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Octave-spanning frequency combs have been successfully
demonstrated in Kerr nonlinear microresonators. These mi-
crocombs rely on both engineered dispersion, to enable
generation of frequency components across the octave,
and on engineered coupling, to efficiently extract the gen-
erated light into an access waveguide while maintaining a
close to critically coupled pump. The latter is challenging,
as the spatial overlap between the access waveguide and the
ring modes decays with frequency. This leads to strong cou-
pling variation across the octave, with poor extraction at
short wavelengths. Here, we investigate how a waveguide
wrapped around a portion of the resonator, in a pulley
scheme, can improve the extraction of octave-spanning mi-
crocombs, in particular at short wavelengths. We use the
coupled-mode theory to predict the performance of the pul-
ley couplers and demonstrate good agreement with exper-
imental measurements. Using an optimal pulley coupling
design, we demonstrate a 20 dB improvement in extraction
at short wavelengths compared to straight waveguide
coupling. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004737

Kerr solitons generated in nonlinear microresonators [1] are
promising for many applications in telecommunications [2],
range measurement [3], and optical frequency metrology
[4]. However, for frequency metrology in particular, many ap-
plications require octave-spanning bandwidth for full stabiliza-
tion through the f -2f technique [5]. Suitable engineering of
the resonator dispersion profile for octave bandwidth [6,7], or
even super-octave bandwidth [8], has been widely reported,
and octave-spanning soliton frequency combs have been dem-
onstrated [9,10], along with f -2f stabilization [4,11]. Such
stabilization requires sufficient power at the frequencies of

interest. This ultimately depends not only on the generated in-
tracavity field and ability to take advantage of effects like tar-
geted dispersive wave (DW) emission [7,12,13], but also on the
extraction of the intracavity field, usually through evanescent
coupling to an inplane waveguide (or waveguides) for microring
resonators. Efficient extraction over an octave of bandwidth is
particularly nontrivial due to the wavelength dependence of both
the phase-matching and the spatial-mode overlap between the
resonator and waveguide modes.

In this Letter, we characterize an approach to overcome this
challenge, particularly at short wavelengths, based on a pulley
configuration in which a portion of the access waveguide is
wrapped around the microring [14]. Though utilized in our
recent octave-spanning microcomb works [4,9,11], this ap-
proach was not studied in detail. Here, we present a basic
coupled-mode theory (CMT) formalism to design the pulley
to improve resonator-waveguide coupling, thus comb extrac-
tion at short wavelengths, while maintaining desirable coupling
in the pump and long wavelength bands. One consequence of
pulley coupling is the introduction of narrow spectral windows
in which essentially no coupling occurs, due to a complete
phase mismatch between the ring and waveguide modes.
Consequently, it is important to control the spectral position
of these windows in which no coupling occurs, which we refer
to as antiphase-matched frequencies, so that they are separated
from the regions of interest, namely the pump and DW
frequencies. Experimentally, we validate both the control of
the pulley antiphase-matched frequencies and the enhancement
of short wavelength extraction, by ≈20 dB relative to conven-
tional point coupling using straight waveguides.

A number of computational approaches have been used to
model coupling between ring resonators and waveguides
[14–16]. Here, we model resonator-waveguide coupling in
an integrated planar geometry by considering only the region over
which their fields interact [Fig. 1(a)], with microring outer radius
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R and ring width RW separated by a gap G from the coupling
waveguide of width W . Using the spatial CMT formalism
common to waveguide directional couplers [17], we determine the
per-pass coupling coefficient from resonator to waveguide κr→wg,
based on the overlap of the ring and waveguide fields, integrated
over the coupling portion. From there, the coupling quality factor
Qc is obtained and compared to a typical resonator intrinsic qual-
ity factor (Q i) to gauge whether the coupling is at an appropriate
level, namely close to critical coupling at the pump Qc ≈ Q i.

The ring-waveguide coupling coefficient is

κr→wg �
Z
L
Γ�ω, l�eiϕdl , (1)

with L being the optical path and Γ the overlap of the ring
mode projected onto the waveguide mode as

Γ�ω, l� � iω
4

Z
S
�εwg − εR�E�

R · Ewgdrdz, (2)

with ω the angular frequency, and ER,wg the electric field of
ring and waveguide mode, respectively, normalized such that
P � 1

2

RR �E ×H �� · θ̂drdz � 1 [17], with r, θ, and z being
the radial, azimuthal, and vertical directions as taken from
the center of the ring [Fig. 1(a)]. εR,wg is the dielectric permit-
tivity considering only the ring and waveguide, respectively.
The accumulated phase term in Eq. (1) corresponds to
ϕ � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Δβ∕2�2 � Γ2

p
, where Δβ � m

Rwg
− nwgeff

ω
c0
� ω

c0
Δnwgeff

is the difference of propagation constant between the ring
and the waveguide mode, within the waveguide, with m the
azimuthal mode number of the ring for a given resonance fre-
quency, Rwg � R � G �W ∕2, and c0 the speed of light in
vacuum.

The effects of the coupling coefficient, κr→wg, the phase-
mismatch Δβ, and the mode overlap Γ can be combined into
a single quantity describing the coupling strength known as the
coupling quality factor Qc, defined as

Qc � ω
nRg
c0

2πR
jκr→wgj2

, (3)

where nRg is the group index of the ring resonator. It is conven-
ient to compare Qc with the intrinsic quality factor Q i and
to define the extraction efficiency as η � �1� Qc∕Q i�−1.

The basic challenge that we address is conceptually
illustrated in Fig. 1 and is easy to explain using this CMT
framework. Straight waveguide coupling to a ring resonator in-
volves a limited interaction length over which the waveguide
and resonator modes spatially overlap, leading to close to a
point-like coupling region, particularly for small-diameter
rings. At long wavelengths (low frequencies) and for a carefully
chosen gap sizeG, the overlap Γ can be appreciable enough that
a short interaction length is adequate, yielding Qc comparable
to Q i (i.e., critical coupling). However, as seen in Figs. 1(a) and
1(b), as the wavelength decreases (frequency increases), each
mode is more confined, leading to a reduction in Γ, and Q c

increases exponentially with frequency. This results in poor cou-
pling at short wavelengths, with Qc orders of magnitude higher
than Q i [Fig. 1(b)]. This is problematic for octave-spanning
combs, as illustrated in Fig. 1(c). Here, the spectrum of the in-
tracavity field is simulated by solving the Lugiato–Lefever equa-
tion with the open-source pyLLE package [18], for a geometry
appropriate for supporting octave-span operation. Though the
dispersion has been engineered to support nearly harmonic
dispersive waves at 280 and 155 THz, the >100× difference
in Qc will lead to very different out-coupled powers (given a
Q i ≈ 3 × 106 that is not expected to significantly vary with
wavelength), as seen in the plot of η in Fig. 1(c). This will
be a major impediment to direct self-referencing.

To overcome this issue, it is possible to increase the inter-
action length between the waveguide and the ring by wrapping
the former around the latter, resulting in a pulley coupling
design [14] shown schematically in Fig. 2(c). We note that
the overlap coefficient Γ in Eq. (2) is independent of the posi-
tion along the optical path L, and the accumulated phase has to
be accounted for across the pulley length Lc, the length for
which the gap is constant between the ring and the waveguide.
Thus Eq. (1) becomes

κr→wg � Γ�ω�LceiϕdL � ΓLcsinc
�
Lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Δβ∕2�2 � Γ2

q �
,

(4)

with sinc�x� � sin�x�x. Hence, Eq. (3) can be rewritten as

Qc � ω
nRg
c0

2πR
h
ΓLc sinc�Lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Δβ∕2�2 � Γ2

q
�
i−2

: (5)

The above accounts only for the region where the resonator-
waveguide gap is constant, and not where the waveguide bends
toward and away from the ring, as seen in Fig. 2(c). To account
for this, we evaluate Eq. (1) in these regions, resulting in a
coupling coefficient κ1. The ratio κ1�ω�∕Γpulley�ω� gives the
effective length of the curved portion [Fig. 2(c)]. Hence,
one can then introduce an effective pulley length eLc�ω� � Lc�
2κ1�ω�∕Γpulley�ω� that replaces the pulley length in Eq. (4).
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Fig. 1. (a) Schematic of the optical modes of the ring resonator coupled
to a straight waveguide at the DW and pump frequencies. (b) Coupling
quality factor Q c (blue, left y axis) and ring/waveguide mode overlap Γ at
the coupling point (red, right y axis), for R � 23.3 μm,
RW � 1600 nm, W � 550 nm, and G � 700 nm. (c) Simulated in-
tracavity comb spectrum. The variation in Qc in (b) indicates that high-
frequency comb components will not be well extracted, as shown through
the extraction efficiency η assuming Q i � 3 × 106 (green).
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Interestingly, Eqs. (4) and (5) suggest that resonances in the
coupling will happen according to

Δnwgeff � 2
c0
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kπ∕eLc�2 − Γ2

q
; k ∈ N: (6)

Physically, these resonances correspond to locations where the
access waveguide and the ring waveguide are antiphase-matched

and are not observed for a straight waveguide due to the limited
interaction length (over which the gap is continuously varying).
To investigate further, we calculateQc using parameters that cor-
respond to the experimental system studied, that is, 780 nm
thick silicon nitride (Si3N4) microrings that are symmetrically
clad in silica (SiO2), with R � 23.3 μm. We pick RW �
1600 nm (resulting in the simulated frequency comb shown
in [Fig. 1(b)], along with W � 550 nm and G � 700 nm.
As shown in Fig. 2, the antiphase-matching condition results
in sharp peaks in Qc for frequencies that vary with Lc. At these
frequencies, regardless of the overlap between the ring and the
waveguide modes, no transfer of energy occurs. The behavior
of Qc on either side of the resonances is important for octave-
spanning comb applications. On the blue side (short wavelengths),
the overall increase in interaction length results in smaller Qc (im-
proved coupling) than in the straight waveguide case. On the red
side (longer wavelengths), the difference in Δnwgeff , accumulated
over Lc, keepsQc larger than in the straight waveguide case, where
the rings are generally overcoupled. The net result is a reduced
wavelength dependence in Qc (outside the antiphase-matched
window) than for a straight waveguide. We also note that when
the pulley is sufficiently long, higher orders of antiphase-matching
can be satisfied (i.e., k > 1), leading to multiple resonances inQc.

To validate the CMT modeling, we first verify the pulley res-
onance behavior through linear transmission measurements of de-
vices designed to show a Qc resonance within the 182 THz to
207 THz tuning range of our laser source. We keep the pulley
parameters fixed, namely gap G � 800 nm, waveguide width
W � 750 nm, and pulley coupling length Lc � 40 μm, while
the ring width RW is varied. This results in variation of the effective
index of the microring nringeff , leading to a modification of the anti-
phase-matching condition and hence the spectral position of the
corresponding frequencies. By fitting ∼25 resonances of the first-
order TE mode family that appear within the laser scan range, we
extract the spectral dependence ofQc [Fig. 3(a)] for each RW , tak-
ing into account internal losses, coupling, and backscattering [19].

Simulations ofQc through CMTmatch both the values and
the trend of the experimental Qc, including the divergence at
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responding pulley lengths. (c) Cartoon depicting the behavior of the
electric field for the three frequencies shown as dashed lines in (b),
corresponding to the DW and pump frequencies, for Lc � 15 μm.
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Fig. 3. (a) Linear transmission measurement of Q c (circles) for a Lc � 40 μm pulley waveguide, for a ring width of 1400 nm (blue), 1500 nm
(green), and 1600 nm (purple). The solid and dashed lines represent the simulated Qc for a waveguide width of 723 and 733 nm, respectively. The
error bars we report are one standard deviation values based on nonlinear least squares fits to the model from Ref. [19]. (b) MI combs obtained for
different ring widths. The dips in the comb profiles correspond to the pulley antiphase-matched frequencies and are highlighted through the solid
lines. The dotted and dashed lines represent the theoretical position of the pulley antiphase-matched frequencies, and hence the expected dip in the
MI comb spectra, for a waveguide width of 723 and 733 nm, respectively.
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resonance. Moreover, one can reproduce the variation in theQc

antiphase-matching spectral position with RW due to the
change of effective index. The simulations also show the differ-
ence of sensitivity in the dimension between the ring and the
waveguide. As the waveguide is narrower with a mode less con-
fined than the ring, a small variation of its width results in a
significant change in its effective index. Hence, by only chang-
ing the waveguide width by 10 nm, the antiphase-matching
frequency shifts by about 5 THz. To achieve the same shift,
one needs to modify the RW by 50 nm. This gives the ability
to tune the position of the pulley antiphase-matched frequency
while keeping the microring resonator at a fixed geometrical
dimension that is likely already dispersion-optimized.

Outside the tunable laser range, it is possible to extract the
position of the pulley antiphase-matched frequency by measuring
the spectra of modulation instability (MI) combs generated
through strong pumping (Ppmp � 200 mW) of the resonators
at ≈1550 nm, on the blue-detuned side of a cavity resonance.
The spectral components in theseMI combs are not phase-locked,
and the overall comb acts as a quasi-continuous-wave, spectrally
broadband source. Thus, the pulley coupling can be studied using
these states over a spectral range as broad as the comb bandwidth.
To confirm this, we measure the MI comb spectra of the devices
characterized linearly [Fig. 3(b)]. We observe that the position of
the antiphase-matched frequency obtained through linear charac-
terization of the device (by extracting Qc) and through measuring
the position of the dip in the MI comb is consistent. The latter
method also agrees with the CMT simulations, and the antiphase-
matched frequency is within the fabrication uncertainty.

We now compare a pulley coupling design optimized for ex-
traction of an octave-spanning microcomb, namely, with a cou-
pling antiphase-matched frequency in between the pump and
the short wavelength DW, against the straight waveguide coupling
for the same ring parameters. We first characterized Qc (through
linear transmission measurements) in both the pump band and
near the short wavelength DW, around 193 and 280 THz, respec-
tively [Fig. 4(a)] using two continuous tunable lasers centered
around 1550 and 1050 nm. We were unable to measure any res-
onance of the first-order TE mode in the 280 THz range for the
straight waveguide, as expected from simulations where Qc is

orders of magnitude higher than the expected Q i ≈ 3 × 106 (as
measured in other bands). In contrast, the pulley devices, for both
Lc � 15 μm and Lc � 17 μm, exhibit a difference inQc of only
1 order of magnitude between the two bands and show good
agreement with the values predicted by the CMT. Finally, from
MI comb spectra [Fig. 4(b)], the advantage of using the pulley
coupling approach for extraction is apparent. Pumping both
the straight waveguide and the Lc � 15 μm pulley devices such
that the long DW and overall comb shape are the same, the pulley
coupling shows a clear advantage in extracting the short DW with
a >20 dB increase in power obtained. This enhancement of
short DW extraction has recently been applied in studies of
octave-spanning soliton microcombs [4,9,11,20].

In conclusion, we have presented a CMT formalism to design
pulley couplers to help with the extraction of octave-spanning
spectra from chip-integrated, microring-based frequency combs.
We use the CMT to elucidate the roles of the phase mismatch
and spatial overlap in the wavelength-dependent coupling spec-
trum. Finally, we show that using such pulley coupling increases
by ≈20 dB the extraction of the short wavelength part of an
octave-spanning frequency comb compared to the same resona-
tor with a straight waveguide coupling.
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