leaves the target state invariant, but makes connections between other states. Unfortunately,
the MS interaction leaves too many states invariant. We can work around this problem by iterating over
application of an achiral qubit MS gate, driving population from | ↑〉 to |r〉 with an MS gate, and
repumping, and then applying a chiral qubit MS gate and carrying out the repumping process again. The
chirality change Δs = ±1 of the chiral MS gate is chosen to leave the desired chiral W state invariant. The
alternating chirality of the MS gates can be achieved by periodic adjustment of the spacing of the ion crystal
or the magnitude of Δk.

In figure 4, we present an illustration of the concept and a simulation of the dynamics for a chiral qubit
MS gate with Δs = +1. In the simulation, we use jump operators to model the repumping as:

L(j)
q =

√
bqΓ|q〉j〈r|j, (19)
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Figure 4. A scheme using spontaneous emission for generation of a W state, here |W1+〉. (a) Population transfer is driven by
interactions including an achiral qubit MS interaction (dotted black lines), a chiral qubit MS interaction (solid green lines), an
| ↑〉–|r〉 MS interaction (dashed red lines), and effective decay out of states involving |r〉 (snaking blue line) back to the qubit
space (black box). Population becomes trapped in the target state |W1+〉 (blue oval). (b) Simulated dynamics. From an initial
state | ↓↓↓〉 = |W00〉, MS gates and repumping cycle population through an excited state, which randomly populates the qubit
space upon decay. The full pumping process leaves the target state |W1+〉 invariant, so population accumulates there. After the
100th repumping step (200 MS gates), a fidelity of 98.0% is achieved. Since no error mechanisms are included in this simulation,
the fidelity will continue increasing aysmptotically to 1. Inset: zoomed view of the dynamics, showing that population is
transiently removed from |W1+〉 during gate operation but is returned at the end of the gate. During the qubit-manifold MS
gates, the states |W20〉 and |W2+〉 are briefly populated. During the | ↑〉–|r〉 MS gates, states involving |r〉 are transiently
populated (not shown).

where q =↑, ↓, or r indexes over the states, j indexes over the ions, and Γ is the rate of effective decay out of
|r〉. This rate is related to the lifetime of the excited state |e〉 and to the Rabi frequency and detuning of the
|r〉 ↔ |e〉 coupling [62]. It can be determined experimentally through measurement of depletion of |r〉 by
the repumper laser. The parameters b↑ = 5/12, b↓ = 1/3, and br = 1/4 approximately describe the
branching of the decay out of |e〉 [6]. Since the duration of the MS gates is expected to be the speed
bottleneck for this scheme, the simulations implement the repumping step for long enough that |r〉 is
effectively fully depleted, and the repumping dynamics are not shown explicitly. As shown in figure 4(b),
the dissipative dynamics lead to trapping of population in the state |W1+〉 that is invariant under these
combined dynamics.

Figure 4 shows that hundreds of MS gates are needed to approach 100% fidelity, even in the absence of
errors and imperfections. This illustrates a fundamental limitation of the extension of the singlet scheme to
larger numbers of qubits: as the dimension of the qubit space increases exponentially, the rate at which the
target state is populated through random decay out of the electronic excited state decreases correspondingly.
Therefore, protocols that rely on randomly populating the target state scale inherently poorly.

3.2. Dissipative preparation of chiral W states using sympathetic cooling
Now we present a more promising protocol that incorporates dissipation through sympathetic cooling,
which can convert unitary, periodic dynamics to one-way population flow. Unfortunately, it is not possible
to generate a W state by simply evolving out of the state | ↓↓↓〉 with a coupling | ↓〉 ↔ | ↑〉. Although a state
|W1s〉 can be populated under this coupling, the overall state remains separable as population flows to states
with increasing n↑. This flow can be truncated by preparing a Fock state |n = 1〉 and then operating on a
red sideband | ↓↓↓, n = 1〉 ↔ |W1s, n = 0〉 such that a W state is created under unitary evolution [24], but
implementing this strategy is not straightforward without individual addressing (or targeted subset
addressing [25]). Promising conceptually distinct unitary approaches exist, such as the composite-pulse
approach proposed in reference [26], and the best choice of strategy for W state generation will likely
depend on system-dependent considerations and capabilities.

The protocol we present gets around the challenges discussed above by iterating over two steps: first,
some fraction of the population less than 100% is transferred to the target W state through operations that
also induce a motional transition n → n + 1 on a collective mode. Second, sympathetic cooling removes
phonons from this mode. As this mode approaches its ground state, these steps can be repeated without
removing population that has already reached the target state, so that population can accumulate there over
several iterations.

From an initial state |W00〉 ⊗ |n = 0〉, the basic steps proceed as follows: an achiral MS gate transfers
75% of the population to |W20〉. A Δs = ∓1 red sideband interaction then moves this population to the
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Figure 5. Illustration and investigation of a protocol using sympathetic cooling to generate a W state, here |W1+〉.
(a) Population transfer is driven by an achiral MS interaction (dotted black lines), a chiral red sideband interaction (straight red
lines; broken lines show couplings that wrap around the edges of the diagram), and sympathetic cooling (snaking blue lines).
Only the n = 0, 1 motional Fock states are displayed next to the qubit states for simplicity. Population becomes trapped in the
target state |W1+〉 (blue oval). (b) Simulated dynamics, beginning from an initial qubit state | ↓↓↓〉 = |W00〉 and the motional
ground state. A MS gate applied for

√
2× 30 μs (gray shading) moves population to |W20〉, and then simultaneous application of

sympathetic cooling and a chiral sideband interaction move this population to |W1+〉. (c) Target W state populations at the end
of the sideband/cooling step, shown for heating rates of zero, 1 (0.0052), 10 (0.052), 100 (0.52), 1000 (5.2), and 3000 (16)
quanta/sec (quanta/iteration); higher heating rates correspond to larger infidelity. Populations after twenty iterations are
indicated next to the curves and by dotted lines. Also shown is the infidelity for the case of zero heating rate but with ∼ 3.4%
sideband Rabi rate Ωj imbalances corresponding to the lowest frequency (in-phase) mode of the MBBBM crystal in a harmonic
confining potential (red squares). Solid black line indicates a fidelity estimate of 1 − 1/4n after n iterations. If the duration of the
sideband/cooling step is increased the zero heating-rate performance of the scheme follows this approximation more closely, but
the total duration of the scheme increases.

state |W1±〉 ⊗ |n = 1〉. When the ion crystal is sympathetically cooled, the acquired phonon is removed. In
practice, the cooling and sideband interaction can be applied simultaneously. Repeated iteration of these
steps pumps population to the target state |W1±〉 ⊗ |n = 0〉, from which it cannot escape: the chiral W
states are invariant under the achiral MS gate, the Δs = ∓1 sideband does not couple |W00〉 ↔ |W1±〉, and
|W1±〉 ⊗ |n = 0〉 is prevented from evolving to |W20〉 under the ∓1-chirality red sideband because it is in
the ground state of the motion.

Figure 5 presents an illustration of the concept and a numerical investigation of the dynamics for
chirality change Δs = +1. As can be seen from figure 5(a), there is a path to the target state |W1+〉 from any
of the eight basis states. In fact, the protocol will move all population in the qubit space to the target state,
as we verify by simulating the dynamics beginning from each of 64 states in a complete basis for the space of
three-qubit density matrices [63]. Moreover, it is straightforward to adjust the interactions to generate any
of the six W states defined in equations (3)–(8).

The simulation shown in figure 5(b) iterates between application of an achiral MS pulse and
simultaneous application of the chiral sideband and sympathetic cooling. To set the timescale of the
dynamics, for concreteness we assume that a sideband transition on both the qubit and the auxiliary5 ions
can be driven in 30 μs. Therefore, the time for the MS gate is

√
2× 30 μs in the phase-sensitive geometry, as

half the optical power in one of the Raman beams, and all the power in the other, contributes to driving
each ±δ-detuned MS sideband and the sideband Rabi rate scales with the field amplitude [46]. With the
same sideband transition rate and two cooling ions, sympathetic cooling can extract phonons at a
maximum rate of approximately κ = 2/30 μs. The jump operator that implements sympathetic cooling at
this rate is L =

√
κa. Interactions of alternating chirality can be implemented by periodically changing the

spacing of the ion crystal or the magnitude of Δk.

5 For the specific case of the MBBBM crystal described in section 2.1, the significantly smaller relative participation of the magnesium
ions in the driven mode can be compensated for by using Raman beams with smaller detuning for sympathetic cooling, because a
higher photon scattering rate can be tolerated on the auxiliary species.
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Table 1. W-state fidelity after twenty iterations as a function of
phenomenological heating rate Γ applied to model a given GSC limit
n̄GSC = Γ/κ, where κ = 2/(30 μs) is the cooling rate. This heating is
applied only during the sympathetic cooling/sideband step.

n̄GSC Phenomenological heating rate Γ (s−1) Fidelity (%)

0.001 67 99.8
0.003 200 99.4
0.01 667 98.0
0.03 2000 94.4
0.1 6667 84.0
0.3 20 000 65.2

If the population transfer from |W20〉 to |W1+〉 is complete, the fidelity after n iterations is 1 − 1
4n . In

practice, this depends on the details of the sideband/cooling step. Our simulations apply the
sideband/cooling interaction for 150 μs, which achieves 99% one-way population transfer from
|W20〉 ⊗ |n = 0〉 to |W1+〉 ⊗ |n = 0〉.

3.2.1. Effect of motional occupation on preparation fidelity
This scheme relies on occupation of the motional ground state to prevent population from leaking out of
the target state during the simultaneous sideband/cooling step. Therefore, heating of the driven mode will
reduce the fidelity, and this is expected to be the limiting error mechanism if the heating is significant. On
the other hand, since sympathetic cooling is built in, the final fidelity is asymptotically insensitive to the
initial motional state. In figure 5(c) we present numerical calculations of the fidelity for several heating
rates. As described previously, this error mechanism can be mitigated by using a mode that has anti-parallel
participation vectors for different ions, which reduces its sensitivity to global fields.

Heating of the motion with rate Γ is implemented in the master equation with two collapse operators√
Γa and

√
Γa† [46, 51]. When this is combined with cooling at rate κ, implemented with collapse operator√

κa, the steady-state mean phonon number is n̄ = Γ/κ. However, when Γ is determined experimentally by
measuring the change in phonon population after a variable probe delay [64], this ratio may predict a limit
n̄GSC for ground-state cooling (GSC) that is far below what is experimentally achieved. This is because the
sideband cooling process itself includes sources of heating, such as off-resonant excitation of motion-adding
transitions and recoil heating during scattering of repump photons. To address this, in table 1 we present
additional calculations of the fidelity in the presence of heating applied only during the sympathetic cooling
step to phenomenologically model a given GSC limit. These results show that the scheme benefits from
excellent GSC, but does not require unreasonably low n̄GSC.

3.2.2. Sensitivity to calibration errors
We investigate the protocol’s sensitivity to calibration errors and present the results in figure 6. We consider
failure to properly set the ion spacing, which results in interactions that do not neatly change the chirality
according to Δs = 0 or ±1, and failure to achieve uniformity of the sideband Rabi frequencies |Ωj| across
the ions. For simplicity we focus on the case of symmetrical errors. This covers several important failure
mechanisms, for example imperfect adjustment of the depth of the potential well or of the strength of an
even-order anharmonic term. We parameterize non-uniformity of the Rabi frequencies by the ratio
ΩC/Ωavg between the Rabi rate on the center qubit ion and the Rabi rate averaged over the qubit ions, with
the rates for the left and right ions being the same. We parameterize ion-spacing errors by the deviation δφ

of the phase difference between the ions of the Raman interaction. For example, for the Δs = −1 sideband,
the phases across the ions on the a†σ− term in the Hamiltonian, which is relevant for generation of |W1+〉,
are −2π/3 − δφ, 0, and 2π/3 + δφ. Since the MS gate can be made insensitive to this phase error by using
the phase-insensitive geometry [47], and because in the phase-sensitive geometry the MS gate requires a
different ion spacing than for the sideband-transition step, we simulate the phase error only on the
sideband-transition step. As can be seen in figure 6, the fidelity is sensitive to these errors, but not
prohibitively so.

3.2.3. Choice of qubit states
Because this scheme does not use closed population cycling through an electronic excited state, there is
more freedom in the choice for the pair of states that constitutes the qubit than for schemes that rely on
spontaneous emission. A natural choice is a pair of states connected by a first-order
magnetic-field-insensitive transition. This choice of a ‘clock’ transition has benefits such as reduced
sensitivity to fluctuating magnetic field gradients, which otherwise reduce the scheme’s fidelity.
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Figure 6. Investigation of sensitivity to calibration errors and photon scattering. (a) Contour plot depicting target-state fidelity
after twenty iterations as a function of phase error δφ and Rabi-rate balance error ΩC/Ωavg − 1. The unlabeled center contour
corresponds to 99.9% fidelity. Light gray points indicate points that were simulated for contour interpolation. Light blue and
orange lines indicate cross-sections that are plotted in parts (b) and (c). (b) and (c) Cross-sections of the contour surface plotted
in part (a), showing infidelity as a function of phase error for no Rabi-rate mismatch (b), and as a function of Rabi-rate
mismatch for no phase error (c). (d) Simulated |W1+〉 population as a function of time with photon scattering error included as
described in the text. Without repumping from leakage states (orange curve), the fidelity peaks at 98.6% after 1065 μs and then
decays. With a repump time of 10 μs (blue curve, see text), the quasi-steady-state fidelity is 99.3%.

As a concrete example, we envision using a qubit consisting of |F = 2, mF = 0〉 = | ↓〉 and
|F = 1, mF = 1〉 = | ↑〉 within the 9Be+ 2S1/2 manifold, which is first-order field-insensitive at an applied
magnetic field of 11.96 mT [34].

3.2.4. Infidelity due to spontaneous photon scattering

Spontaneous photon emission after excitation of a qubit ion to an electronic excited state is an important
source of error in trapped-ion systems that use stimulated Raman transitions [65]. To numerically
investigate this effect, we simulate the case of 9Be+ qubit ions addressed by laser beams red-detuned by
1 THz from the 2S1/2 ↔ 2P1/2 transition, with beam power such that first-sideband π times are 30 μs, as
above. We assume an experimental geometry in which one Raman beam is aligned with the quantizing
magnetic field at 45◦ to the trap axis, and the other lies perpendicular to the first beam in the plane defined
by the magnetic field and the trap axis, so that the wavevector difference between the two beams is axial. We
choose σ̂− polarization and lower frequency ω− for the beam parallel to the magnetic field and π̂

polarization and higher frequency ωπ > ω− for the beam perpendicular to it, so that ωπ − ω− =

(E↑ − E↓)/� and resonant stimulated Raman transitions are driven between the | ↑〉 and | ↓〉 qubit states
with energies E↑ and E↓, respectively. These polarization and frequency choices maximize the Raman Rabi
rate and minimize the total scattering rate out of the | ↑〉 and | ↓〉 states at a given detuning from the
S1/2 ↔ P1/2 transition.

The model includes Raman scattering that leads to population loss from the qubit space by populating
ground-state levels other than | ↑〉 and | ↓〉, as well as Raman scattering that leads to transitions between
| ↑〉 and | ↓〉. Independently, these two errors lead to decay of the fidelity over time and to a reduction in the
steady-state fidelity, respectively, since the latter can be corrected by the dissipative dynamics. The model
also includes Rayleigh scattering, which induces decoherence between | ↑〉 and | ↓〉 and reduces the
steady-state fidelity to the extent that the scattering amplitudes differ for the two qubit states. Finally, we
include the recoil associated with these scattering events, whereby they induce heating of the mode used in
the scheme. We use a Lamb–Dicke parameter of η = 0.24 for these calculations, corresponding to the
highest-frequency mode in the anharmonic potential shown in figure 3, which has uniform participation of
the qubit ions. The calculations are conducted for an applied quantization field of 11.96 mT, as discussed
above.
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The results of the simulation are shown in figure 6(d). In this simulation a maximum fidelity of 98.6% is
reached after 1065 μs of operation, and then the fidelity decays due to loss of population from the qubit
space. Since this scheme uses iterated dissipative dynamics to populate the target state, population leakage
can be corrected by using repumper lasers that drive population back to e.g. | ↓〉. In the limit of
instantaneous repumping, population leakage error is then converted into decay from | ↑〉 to | ↓〉 and
dephasing of the | ↓〉 state. For a reasonable repumping time of τ rep = 10 μs from each leakage state (where
the corresponding collapse operator is scaled by

√
1/τrep), we find a quasi-steady-state fidelity of 99.3%.

The model includes heating due to recoil from scattering on repump transitions, but it neglects off-resonant
driving of other transitions by the repump beams.

Error due to spontaneous photon scattering is qubit-species dependent [65]. In general, independent of
this choice, the rate of spontaneous Raman scattering can be decreased while maintaining the rate of the
desired stimulated transitions by increasing the laser power and detuning. The Rayleigh scattering rate
cannot be reduced by the same approach, but the decoherence effect of Rayleigh scattering is typically quite
small. For example, under the conditions discussed above we calculate the rate of the decoherence-inducing
differential Rayleigh scattering to be ∼ 2 × 10−4 times the total leakage rate. On the other hand, the total
Rayleigh scattering rate is ∼ 174 times the total leakage rate, but this effect leads only to heating through
recoil, not to state changes or decoherence. Finally, it would be possible to entirely eliminate photon
scattering error if all sideband transitions were driven by a different mechanism, such as a combination of
microwave radiation and magnetic-field gradients [66–69], but this would come with its own technical
challenges.

3.2.5. Other error mechanisms
We have discussed these error mechanisms to present an overview of what must be considered for successful
implementation of this protocol. Ultimately, the errors that contribute to an experimental demonstration
will be system-dependent, and factors that we have not quantitatively analyzed above will also contribute.
For example, off-resonant coupling of the driving fields to other motional modes may be an important
error mechanism, depending on the relationship between the Rabi frequency of the sideband transitions
and the frequency separation between the modes. For the MBBBM crystal considered as our example
system, the separation between the highest frequency mode and the nearest neighbor is ∼220 kHz, and the
separation from the closest second-order sideband is ∼194 kHz. These transitions are far-detuned relative
to the 17 kHz Rabi frequency assumed for the desired sideband transitions. To further reduce the effect of
off-resonant coupling, the strength of the axial confinement may be increased, which increases these
frequency spacings and also further suppresses the second-sideband transitions by decreasing the
Lamb–Dicke parameter, or the Rabi frequencies of the sideband transitions may be reduced.

Another possible error source is thermal populations of the other modes of the ion crystal. A primary
effect is fluctuations of the Rabi rates of the desired interactions due to Debye–Waller factors coming from
n̄l > 0 on spectator modes l [46], which can affect the fidelity of the MS gates. This effect can be mitigated
by fully re-cooling each axial mode of the crystal before each MS gate, and this also presents an interesting
opportunity for system-dependent optimization: for example, if the heating and final temperature of the
lowest frequency (in-phase) mode of axial motion during the MS gate is the limiting error mechanism, each
full MS gate may be broken into a series of smaller phase-space loops, in between which this mode may be
ground-state cooled.

4. Discussion

Using the couplings available in trapped-ion systems, we have designed dissipative protocols for the
preparation of W states of three ions. The most promising protocol combines unitary couplings in the form
of sideband interactions and MS gates with dissipation through sympathetic cooling, and it avoids the need
for addressing of individual ions. The resulting effective dissipation is engineered through cooling of
motional excitations, i.e. of an external degree of freedom. Despite being dissipative, this interaction allows
correlations between internal degrees of freedom, the qubits, to survive. Damping of harmonic oscillator
auxiliary subsystems [6, 12, 19] or coupled systems [5] has previously allowed for the implementation of
dissipative schemes, and this approach holds promise for future protocols extending the range of dissipative
quantum computation. Moreover, the application of the MS gate for dissipative preparation of W states
shows again that time-dependent interactions can be useful to aid the generation of quasi-steady states, as
previous work has demonstrated [5, 6].

The unitary entangling gates that these approaches use can themselves generate maximally entangled
states, either alone or when combined with global Pauli rotations, depending on the number of ions
participating in the interaction [49]. However, the entangled states that are directly accessible this way are

12



New J. Phys. 23 (2021) 073001 D C Cole et al

generalized Greenberger–Horne–Zeilinger states of the form |GHZ〉N =
(
|↓1 . . . ↓N〉+ |↑1 . . . ↑N〉

)
/
√

N,
which fall into a fundamentally different class of entangled states from the W states that we have considered:
using local operations and classical communication, it is impossible to obtain a three-qubit W state from a
|GHZ〉3 state, even with a low chance of success [23]. Therefore, one way to conceptualize the dissipative
protocols presented here is that they facilitate conversion between entanglement classes.

There is at least one challenge that must be addressed to allow scaling of these protocols. In order to
pump population into a target state, engineered dissipative dynamics must either decouple from the target
state entirely or periodically remove population from the target state and then return it, as is the case for the
MS gates used in our schemes. Naive extension of the schemes we have presented fails at this point: in
general, for odd N > 3, achiral MS gates do not leave chiral W states invariant. For N qubits, σ(N−1)

x

interactions could prepare |W(n−1)0〉 from |W00〉 while leaving the target state invariant, thereby playing the
same role as the MS gate in the protocol presented in section 3.2. However, it is not clear how to achieve an
(N − 1)-ion interaction in practice. There may be creative solutions to this problem, and investigation
could be an avenue for future work.

The protocols we have presented are part of a new generation of strategies for dissipative entanglement
preparation that eschew timescale hierarchies in favor of symmetry-based dissipation engineering. As a
consequence, the fidelities predicted by numerical simulations are comparable to those achievable with
unitary schemes [27]. Future efforts may explore these concepts beyond state preparation, such as in new
protocols for autonomous quantum error correction and quantum sensing [19], as well as for quantum
simulation [20, 70].
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Appendix A. Achieving uniform Rabi rates using anharmonicity

As discussed in the main text, the fidelity achieved by the protocols we present is maximized when the
Raman beam intensity is equal on the qubit ions and the qubit ions have uniform participation in the
driven mode. Ideally, this mode also has only weak coupling to electric field noise that is homogeneous over
the length of the ion chain (in order to reduce heating) and is separated in frequency from other modes to
avoid off-resonant coupling. For a linear ion crystal these requirements can be satisfied by adjusting the
axial trapping potential, which affects the ion equilibrium positions and mode vectors. Specifically, we
consider electrostatic trapping voltages of the form:

V(x) =
1

2
k2x2 +

1

4
k4x4, (A1)

which represents the simplest symmetrical deviation from a harmonic potential. By adjusting the terms k2

and k4, modes with the desired relative ion participation can be engineered.
With three qubit ions, the smallest symmetrical mixed-species crystals have two auxiliary ions and

always have a qubit ion in the center. Modes with even parity (e.g. (←,←, 0,→,→), schematically) do not
couple to uniform electric fields and consequently have very low heating rates, but they also have no
participation from the center ion. In a crystal with ions of non-uniform masses, the odd-parity modes
typically have some center-of-mass motion and therefore couple to homogeneous electric fields. The
heating rate ˙̄nl of a given mode l with frequency ωl due to excitation by a uniform external field at the same
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Table 2. Sample ion chain configurations for various species combinations along with k2 parameter that achieves uniform coupling
amplitudes for the qubit ion (bold). All k4 parameters used are of amplitude 0.0156 μV μm−4 (an ‘experimental maximum’ that we
enforce, although it is very likely that many systems can achieve higher amplitudes), with the exponent (−) on the corresponding k2

parameter when the value of k4 used was negative. C(l)/C0 quantifies the coupling to spatially uniform electric field noise compared to
the coupling for the lowest-frequency mode of the same crystal in a harmonic potential. Unless otherwise stated, crystals in
configurations listed above have a >130 kHz separation between nearest frequency modes, minimizing the effects of off-resonant
coupling.

Ion chain Normal-mode amplitudes z(l)
j (nm) Freq. (MHz) k2 (μV μm−2) C(l)/C0

Mg–Be–Be–Be–Mga −1.38, 8.35, −8.35, 8.35, −1.38 2.56 −0.729 0.0542
Be–Mg–Mg–Mg–Be −4.17, 2.66, −2.66, 2.66, −4.17 6.00 25.0(−) 0.153
Ca–Be–Be–Be–Caa −0.823, 8.58, −8.58, 8.58, −0.823 2.48 −0.894 0.123
Ca–Ca–Ca–Ca–Cab −2.74, 4.74, −4.74, 4.74, −2.74 1.42 0.436 0.001
Ca–Sr–Sr–Sr–Ca −3.53, 2.70, −2.70, 2.70, −3.53 1.73 6.12 0.093
Ba–Yb–Yb–Yb–Bac −2.32, 3.13, −3.13, 3.13, −2.32 0.778 1.05 0.011
Ba–Yb–Yb–Yb–Ba 3.45, 3.51, 3.51, 3.51, 3.45 0.527 19.2(−) 1.00

aCrystals with lighter ions in the center may be more difficult to arrange, depending on the system’s capability to rearrange ions.
bHere we use ‘Ca’ to mean 43Ca+. All other ‘Ca’ in this table refer to 40Ca+.
cIn this configuration, the next highest frequency mode is at 0.737 MHz, so the scheme may suffer from significant off-resonant
coupling. If the experimental setup is capable of higher k4 and k2 values, the frequencies, as well as the frequency difference, can be
increased. For this ion chain we list the in-phase mode in the next row, which does not suffer from this issue but has a higher heating
rate.

frequency is given by (generalized from reference [57]):

˙̄nl =
q2SE(ωl)

4�ωl

⎛
⎝ N∑

j=1

v(l)
j√
mj

⎞
⎠

2

, (A2)

=
q2SE(ωl)

4�ωl
C(l), (A3)

where q is the fundamental charge, SE(ωl) is the power spectral density of spatially uniform electric-field
noise, v(l) is the (root-mass-weighted) normalized eigenvector for mode l, and mj are the ion masses. We
define C(l) as a frequency-independent measure of the mode’s coupling to global fields. Typically, a given
mode’s heating rate may be decreased by increasing the mode’s frequency.

By considering the axial trapping potential and the Coulomb force, the equilibrium positions of the ions
and the normal mode vectors v(l) can be numerically determined [44, 71]. In order to investigate the general
practicality of the schemes we described in the main text, we performed this analysis for several
mixed-species ion crystal configurations.

We considered four mixed-species ion combinations: 9Be+/25Mg+, 9Be+/40Ca+, 40Ca+/88Sr+, and
138Ba+/171Yb+. We also consider an equal-mass, mixed-state configuration of 43Ca+ where ions of the same
species but in a different state act as coolant ions [72]. We explored this range of masses and mass ratios to
illustrate the effect mass has on the feasibility of achieving ideal engineered modes for this experiment.
Engineering modes with equal ion participation where the frequencies of all five axial modes are
well-separated (>100s of kHz away) is particularly difficult for the 138Ba+/171Yb+ combination due to the
inherently low mode frequencies of these heavier ions. For all the ions we consider, the value of k2 varies
from 30 to 60 μV μm−2 for typical single-ion harmonic trapping potentials [73–75].

The values of k4 that can be practically realized depend on geometric factors such as the size of the
electrodes and distance from the ion, as well as the maximum electrode voltage that the system can achieve
[76]. We used a maximum anharmonicity of k4 ≈ 0.0156 μV μm−4 because this should be achievable in
traps such as those described in references [55, 71]. In general, ion traps with smaller ion-to-electrode
distance and higher voltages should be capable of higher k4.

Most of the ion chains we considered are symmetric combinations in the order mLmHmHmHmL, where
mL (mH) denotes the lighter (heavier) ion of the two. We also investigated crystals of the form
mLmHmLmHmL, and we found that in general the modes were not suitable when tuned to have equal ion
participation in each species: using the highest frequency mode, the difference between the highest two
frequencies was consistently less than 4%; the middle frequency mode has low mH ion participation; and
the lowest frequency mode has high heating rate. With the exception of the MBBBM crystal presented in the
main text (which is preferred over BMMMB because 9Be+ has a lower spontaneous emission error than
25Mg+ for a given laser intensity, so it serves as a better qubit), we do not consider crystals of the form
mHmLmLmLmH when a good set of parameters can be found for other configurations, because these may be
more difficult to arrange in practice.
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Table 2 summarizes the results of the analysis. We present the normal mode participation vectors and
frequencies for optimized values of k2 and k4, along with the mode’s coupling to homogeneous external
fields as defined in equation (A2). For the participation vector, we list z(l)

j =
√
�/2mjωlv

(l)
j , the ground state

wavefunction root-mean square size for ion j in mode l [77]. The Lamb–Dicke parameter η(l)
j = Δk · |z(l)

j |
quantifies ion j’s coupling in mode l to a pair of Raman beams with axial wavenumber difference Δk. The
heating rate parameter C(l) is heavily dominated by the ion mass, so we normalize it by the C0, the value of
C(l) for the in-phase mode of the same crystal in a harmonic potential (which is the closest to a ‘true’
center-of-mass mode for a mixed-species ion crystal in a harmonic potential, and thus has the highest
heating rate).
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