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Stroboscopic approach to trapped-ion quantum information processing with squeezed phonons
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In trapped-ion quantum information processing, interactions between spins (qubits) are mediated by collective
modes of motion of an ion crystal. While there are many different experimental strategies to design such
interactions, they all face both technical and fundamental limitations to the achievable coherent interaction
strength. In general, obtaining strong interactions and fast gates is an ongoing challenge. Here, we extend
previous work [W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, and M. Foss-Feig, Phys. Rev.
Lett. 122, 030501 (2019)] and present a general strategy for enhancing the interaction strengths in trapped-ion
systems via parametric amplification of the ions’ motion. Specifically, we propose a stroboscopic protocol using
alternating applications of parametric amplification and spin-motion coupling. In comparison with the previous
work, we show that the current protocol can lead to larger enhancements in the coherent interaction that increase
exponentially with the gate time.

DOI: 10.1103/PhysRevA.100.043417

I. INTRODUCTION

Trapped ions are a well-established platform for numerous
quantum applications, including quantum computation [1],
quantum simulation [2], and quantum metrology [3]. One key
advantage of trapped ions compared to other quantum plat-
forms is the relatively large ratio between achievable coherent
interaction rates and decoherence rates. This large ratio en-
ables high-fidelity single-qubit and two-qubit operations [4,5],
and renders ion traps amongst the most capable platforms for
generating large amounts of useful entanglement [6,7].

Nevertheless, trapped ions are not without their own spe-
cific challenges and shortcomings [8–10]. In absolute terms,
interaction strengths are small compared to other technologies
based on solid-state or superconducting qubits, leading to
relatively slow gates. And while the achievable gate fidelities
are state of the art, significant improvements are desirable and
most likely necessary for scalable quantum computation. In
all trapped-ion experiments to date, spin-spin interactions are
generated by controllably coupling internal states of the ions
to collective motional modes of a crystal in which they sit
through the application of a spin-dependent force [11–13].
Regardless of how the spin-dependent force is created (either
through optical dipole forces or through magnetic-field gra-
dients), there are both technical and fundamental limitations
to how strong it can be—and therefore how fast gates can
be accomplished—without degrading the gate fidelity. For
example, the spin-dependent force is often limited technically

by the availability of the laser power (in optical gates) or
the current that can be driven into a thin trap electrode (in
microwave gates). Other more fundamental tensions between
gate speed and fidelity exist, e.g., arising from off-resonant
coupling to auxiliary motional modes [14–16].

Recently we proposed a mechanism [17] to use para-
metric amplification (PA), via modulation of the ions’ trap-
ping potential at twice the target motional mode frequency
[18], to enhance the spin-spin interaction strength at a fixed
strength of the spin-dependent force. The basic idea of us-
ing a parametric drive can be summarized as follows. The
effective spin-spin interaction arises from the spin-dependent
acquisition of geometric phase accrued through displacements
of the mechanical modes of the ion crystal [19–21]. These
spin-dependent displacements are seeded by a spin-dependent
force (SDF), and further amplified spin-independently by a
parametric drive that modulates the trapping potential (see
Fig. 1). As a result of this amplification, the ion can acquire
an enhanced spin-dependent geometric phase per unit of time.
In Ref. [17], we proposed a continuous protocol in which a
spin-dependent force and the parametric drive were applied
at the same time, and showed that the total Hamiltonian can
be mapped to the original spin-dependent Hamiltonian with
a spin-motion coupling strength that grows algebraically in
the strength of the parametric drive. Here, we extend this
idea by studying a protocol where the PA and the SDF are
applied in nonoverlapping pulses. Our results show that a
stroboscopic protocol of this sort can have an exponential
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FIG. 1. (a) Trapped-ion setup with a spin-dependent optical
dipole force from off-resonant laser beams and parametric amplifi-
cation from a modulation of the trap potential. (b) A square protocol
using a SDF with (red square) and without (blue square) parametric
amplification.

enhancement in the geometric phase, leading to significantly
greater enhancements at long interaction times. This approach
may be useful in other related systems with boson-mediated
interactions modified by PA, such as phonon-mediated super-
conductivity [22], optomechanics [23], and cavity or circuit
QED [24,25].

The paper is organized as follows. In Sec. II, we first
introduce the basics of quantum simulations with trapped ions
and discuss a stroboscopic protocol using only a SDF. We
then summarize some of the challenges in generating coherent
spin-spin interactions with spin-dependent forces and trapped
ions. In Sec. III, we present the stroboscopic protocol with
parametric amplification, including discussions on the process
of parametric amplification, the details of a “square” strobo-
scopic protocol with both PA and SDF, and an error analysis.
We summarize our paper and provide an outlook that includes
a discussion of some of the tradeoffs in implementing PA in
Sec. IV. For better readability, we defer detailed derivations
and further explanations to the Appendices.

II. OVERVIEW OF QUANTUM SIMULATION
WITH TRAPPED IONS

A. The effective Hamiltonian

The Hamiltonian describing a crystal of N trapped ions
with two long-lived internal states can be written as (h̄ = 1)
[26]

Ĥions =
∑

m

ωmâ†
mâm + ωz

2

N∑
i=1

σ̂ (i)
z , (1)

where âm is the annihilation operator of the mechanical mode
with frequency ωm, and σ̂ (i)

z is the z-Pauli matrix for the ith
spin with the qubit frequency splitting ωz.

The most common way to generate entanglement between
trapped-ion spins is to create effective spin-spin interactions
mediated by the collective ion motion through the application
of an oscillating SDF. This is most often achieved using
noncopropagating lasers to either drive stimulated Raman
transitions [27] or to generate an ac Stark shift on the qubit
transition that is spatially varying [28]. Note that recently it
has also been achieved using strong magnetic-field gradients

in surface-electrode traps [12,13]. Without loss of generality,
we consider a SDF that couples the internal spin σ̂ (i)

z to the
z direction of the external ion motion. In the Lamb-Dicke
regime and in the rotating frame of the qubit and the normal
modes, the SDF Hamiltonian [29] is

ĤS(t ) = F sin (μt )
N∑

i=1

ẑi(t )σ̂ (i)
z . (2)

The ion position operators can be written ẑi(t ) =∑N
m=1 bi,mz0m(e−iωmt âm + eiωmt â†

m), where z0m = √
h̄/2Mωm,

M is the ion mass, and bi,m are the normal-mode
transformation matrix elements obeying

∑N
i=1 bi,mbi,l = δml

and
∑N

m=1 bi,mbj,m = δi j [30]. When the SDF is generated by
two noncopropagating lasers with wave-vector difference �k,
the Lamb-Dicke regime requires �k

√
〈ẑ2

i (t )〉 � 1.
The formal expression for the unitary evolution due to the

Hamiltonian ĤS (t ) is given by

ÛS (t, t0) = T exp

(
−i

∫ t

t0

dt ′ĤS (t ′)
)

= exp

(
−i

∫ t

t0

dt ′ĤS (t ′)

− 1

2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[ĤS (t ′), ĤS (t ′′)] + · · ·
)

= exp

[
N∑

i=1

φ̂i(t, t0)σ̂ (i)
z

]

× exp

⎡
⎣i

N∑
i, j=1

�i j (t, t0)σ̂ (i)
z σ̂ ( j)

z

⎤
⎦ (3)

where T is the time-ordering operator. The second line
of the above equation is obtained using Magnus’s expan-
sion. Because [ĤS (t1), [ĤS (t2), ĤS (t3)]] = 0 [31], we ar-
rive at the third line, where the first term represents
spin-motion coupling and the second term is the effec-
tive spin-spin interaction mediated by the mechanical mo-
tion. The spin-motion coupling results in a spin-dependent
displacement of the mechanical motion with φ̂i(t, t0) =∑N

m=1 [αi,m(t, t0)â†
m − α∗

i,m(t, t0)âm] such that the displace-
ment of the mth motional mode from the ith ion follows the
trajectory ±αi,m(t, t0) for |±〉i, respectively. Here σ (i)

z |±〉i =
±|±〉i and

αi,m(t, t0) = −i2bi,m fm

∫ t

t0

sin(μt ′)eiωmt ′
dt ′, (4)

with fm ≡ Fz0m/2. If the counter-rotating term is neglected,
then at a time given by an integer multiple of 2π/|μ − ωm|
the displacement of the mth mode αim = 0, i.e., the spin and
motion are disentangled. The phase �i j is given by

�i j (t, t0) = Im

[∑
m

∫ t

t0

dα j,m(t ′, t0)

dt ′ α∗
i,m(t ′, t0)dt ′

]
. (5)

It is called a geometric phase because it is twice the sum of the
geometric area accumulated by the trajectory of each mode.
As a simple example of how the unitary dynamics describing
a spin-spin interaction can be engineered, we consider a
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stroboscopic protocol that results in a square trajectory [as
indicated by the arrows in Fig. 1(b)] with a SDF that is
resonant with a single mode, e.g., the center-of-mass motion
corresponding to m = 1 and μ = ω1. This can be achieved
by changing the phase of the SDF by π/2 after every T/4,
where T is the total evolution time. In place of Eq. (3), the
unitary evolution of each segment can be now more simply
represented by D̂(

∑N
i=1 αi,1σ̂

(i)
z ) with αi,1 = f1T/(4

√
N ) and

the displacement operator D̂(α) ≡ exp (αâ† − α∗â). The en-
tire protocol is given by the following evolution:

D̂
(

−i
N∑

i=1

αi,1σ̂
(i)
z

)
D̂

(
−

N∑
i=1

αi,1σ̂
(i)
z

)
D̂

(
i

N∑
i=1

αi,1σ̂
(i)
z

)

× D̂
(

N∑
i=1

αi,1σ̂
(i)
z

)
= exp

⎡
⎣i�

N∑
i, j=1

σ̂ (i)
z σ̂ ( j)

z

⎤
⎦, (6)

where � = 2( f1T/4)2/N and we have used D̂(α)D̂(β ) =
D̂(α + β ) exp (iIm[αβ∗]) [32].

B. Challenges in generating coherent spin-spin interactions
with spin-dependent forces

1. Gate time

As can be seen from Eq. (6), the minimum gate time
for a particular entangled spin state obtained with a geomet-
ric phase � is limited by the achievable size of the spin-
dependent force f as

T ∝
√

�

f
. (7)

Here, we drop the subscript in f1 for simplicity. This relation
can be a technical limitation because larger laser power may
not be available or it may not be possible to drive a larger
current through a thin electrode of a trap.

2. Spontaneous photon scattering

Even assuming we have access to stronger laser powers,
this may not help to reduce the decoherence. For example, in
experiments employing optical dipole forces to generate the
SDF, the spontaneous photon scattering rate is proportional to
the laser power of the driving beams. In some experiments, the
dominant source of decoherence is due to photon scattering
and occurs at a rate � ∝ f [8,9]. Therefore, preparation of
a particular entangled spin state is accompanied with the
accumulated decoherence that is independent of f :

�T ∝
√

�. (8)

3. Residual spin-motion entanglement

The spin-spin interactions may also suffer decoherence
from residual motional displacements that produce spin-
motion entanglement. This happens when the motional modes
do not close a loop in phase space at the gate time, i.e.,
αim(T ) 
= 0. The origin of the residual displacements can be
categorized into two cases: (1) due to imperfect control of
system parameters, such as time and frequency; and (2) due
to coupling to multiple modes with different frequencies, such
that not all of them return to the origin in phase space at the

same time. This problem becomes more severe when the num-
ber of ions increases. Parametric amplification can mitigate
this second source of residual spin-motion entanglement.

III. ENHANCING COHERENT INTERACTION WITH
PARAMETRIC AMPLIFICATION

In Ref. [17] we proposed to use a spin-independent modu-
lation of the trapping potential in order to enhance the coher-
ent spin-spin interaction and mitigate the limitations discussed
above. The spin-dependent displacements of the phonons are
seeded by the spin-dependent force, and further amplified by
a simultaneously applied spin-independent parametric drive.
In an extension to this previous work [17], we now consider
alternating the application of a spin-dependent force with
interspersed periods of trap modulation. In this way, the me-
chanical modes can once again acquire an enhanced geometric
phase per unit of time [the red square in Fig. 1(b)]. For the
square protocol, we quantify the enhancement by the factor G
defined through the relation

� = G
2

N

(
f T

4

)2

. (9)

A. Parametric amplification

Before presenting the protocol, we specify the form of
PA discussed here. The PA process amplifies motion along
one quadrature of a harmonic oscillator and attenuates motion
along the conjugate quadrature. In trapped ions, this can be
done by driving the appropriate ion-trap electrodes at close to
twice the motional resonance frequency [18,33]. As shown in
the Appendices, a parametric drive on all the ions can be trans-
formed into a summation of parametric amplification on each
mode separately. Applying the rotating-wave approximation
(RWA), we obtain

ĤPA(t ) =
N∑

m=1

Ĥ(m)
PA (t ), (10)

with

Ĥ(m)
PA (t ) = − i

2

(
gme−i2�mt a†2

m − g∗
mei2�mt a2

m

)
(11)

where gm ≡ e|V |eiθ

Mωmd2
T

, �m = (ωp/2 − ωm), and ωp is the para-
metric modulation frequency. Here V is the voltage of the
parametric drive and dT is a characteristic trap dimension
as discussed in Appendix A. Since the Hamiltonian is time
dependent, the unitary evolution is given by

ÛP(t, t0) = T exp

(
−i

∫ t

t0

dt ′ĤPA(t ′)
)

=
N∏

m=1

T exp

(
−i

∫ t

t0

dt ′Ĥ(m)
PA (t ′)

)
. (12)

Therefore, the PA unitary is just a product of unitaries for
each mode that can act separately on the system. In particular,
we consider the situation where PA is resonant with a single
target mode, e.g., the center-of-mass motion, such that the
parametric amplification is more important on the target mode
than the other “spectator” modes. Conditions for the validity
of this single mode analysis are discussed in Sec. III C 1.
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FIG. 2. (a) Actual phase-space trajectory due to the SDF and
PA. (b) State evolution under the operations Ŝ (r), D̂(α), and Ŝ†(r)
with circular discs representing coherent states and elliptical discs
representing squeezed coherent states. (c) Effective phase-space
displacements for the enhanced geometric area.

In this case ωp = 2μ = 2ω1 and the PA unitary can be
described by a squeezing operation Ŝ (ξ ) = exp( 1

2ξ ∗â2 −
1
2ξ â†2) with ξ = g(t − t0) ≡ reiθ , where we take g1 ≡ g.
The parametric driving squeezes the quadrature (âe−iθ/2 +
â†eiθ/2)/

√
2 and amplifies the other quadrature −i(âe−iθ/2 −

â†eiθ/2)/
√

2, which are rotated by θ/2 compared to the usual
quadratures. In contrast to spin-dependent forces, which are
linear in â and â†, the squeezing operation is quadratic in
â and â†, and consequently the phase acquired by a spin
state traversing the parametrically driven path in Fig. 2(a)
can no longer be calculated from the area enclosed by this
path. Instead, one has to convert the squeezing into effective
amplified displacements before calculating the geometric area
(see Fig. 2 and discussion in the next section). This gives
certain restrictions on how to perform PA together with a
SDF in order to restore the initial mechanical state with an
enhanced geometric phase.

B. Stroboscopic protocol

The degrees of freedom of a general stroboscopic protocol
can be very large (see the Appendices), making it very difficult
to find the optimal protocol for amplifying the geometric
phase in a general situation. Here we focus on a simple but
useful protocol that clearly illustrates how PA can enhance
the effective spin-spin interaction strength. Specifically, we
consider a square trajectory for the SDF and insert a squeezing
operation before and after each displacement. The interaction
time of one displacement operation is t1, the same for all four
sides. The squeezing time t2 is the same for each operation.
The first displacement becomes

Ŝ†(r)D̂(α)Ŝ (r), (13)

where α = f t1/
√

N and r = gt2. Note that we have omit-
ted the dependence on the spin states in the displacement
operation for simplicity. For an initial ground state of the

center-of-mass motion |0〉c, the evolution of the state due
to the three operations in Eq. (13) is plotted in Fig. 2(b):
|0〉c → |r〉c → |α, r〉c → |αer〉c. Here, |r〉c is a squeezed vac-
uum state, |α, r〉c is a squeezed coherent state, and |αer〉c is
a coherent state with amplitude αer . To get the final state,
we used the relation Ŝ†(r)D̂(α)Ŝ (r) = D̂(αer ) [32] for real
values α and r. Therefore, a small displacement α is amplified
to αer . Recently, this amplification protocol has been used to
improve sensing of a small displacement [33,34].

To enhance the second displacement, we apply
Ŝ (r)D̂(iα)Ŝ†(r) = D̂(iαer ). Similarly, the remaining op-
erations are given by Ŝ (r)D̂(−iα)Ŝ†(r)Ŝ†(r)D̂(−α)Ŝ (r) =
D̂(−iαer )D̂(−αer ). The actual trajectory is represented by
the dashed curve in Fig. 2(a), where we have also denoted
the wave functions at several points. In particular, the four
discs in Fig. 2(a) represent the states at the corners in the
effective displacements in Fig. 2(c). The completed protocol
is described by

D̂(−iαer )D̂(−αer )D̂(iαer )D̂(αer ) = exp(i2α2e2r ). (14)

We see that the motional state returns to its initial state
despite its quadratures being amplified and squeezed along
the trajectory, tracing out an effective geometric area of α2e2r .
Independent of the initial motional state the geometric phase
is � = 2 f 2t2

1 e2gt2/N . For a fixed gate time T = 4t1 + 8t2, the
optimal geometric phase is obtained by maximizing � with
respect to t1 and we find

� = 2

N

(
f T

4

)2 egT/4−2

(gT/4)2 , (15)

at the optimal time t1 = 2/g. The geometric phase is enhanced
exponentially by the factor G = egT/4−2/(gT/4)2. This is
the main result of our paper. Specifically, with stroboscopic
parametric amplification one can achieve an exponential en-
hancement in the geometric phase.

More generally, we consider the situation of amplifying a
regular n-sided polygon by inserting a squeezing operation
before and after each displacement. We derive the optimal
enhanced geometric area to be

�(n) = 2

N

(
f T

4

)2 n cot
(

π
n

)
egT/n−2

4(gT/4)2 . (16)

The above result is obtained by first deriving the geometric
area of an amplified polygon and then optimizing the SDF
time t1 similar to that in the square protocol. We see that the
factor n cot ( π

n ) increases polynomially as n increases, while
the exponential factor egT/n−2 drops exponentially. Therefore,
it is useful to consider the square protocol n = 4 and a triangle
protocol for n = 3. We plot the enhancement factor G for both
these protocols in Fig. 3. The triangle protocol gives a larger
enhancement for a fixed gate time T. As a comparison, we also
plot the enhancement factor using the continuous protocol of
Ref. [17] for the same spin-dependent force f and the same
gate time T . We see that for gT � 30 the continuous protocol
can give a better enhancement, while the stroboscopic proto-
col may be more advantageous for gT � 30. Note that gT is
bounded by a modified Lamb-Dicke limit for our model to be
valid, and therefore the actual upper value of gT depends on
the specific experimental setup (see Appendix D).

Above, we held fixed the SDF strength f and the total
interaction time and maximized the acquired geometric phase,
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FIG. 3. Enhancement of geometric phase using a square proto-
col, a triangle protocol, and the continuous protocol in Ref. [17] for
the same spin-dependent force f and gate time T . In all three plots,
we compare these protocols with the square protocol without the PA
[Fig. 1(b)].

which is equivalent to maximizing the spin-spin interaction
strength at fixed f . Alternatively, we could minimize the time
required to achieve a particular geometric phase at fixed f . As
we can see from Eq. (15), the gate time can be reduced due to
the exponential enhancement factor. For example, we plot the
gate time as a function of g for both the continuous protocol
and the square protocol in Fig. 4.

C. Error analysis

In our previous analysis, we assumed a single-mode ap-
proximation and perfect control of the experimental parame-
ters. Here we analyze the leading sources of errors due to off-
resonant coupling to unwanted modes, mode frequency fluc-
tuations, relative phase fluctuations between the PA and SDF,
interaction time control fluctuations, and motional heating.

1. Off-resonant modes

Off-resonant coupling to unwanted modes can lead to spin-
motion entanglement if there is a residual displacement at
the gate time. The residual displacement of unwanted modes
results from both the off-resonant SDF and the off-resonant
PA. The value of the residual displacement can be numerically
calculated (see Appendix C). Here we just give an estimate of

FIG. 4. Gate time reduction using a square protocol, and the
continuous protocol in Ref. [17] for the same spin-dependent force f
and fixed geometric phase �. The gate time without the PA is taken
to be 0.4 ms.

FIG. 5. The ratio of residual displacements with and without
PA. The discontinuity in the solid curve is due to the jump in
the squeezing angle that occurs for off-resonant squeezing as the
squeezing time is increased.

the approximate size of the displacement by considering the
operations in Eq. (13) for the off-resonant modes. We define
R as the ratio of the residual displacements with and without
using PA. We plot this ratio in Fig. 5 as a function of gT/4 for
different values of the frequency offset �m of the unwanted
mode from the target mode. We observe that for g ∼ �m the
residual displacements can be suppressed for gT  1 but the
target mode is amplified. This condition gives an estimated
bound on how strong the PA can be driven before amplifying
the unwanted modes. We note that in principle these residual
displacements may be eliminated with a more sophisticated
protocol, i.e., with pulse shaping.

2. Technical errors

Anticipated sources of technical errors include mode fre-
quency fluctuations, phase fluctuations between the SDF and
PA, imperfect timing control, and heating of the motional de-
grees of freedom. We assume that the fluctuations are constant
for the duration of a single experiment, but vary from one
realization of the experiment to the next. Our analysis shows
that the stroboscopic protocol is particularly sensitive to mode
frequency fluctuations and phase fluctuations between the
SDF and PA. Below, we quote the results and leave the
detailed analysis for the Appendices.

Mode frequency fluctuations of size � lead to a rotation of
the squeezing angle, which can result in an amplified residual
displacement of (Appendix C)

�α ≈ C(�/g)e2r = C(�/g)G(2r + 2)2, (17)

where r = gt2 and C ≈ 6 determined from the numerical
simulation in Fig. 6. The error in the gate fidelity is εmf =
(�α)2. Phase fluctuations �θ between the PA and the
SDF can lead to the same order of error. As analyzed in
Appendix C, phase fluctuations can give rise to phase rotation
on two neighboring PA operations, i.e., a phase mismatch
between squeezing and antisqueezing, which can result in a
similar residual displacement as in Eq. (17).

Timing fluctuations in the action of the SDF result in �α ∝
ε
√

� and �� = ε�, where ε is a fractional error in the time
interval for the application of the SDF. Timing fluctuations
due to the action of the PA only lead to residual displacement,
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FIG. 6. The error due to mode frequency fluctuation � for both
the continuous protocol and the stroboscopic protocol at G = 10.

�α ∝ rε
√

�, while preserving the geometric phase to the first
order.

Motional heating can be modeled as a sequence of random
spin-independent motional displacements. It gives rise to an
error �� in the geometric phase � accumulated by a given
spin state [8]. �� is proportional to the mean squared driven
displacement that occurs during the gate execution and the
heating rate multiplied by the time for executing the gate.
With PA the mean-squared driven motional displacement is
amplified, while the gate time is reduced. The first effect will
increase the error ��, while the reduced gate time will reduce
this error. We estimate that the total error �� is increased by
the multiplicative factor e2r/2, where r = gt2.

Overall, PA can be a useful tool in situations where mode
frequency fluctuations or motional heating are not the leading
source of errors [4,5], enabling a lower overall error through
tradeoffs between different sources of errors.

D. Comparison to the continuous protocol

In our recent work [17], we presented a continuous pro-
tocol where the SDF and PA are applied simultaneously. A
nice feature of the continuous protocol is that we obtain a
total Hamiltonian that can be mapped to the original SDF-only
Hamiltonian with an enhanced coupling strength. This can be
useful for studies on spin-motion coupling [35]. Additionally,
the gate time is not limited by the motional mode splitting and
the enhancement is more advantageous for gT � 30 as shown
in Fig. 3. Like the stroboscopic protocol, the continuous
protocol is also sensitive to mode frequency fluctuations. For
comparison, we quote the error in the gate fidelity due to mode
frequency fluctuations with the continuous protocol [17]:

εmf = π

4
(�/g)2G3(1 + G). (18)

We plot the error for both protocols in Fig. 6 for G = 10.
Due to the large factor C(2r + 2)2 in Eq. (17), the error
from the stroboscopic protocol is much greater than that from
the continuous protocol. However, the error due to mode
frequency fluctuations in the stroboscopic protocol can be
smaller than that of the continuous protocol for very large
values of G since the latter grows much faster with G through
the dependence of G3(1 + G). By comparing Eqs. (17) and
(18), we find this happens for G > 1255.

For the most realistic conditions (G � 1000), the strobo-
scopic protocol discussed here requires a more stable motional

mode frequency than the continuous protocol. The strobo-
scopic protocol does have some complementary advantages.
It produces an exponential enhancement, which is important
for gT > 30. As shown in Fig. 4, it can also be more effective
at reducing the time required to achieve a given geometric
phase. Finally, as detailed in Fig. 4 of the continuous protocol
manuscript [17], the enhancements of the continuous protocol
can be limited by the breakdown of the RWA. This is because
in the continuous protocol large squeezing requires large
detunings between the spin-dependent force and the target
mode frequency. Because the stroboscopic protocol amplifies
on resonance with the target mode frequency, larger amplifi-
cations are possible without a breakdown of the rotating wave
approximation.

IV. OUTLOOK

In this paper, we proposed a stroboscopic protocol consist-
ing of alternating applications of a spin-dependent force and
parametric amplification that amplifies the effective spin-spin
interactions in trapped ions induced by the spin-dependent
force. Strong parametric amplification can be achieved by
modulating the trapping potential at twice the target motional
mode frequency. The stroboscopic protocol can lead to an
exponential enhancement in the effective coherent interac-
tion strength without requiring stronger laser power in laser-
driven trapped-ion gates or larger current in microwave-based
trapped-ion gates. Therefore, it can mitigate common chal-
lenges, such as the availability of a strong SDF, errors due to
spontaneous photon scattering, and couplings to off-resonant
unwanted modes.

Parametric amplification, both through the stroboscopic
protocol discussed here and through the continuous protocol
discussed previously [17], looks like a useful addition to
the ion-trap quantum information processing tool box. Like
most tools in this toolbox, there are tradeoffs. As shown in
Secs. III C and III D, parametric amplification through either
the stroboscopic protocol or the continuous protocol [17] can
increase errors due to mode frequency fluctuations. Therefore,
when mode frequency fluctuations are the leading source of
errors, implementing PA may not make sense.

As future work, it should be possible to extend the strobo-
scopic protocol discussed here to enhance the trajectories of
multiple modes, for example, by applying several parametric
amplifications at different frequencies to selectively amplify
different motional modes [36], respectively. Another interest-
ing direction is to find other useful protocols with more com-
plicated combinations of the SDF and the PA, as sketched in
Appendix B. Protocols employing a phase-insensitive amplifi-
cation [25] would also be interesting to investigate, including
their sensitivity to mode frequency fluctuations.
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APPENDIX A: PARAMETRIC AMPLIFICATION

In trapped ions, parametric amplification can be done by
driving the ion-trap ring-end-cap voltage at close to twice
the target mode frequency. Assuming the parametric driving

frequency is ωp, the Hamiltonian describing the ith ion motion

is [18] ĤPA = −∑N
i=1

2eẑ2
i

d2
T

Re(Ve2iωpt ), where V = −i|V |e−iθ

and |V | is the voltage and dT is a characteristic trap dimension.
Replacing zi using the normal-mode expansion, we have

ĤPA = −2eRe(Ve2iωpt )

d2
T

N∑
i=1

⎡
⎣ N∑

l,m=1

bi,l bi,mz0l z0m(e−iωl t âl + eiωl t â†
l )(e−iωmt âm + eiωmt â†

m)

⎤
⎦

= −2eRe(Ve2iωpt )

d2
T

N∑
l,m=1

δlmz0l z0m(e−iωl t âl + eiωl t â†
l )(e−iωmt âm + eiωmt â†

m)

= −2eRe(Ve2iωpt )

d2
T

N∑
m=1

z2
0m(e−iωmt âm + eiωmt â†

m)2. (A1)

To obtain the second line, we use the condition∑N
i=1 bi,mbi,l = δml on the normal-mode transformation

matrix. It is interesting to note from the above equation that
the Hamiltonian due to PA is independent of the normal-mode
transformation on each ion. The parametric driving on the
system is just a summation of parametric amplification on
each mode separately. Applying the RWA, we arrive at
Eq. (10),

ĤPA(t ) =
N∑

m=1

Ĥ(m)
PA (t ), (A2)

in the main text.

APPENDIX B: A GENERAL PROTOCOL

The most general protocol involving a SDF and PA is
to consider alternative applications of the SDF and PA as
described below:

n∏
j=1

ÛS (t2n+2−2 j, t2n+1−2 j )ÛP(t2n+1−2 j, t2n−2 j ). (B1)

Note that in each step the SDF and PA Hamiltonian can
be different from previous steps by controlling the system
parameters, such as μ, g, and ωp. We assume there is only one
mode driven by the SDF and PA Hamiltonians. The discussion
on the multimode case is given later.

The optimal protocol is to find the maximal geometric area
enclosed by the trajectory for fixed parameters f , g and T .
However, the optimal solution for a general protocol is diffi-
cult to find. To see this, we discuss the constraints for a general
protocol involving any combination of a SDF and PA.

We first analyze the optimal protocol in the special case
when only the SDF is used. The general protocol can be

described by applying n(� 3) displacement αk in phase space
of a motional mode with ÛS (t2n+2−2k, t2n+1−2k ) = D̂(αk ).
Therefore, we have the following two constraints:

n∑
k=1

αk = 0,

n∑
k=1

|αk| � f T1, (B2)

where the first condition requires the mode undergoes a closed
loop in phase space and the second one is a limit on the
accumulated path length of a motional mode under a SDF
for a time of T1. It can be shown that the optimal protocol
using a SDF only is to make a single circle in the phase space
according to the isoperimetric inequality.

For a general off-resonant PA Hamiltonian, the unitary
operation can be written as [37]

ÛP(t2n+1−2 j, t2n−2 j ) = Ŝ (ξ ) exp(iϕâ†â),

where ξ = reiϕ ,

sinh r = sinh(gτ
√

1 − �2/g2)/
√

1 − �2/g2,

tan ϕ = �/
√

g2 − �2 tanh(gτ
√

1 − �2/g2),

τ = t2n+1−2 j − t2n−2 j, and � = ωp/2 − ω1.

Hence, the general protocol using PA and a SDF can be
written as [

1∏
k=n

Ŝ (ξk )D̂(αk )

]
Ŝ (ξ0), (B3)

where we have absorbed the phase rotation exp (iϕâ†â) into
the displacement operations. Rewriting the squeezing opera-
tions such that each displacement operator is sandwiched by
Ŝ†(ξ ) and Ŝ (ξ ), we have

[
0∏

k=n

Ŝ (ξk )

][
n−1∏
k=0

Ŝ†(ξk )D̂(αn−1)
0∏

k=n−1

Ŝ (ξk )

]
· · · [Ŝ†(ξ0)Ŝ†(ξ0)D̂(α2)Ŝ (ξ1)Ŝ (ξ0)][Ŝ†(ξ0)D̂(α1)Ŝ (ξ0)]

=
[

0∏
k=n

Ŝ (ξk )

]
1∏

k=n

D̂(αkdk ), (B4)
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where the second line is obtained using the relation
Ŝ†(ξ )âŜ (ξ ) = cosh râ − sinh reiϕ â† [32]. Therefore, each
displacement operation αk is amplified and rotated with a
magnitude of |dk|(�1) and an angle arg[dk], respectively. Af-
ter the PA and SDF operations, we require that the mechanical
state returns to its initial state. In this case, we have three
constraints:

n∑
k=1

αkdk = 0,

n∏
k=1

|dk| � exp(gT2),
n∑

k=1

|αk| � f T1,

(B5)

where the first equation is satisfied for closing the loop under
the SDF and PA, and the second constraint is such that the
accumulated squeezing is bounded by the total squeezing if
accumulated in a given amount of time T2. The gate time is
T = T1 + T2. Additionally, we would require a condition on
the overall squeezing given by the PA unitary operations to
be zero such that the motional state is back to an unsqueezed

state at the gate, i.e.,
∏0

k=n Ŝ (ξk ) = 1. Our goal is to optimize
the area enclosed by the sides αkdk under the constraints in
Eq. (B5) for a given set of parameters ( f , g, T ). All together
we will have at least 4n − 4 variables, assuming the inequali-
ties become equalities. The optimal solution for fixed n is not
easy to find since the minimum number of variables is 8. The
optimal solution for an arbitrary n is therefore more difficult.

APPENDIX C: ERROR ANALYSIS

1. Off-resonant analysis

Now we discuss the situation when the target mode is off
resonant to the SDF and the PA in the stroboscopic protocol
while all the other parameters are ideal. This is due to the
motional mode frequency fluctuation. As an example, we
analyze specifically the square protocol. The sequence of
operations from right to left and from top to bottom is given
by

ÛP(4t1 + 8t2, 4t1 + 7t2)ÛS (4t1 + 7t2, 3t1 + 7t2)Û†
P(3t1 + 7t2, 3t1 + 6t2)

× Û†
P(3t1 + 6t2, 3t1 + 5t2)ÛS (3t1 + 5t2, 2t1 + 5t2)ÛP(2t1 + 5t2, 2t1 + 4t2)

× ÛP(2t1 + 4t2, 2t1 + 3t2)ÛS (2t1 + 3t2, t1 + 3t2)Û†
P(t1 + 3t2, t1 + 2t2)Û†

P(t1 + 2t2, t1 + t2)ÛS (t1 + t2, t2)ÛP(t2, 0), (C1)

where t1 and t2 are the interaction times for one operation
of the SDF and the PA, respectively. The nonzero detuning
of the target mode results in three effects: (i) rotation of
the displacement applied by the SDF; (ii) rotation of the
squeezing angle; and (iii) reduction of the squeezing strength
by the PA. For a small detuning � = μ − ω1 � g, these
effects are small by themselves, i.e., effects (i) and (ii) de-
pend linearly on �, and effect (iii) has a quadratic relation
with �. However, a pair of squeezing and antisqueezing
operations no longer cancel each other exactly, for example,
ÛP(2t1 + 4t2, 2t1 + 3t2) and Û†

P(t1 + 3t2, t1 + 2t2), which can
lead to an exponential amplification of the error. To illustrate
this idea, we consider a pair of squeezing and antisqueezing
operations after a displacement operation given by

Ŝ (reiε2 )Ŝ (−reiε1 )D̂(α), (C2)

where we neglect the phase term from the nonresonant PA
operation by considering just the squeezing operation [see
Eq. (B3)]. Here ε1, ε2 ∼ �/g � 1 is the rotation of the
squeezing axis due to the detuning. Without loss of generality,
we assume α to be real and obtain

Ŝ (reiε2 )Ŝ (−reiε1 )D̂(α) ≈ D̂
[
α

(
1 + i

ε1 − ε2

2
e2r

)]
. (C3)

Due to the time dependence on the rotation, ε1 
= ε2 in
general, therefore the residual displacement is on the order
of (�/g)e2r . The corresponding error in the gate fidelity is
reduced by a number on the order of (�/g)2e4r . However, we
note that the geometric phase error is negligible comparing
to the residual displacement error for �/g � 1 from our
numerical simulations.

The above analysis can be adapted to discuss the residual
displacement of a spectator mode that is far-off resonant, i.e.,

�m � g. In this case, the squeezing strength on the spectator
mode is greatly suppressed and the residual displacement can
be made small since we can use a smaller SDF f enabled by
the parametric amplification. We plot in Fig. 5 the ratio of dis-
placement with and without the PA after one leg of displace-
ment amplification Û†

P(t1 + 2t2, t1 + t2)ÛS (t1 + t2, t2)ÛP(t2, 0)
numerically for different values of �m.

2. Phase fluctuations

For a phase uncertainty between the PA and the SDF,
the analysis is similar to that of the frequency fluctuation.
Assuming phase fluctuations �θ in one operation of the
PA, they may lead to a displacement error amplified by e2r

according to Eq. (C3) as

Ŝ (rei�θ )Ŝ (−r)D̂(α) ≈ D̂
[
α

(
1 + i

�θ

2
e2r

)]
. (C4)

Hence we also require very stable phase alignment between
the PA and the SDF.

3. Timing control fluctuations

We consider the situation when the fluctuations happen
in one side of the operations for the SDF or the PA. In the
operation of the SDF, the errors are larger when fluctuations
occur in the second and the third sides of the operation than
in the other sides. Considering the second side, for example,
the displacement operator becomes D̂[iαer (1 + ε)], where
ε ≡ �t/t1. Therefore, �α ∼ ε

√
� and �� ∼ ε�. In the

operation of the PA, timing fluctuations affect the amplifi-
cation on the displacement, for example, D̂(αer ) is replaced
by D̂(αer(1+ε) ). So there is only uncertainty in the residual
displacement, i.e., �α ∼ (erε − 1)

√
� ∼ rε

√
�, which can
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be amplified from the PA. Moreover, the time fluctuation in
PA may lead to a squeezed-displaced final state |ε, αε〉c =
D̂(αerrε)Ŝ (rε)|0〉c that is entangled with the spin states.
This can lead to a reduced fidelity of a target state since
|〈0|ε, αε〉c|2 ≈ 1 − (αerrε)2(1 − rε) [32].

APPENDIX D: LAMB-DICKE LIMIT

Due to the mechanical squeezing, the condition on the
Lamb-Dicke regime will be revised, which can lead to lim-
itations on how strongly we can amplify. As can be seen in

the actual trajectory in Fig. 2(a), the maximum displacement
is on the order of αe2r

√
〈Ŝ2

z 〉, where Ŝz ≡ 1/2
∑

i σ̂
z
i . With the

Lamb-Dicke limit, we have the following requirement on the
parametric amplification for the square protocol [17]:

er � 1

η

√
N

2�
〈
Ŝ2

z

〉 , (D1)

where the optimal r = gT/4 − 1 is assumed. The maximum
value of gT permitted by Lamb-Dicke confinement depends
on the experiment and the type of spin states we would like to
create.
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