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Sophisticated Ramsey-based interrogation protocols using composite laser pulse sequences have been
recently proposed to provide next-generation high-precision atomic clocks with a near perfect elimination
of frequency shifts induced during the atom-probing field interaction. We propose here a simple alternative
approach to the autobalanced Ramsey interrogation protocol and demonstrate its application to a cold-atom
microwave clock based on coherent population trapping (CPT). The main originality of the method, based
on two consecutive Ramsey sequences with different dark periods, is to sample the central Ramsey fringes
with frequency jumps finely adjusted by an additional frequency-displacement concomitant parameter,
scaling as the inverse of the dark period. The advantage of this displaced frequency-jump Ramsey method
is that the local oscillator (LO) frequency is used as a single physical variable to control both servo loops of
the sequence, simplifying its implementation and avoiding noise associated with controlling the LO phase.
When tested using a CPT cold-atom clock, the DFJR scheme reduces the sensitivity of the clock frequency
to variations of the light shifts by more than an order of magnitude compared with the standard Ramsey
interrogation. This simple method can be applied in a wide variety of Ramsey-spectroscopy based
applications including frequency metrology withCPT-based and optical atomic clocks, mass spectrometry,
and precision spectroscopy.
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Ramsey’s method of separated oscillating fields [1]
enables the measurement of atomic and molecular spectral
lines with unrivaled precision and accuracy. This widely
used spectroscopy and interrogation technique has been
successfully applied in a variety of quantum-based mea-
surements and devices including atomic frequency stan-
dards [2–7], matter-wave interferometry and atomic inertial
sensors [8,9], Bose-Einstein condensates [10], quantum
computing [11], memories [12] and information processing
[13], cavity quantum electrodynamics [14], optomechanics
[15], extreme-ultraviolet spectroscopy [16], mass spec-
trometry [17], as well as the experimental confirmation
of fundamental quantum mechanics concepts [18].
In a typical Ramsey sequence, atoms are probed with

two successive pulses separated by a dark period T. The
first pulse creates a coherence between targeted quantum
states whose initial phase is dictated by the external field.
During the dark period, a phase shift develops between the
atomic coherence and the excitation field determined by
their frequency difference and T. Through an interference
process, the second pulse leads to the modulation of the
field absorption spectrum allowing for an effective meas-
urement of the phase difference between the atomic
precession and the local oscillator (LO). Scanning the

frequency of the excitation field around the exact resonance
and measuring the absorption of the second pulse leads to
the detection of Ramsey fringes, whose line-width scales
as 1=ð2TÞ.
For clock applications, Ramsey spectroscopy reduces

the sensitivity of the clock frequency to variations of the
interrogating field [1,19]. However, the Ramsey interrog-
ation exhibits residual frequency shifts induced by the
probe field during the interrogation pulses. These inter-
rogation-related shifts originate from a phase shift Δφ
acquired by the atomic coherence during the interrogation
pulses. Since the spacing between Ramsey fringes is equal
to 1=T, this phase shift is compensated by an opposite
phase shift created by a 1=T-dependent frequency shift
Δf ¼ −Δφ=ð2πTÞ between the atomic frequency and the
LO frequency during the dark period. These light shifts can
be a key limiting factor to the accuracy and long-term
frequency stability of atomic clocks based on coherent
population trapping (CPT) [19–22] and optical clocks that
probe ultranarrow quadrupole [23], octupole [24] or two-
photon optical transitions [25,26].
CPT-based clocks, in which the hyperfine microwave

clock-transition frequency is probed using a dual-frequency
optical field, are known to suffer from substantial light
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shifts that depend on the parameters of the optical field.
Therefore, a CPT clock can serve as a test device for the
investigation of interrogation-related shifts and their miti-
gation. The light shifts in CPT clocks originate from
resonant interaction of the dual-frequency optical field
with the three-level atomic Λ scheme [27,28] and from
off-resonant coupling of the light field components with
neighboring detuned atomic energy levels [29,30]. The
resonant shift results from incomplete dark-state formation
during the first Ramsey-CPT pulse, and can be canceled by
increasing the duration or intensity of the first Ramsey
pulse [21,27,30,31]. The off-resonant shift, depending
mostly on the relative intensity of the two optical frequen-
cies (CPT intensity ratio) [32], remains the dominant effect
limiting the clock performance.
Over the last decade, sophisticated interrogation proto-

cols based on Ramsey’s method have been proposed in
order to eliminate probe-induced frequency shifts [33,34].
Among them, the autobalanced Ramsey (ABR) scheme
[35] is based on the extraction of two error signals derived
from two successive Ramsey sequences with different dark
periods. The first feedback loop uses the error signal
generated by the short Ramsey sequence to apply a
phase-step correction to the LO during the dark period
that nulls the probe-field induced frequency shift. The
second loop stabilizes the LO frequency using the error
signal derived from the long Ramsey sequence. The ABR
technique has been applied to different kinds of atomic
clocks, demonstrating a significant reduction of the clock
frequency sensitivity to light shifts and improving the
clock mid- and long-term frequency stability [35–37]. In
Ref. [38] a theoretical generalization of the ABR method
was presented, demonstrating the possibility to use various
concomitant parameters including frequency steps during
the Ramsey pulses.
In this Letter, we propose and demonstrate a simple

method to reduce interrogation-related frequency shifts in
Ramsey spectroscopy that we call Ramsey spectroscopy
with displaced frequency jumps (DFJR). Similarly to the
techniques presented previously [35,36,38], two servo
loops are used to control the clock frequency and a
concomitant parameter that suppresses interrogation shifts.
However, we propose a way to implement both control
parameters with a single physical variable—the LO fre-
quency. Aside from the requirement that the phase of the
interrogation field is stable during the Ramsey cycle, no
modulation or control of the LO phase is needed. This
allows for simpler implementation and the elimination of
the systematics associated with controlling and modulating
the phase of the oscillator. We also note that the LO
frequency remains constant throughout the Ramsey cycle
and no rapid control of the LO frequency is required. This
method can be applied to any Ramsey spectroscopy
measurement, including for CPT atomic clocks and optical
atomic clocks.

In a Ramsey clock, by sampling the half-height signal on
both sides of the central Ramsey fringe with two consecu-
tive Ramsey cycles, a zero-crossing error signal can be
derived by subtraction of the two measurements and used to
stabilize the frequency of the LO onto the fringe center.
Two options are generally used for the generation of the
error signal. One option, known as phase jumps, is to
abruptly change the phase of the LO between the first and
second Ramsey pulse by π=2 (−π=2) during the first
(second) Ramsey cycle. Another option, known as fre-
quency jumps, is to jump the frequency of the LO to
1=ð4TÞ [−1=ð4TÞ] from the estimated clock frequency
during the first (second) Ramsey cycle.
The basic concept of the DFJR method is illustrated

in Fig. 1. Figure 1(a) depicts a Ramsey-CPT fringe for
T ¼ 16 ms, probed with standard �1=ð4TÞ frequency-
jump interrogation, and assumed to be light shifted by
3 Hz, which results in a similar shift of the stabilized clock
frequency. This frequency shift can be eliminated by
applying frequency jumps of different magnitude to the
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FIG. 1. Illustration of light shifts and their mitigation using the
DFJR method. The graphs show the central Ramsey-CPT fringes
obtained for two different dark periods (TL ¼ 16 ms: blue line
and TS ¼ 4 ms: red dashed line). The center of each fringe is
marked with a triangle. The steady-state value of the clock
frequency is marked with a diamond symbol. Dotted lines show
the frequency jumps applied to the sampling frequencies (marked
with circles). (a) Light shift with standard Ramsey-CPT inter-
rogation (T ¼ 16 ms). The clock stabilizes to the shifted Ramsey
fringe. (b) By displacing the frequency jumps—jumping a
different amount to higher and lower frequencies—the clock
frequency shifts can be mitigated. The challenge is then to find
the suitable frequency displacement ΔfT . (c) The DFJR method
is used to find ΔfT and stabilize the clock frequency on the
nonshifted resonance frequency (fc ¼ 0 Hz). Using two different
dark periods, TS ¼ 4 ms (lower part of the graph) and TL ¼
16 ms (upper part of the graph) and adding the frequency
displacement ΔfT as a T-dependent control parameter, the clock
frequency is free from light shifts.
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right and left sides of the fringe such that the error signal
steers the clock to the nonshifted frequency. This approach
is demonstrated in Fig. 1(b) where the interrogation
asymmetry is denoted by ΔfT—the frequency displace-
ment which depends on the dark period T:

ΔfT ¼ α

T
ð1Þ

where α is the concomitant control parameter in the DFJR
method. Without prior knowledge of the shifts in the
system (which may also vary over time), the difficulty is
then to find the correct ΔfT value to apply.
For this purpose, the DFJR method consists of a

composite Ramsey sequence involving two different dark
periods, and uses the measured error signals to find the
suitable ΔfT value and adapt it over time to compensate
drifts in the light shift. We take advantage of the fact that
the interrogation-related frequency shifts depend inversely
on the dark period. By defining ΔfT as a T-dependent
parameter, the interrogation-related shifts can be distin-
guished and separated from the clock frequency fc (which
is independent of T). We note that frequency shifts that do
not scale with 1=T (e.g., Zeeman shifts) will not be
mitigated by the DFJR method. Figure 1(c) illustrates
the principle of the DFJR method. Two Ramsey fringes
obtained with a long dark period TL ¼ 16 ms and a short
dark period TS ¼ 4 ms are assumed to be light shifted by
3 Hz and 12 Hz, respectively. The frequency jumps are
displaced by ΔfTL

¼ ðα=TLÞ and ΔfTS
¼ ðα=TSÞ, respec-

tively. Two error signals are then generated (from the short
and long cycles) and are used to stabilize the clock
frequency fc and the concomitant control parameter α.
The only steady-state solution that nulls both error signals
occurs when the clock frequency is on resonance, as
depicted in Fig. 1(c). This results in a clock frequency
free from the influence of interrogation related shifts.
Figure 2 shows the proposed DFJR sequence. It consists

of two cycles with a long dark period TL and two cycles
with a short dark period TS. For each pair of cycles, the
error signal is generated using frequency jumps from
measurements of the half-height signal values on both
sides of the central fringe (one value per cycle) and
extracting their difference. In the long dark-period cycles,
the sampling frequencies are fc − ½ð1=4TLÞ − ðα=TLÞ�
and fc þ ½ð1=4TLÞ þ ðα=TLÞ�, while for the short dark-
period cycles the corresponding frequencies are fc −
½ð1=4TSÞ − ðα=TSÞ� and fc þ ½ð1=4TSÞ þ ðα=TSÞ�. Thus
in the DFJR method, one control parameter (the clock
frequency, fc) is the same for both dark periods, while the
other control parameter, α, causes a frequency displacement
that scales with the dark period. This allows one to
implement two control parameters combined in a single
physical variable (the LO frequency). The error signal from
the long dark-period cycle pair εL is used to steer the clock
frequency, while the error signal from the short dark-period

cycle pair εS is used to steer α. In the presence of frequency
shifts that depend inversely on the duration of the dark
period, the control system will stabilize such that the
frequency displacement parameter adapts to compensate
these shifts and the clock frequency is free from them. Note
that the total DFJR sequence shown in Fig. 2 is sym-
metrized as reported in Ref. [37] for optimal efficiency of
the light-shift rejection.
We implemented the DFJR protocol utilizing a cold-

atom clock apparatus previously described in Refs. [21,28].
A six-beam magneto-optical trap is applied for 20 ms
followed by a 3 ms molasses, trapping and cooling
∼1 × 106 87Rb atoms at a temperature of 10 μK. At this
stage, the atoms are allowed to fall freely and are inter-
rogated in a Ramsey-CPT cycle. A 3 ms CPT preparation
pulse is followed by a dark period T ¼ 4–16 ms and a
50 μs reading CPT pulse. We use the lin k lin CPT
interrogation scheme [39,40] to enhance the CPT contrast
and retro-reflect the CPT beam to minimize Doppler shifts
[41]. A quantization magnetic field of Bz ¼ 4.4 μT is
applied in the direction of the CPT beam propagation.
The CPT beam is generated from a laser modulated at
6.835 GHz (the Rb ground-state hyperfine splitting fre-
quency) using an electro-optic modulator (EOM). The
optical carrier and the −1-order sideband are used as the
two CPT fields. The intensity ratio between the CPT fields
is controlled using the EOM and measured by a Fabry-
Perot interferometer. The intensity and frequency (one-
photon detuning, OPD) of the CPT beam are controlled

FIG. 2. An illustration of the DFJR sequence, applied to a cold-
atom CPT clock. The sequence is composed of four consecutive
Ramsey cycles—two with a long dark period, TL and two with a
short dark period TS. For each dark period, the two cycles include
frequency jumps to the sides of the central fringe. However, the
frequency jumps are corrected by a frequency displacement
parameter ΔfT, which scales as the inverse of the dark period
[see Eq. (1)]. The frequency for each Ramsey cycle is noted on
the left side of the figure. The error signal constructed from the
long cycle pair, εL, is used to control the clock frequency fc. The
error signal derived from the short cycles, εS, is used to control
the concomitant control parameter α.
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using an acousto-optic modulator. The Ramsey protocols
are implemented by controlling the frequency synthesizer
driving the EOM. The synthesizer is referenced to a
hydrogen maser, and only the frequency of the synthesizer
is controlled to implement the protocols. By stabilizing the
synthesizer frequency according to the error signals, an
atomic clock is obtained and the absolute frequency shifts
are measured.
The DFJR method was compared to standard Ramsey-

CPT spectroscopy by running the cold-atom clock under
varying experimental parameters and interrogation shifts.
Figure 3 depicts a time trace of DFJR clock operation.
The upper pane shows the clock frequency shift, fc − fRb,
where fRb is the generally accepted unperturbed 87Rb
hyperfine frequency [42], while the lower pane shows the
frequency displacement for the long cycle ΔfTL

¼ ðα=TLÞ.
During clock operation, the off-resonant light shift is altered
by abruptly changing the CPT intensity ratio. Each time the
CPT intensity ratio is changed, resulting in a different light
shift, the frequency displacement control parameter α
stabilizes to a new value, compensating for the light shift,
and keeping the clock frequency fc unaffected. In essence,
the two-loop control system keeps one of the control
parameters (the clock frequency) protected from this par-
ticular kind of systematic.
Figure 4 shows the clock frequency shift fc − fRb versus

the CPT intensity ratio in the standard Ramsey-CPT
regime (T ¼ 16 ms), compared to the DFJR scheme

(TS ¼ 4 ms and TL ¼ 16 ms). In the standard Ramsey-
CPT scheme (triangles) the clock frequency significantly
changes with theCPT intensity ratio due to the off-resonant
light shift [32]. With the DFJR scheme, the frequency
displacement parameter α (squares) changes with the CPT
intensity ratio in order to compensate for the light shift, and
the clock frequency (circles) variations are considerably
reduced. The absolute clock frequency shift is then about
0.835 Hz, in good agreement with the expected second-
order Zeeman shift in the lin k lin configuration (which is T
independent and hence not canceled).
We also tested the ability of the DFJR method to mitigate

light shifts that depend on the CPT laser OPD. For this
purpose, we applied sinusoidal oscillations to the OPD
with an amplitude of �1 MHz and a period of about 2 h
(∼1.4 × 10−4 Hz frequency) during clock operation.
Figure 5 shows the fast Fourier transform (FFT) spectrum
of the clock frequency for the Ramsey-CPT and DFJR
methods. In the Ramsey-CPT case, a strong peak is
observed at the OPD oscillation frequency whereas the
amplitude of this peak is reduced by an order of magnitude
in the DFJR method. It is interesting to note that the FFT
noise spectrum of the DFJR clock frequency shows an
increased noise level. We attribute this degradation to the

FIG. 3. A time trace of the atomic clock operation based on
DFJR. The upper pane shows the clock frequency shift fc − fRb
and the lower pane shows the frequency displacement for the long
cycle ΔfTL

¼ ðα=TLÞ. Each pane shows the original data (dots)
and a moving average (solid line). During the clock run the CPT
intensity ratio is abruptly changed (switch times are shown in
black dashed lines), changing the off-resonant light shift of the
clock transition. It is evident that α adapts to accommodate the
changing light shift leaving the clock frequency fc unaffected (at
the value of the second order Zeeman shift).
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changes to compensate for the light shift. The value of the single
control parameter in the Ramsey-CPT scheme (the clock fre-
quency) is effectively split into the two control parameters with
the DFJR method. The frequency displacement ΔfT is associated
with the interrogation-related shifts. The clock frequency fc is
free from interrogation related shifts, and is only shifted by the
second-order Zeeman shift.
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longer clock sequence in the DFJR method, resulting in a
slightly degraded short-term stability. This effect was
previously observed in ABR-CPT clocks [36].
In conclusion, we demonstrated a simple method to

reduce interrogation-related shifts in Ramsey spectroscopy
and tested it using a cold-atom CPT clock. The so-called
displaced frequency jump Ramsey spectroscopy scheme
relies on the fact that interrogation-related frequency shifts
depend inversely on the dark period and is based on
Ramsey interrogations with different dark periods. Using
frequency jumps, the first servo loop nulls the probing-field
induced frequency shift by adding a slight frequency
displacement that scales with 1=T while the second servo
loop stabilizes the LO frequency. This approach presents
the benefit of controlling only a single physical variable
(the frequency of the LO), simplifying implementation and
eliminating the noise associated with controlling the LO
phase. A significant reduction by more than an order of
magnitude of the clock frequency dependence to variations
of the CPT intensity ratio and of the laser OPD has been
observed with the DFJR scheme, in comparison with the
standard Ramsey-CPT scheme.
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Hoff, M. Brune, J.-M. Raimond, and S. Haroche, Nature
(London) 446, 297 (2007).

[19] M. Abdel Hafiz, G. Coget, P. Yun, S. Guérandel, E. de
Clercq, and R. Boudot, J. Appl. Phys. 121, 104903 (2017).

0 1 2 3 4 5 6

Frequency [Hz] 10-4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
F

F
T

 p
ow

er
 s

pe
ct

ru
m

 [H
z] Ramsey-CPT

DFJR

FIG. 5. FFT power spectra of the clock frequency in Ramsey-
CPT (with T ¼ 16 ms) and DFJR (TS ¼ 4 ms, TL ¼ 16 ms)
methods. Sinusoidal oscillations with an amplitude of �1 MHz
and about 2 h period are applied to the OPD of the CPT laser. An
order-of-magnitude reduction of the oscillations amplitude is
observed with the DFJR method.

PHYSICAL REVIEW LETTERS 122, 113601 (2019)

113601-5

https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRevLett.48.867
https://doi.org/10.1103/PhysRevLett.48.867
https://doi.org/10.1103/PhysRevLett.82.4619
https://doi.org/10.1103/PhysRevLett.82.4619
https://doi.org/10.1103/PhysRevLett.94.193002
https://doi.org/10.1103/PhysRevLett.94.193002
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/nphoton.2016.20
https://doi.org/10.1038/nphoton.2016.231
https://doi.org/10.1103/PhysRevLett.67.177
https://doi.org/10.1038/s41598-018-30608-1
https://doi.org/10.1038/s41598-018-30608-1
https://doi.org/10.1038/417529a
https://doi.org/10.1038/srep05867
https://doi.org/10.1038/srep05867
https://doi.org/10.1103/PhysRevLett.79.769
https://doi.org/10.1103/PhysRevLett.79.769
https://doi.org/10.1088/1367-2630/15/12/123012
https://doi.org/10.1088/1367-2630/15/12/123012
https://doi.org/10.1038/nature07288
https://doi.org/10.1038/nature07288
https://doi.org/10.1103/PhysRevA.90.053809
https://doi.org/10.1103/PhysRevA.90.053809
https://doi.org/10.1103/PhysRevA.78.043410
https://doi.org/10.1016/0168-583X(92)95971-S
https://doi.org/10.1016/0168-583X(92)95971-S
https://doi.org/10.1038/nature05589
https://doi.org/10.1038/nature05589
https://doi.org/10.1063/1.4977955


[20] P. Yun, F. Tricot, C. E. Calosso, S. Micalizio, B. Francois, R.
Boudot, S. Guérandel, and E. de Clercq, Phys. Rev. Applied
7, 014018 (2017).

[21] X. Liu, E. Ivanov, V. I. Yudin, J. Kitching, and E. A. Donley,
Phys. Rev. Applied 8, 054001 (2017).

[22] X. Liu, V. I. Yudin, A. Taichenachev, J. Kitching, and E. A.
Donley, Appl. Phys. Lett. 111, 224102 (2017).

[23] Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan,
X. Huang, T. Li, and K. Gao, Phys. Rev. A 85, 030503
(2012).

[24] K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S.
Margolis, and P. Gill, Phys. Rev. A 79, 033403 (2009).

[25] M. Fischer, N. Kolachevsky, M. Zimmerman, R. Holzwarth,
T. Udem, T.W. Hansch, M. Abgrall, J. Grunert, I.
Maksimovic, S. Bize, H. Marion, F. P. Dos Santos, P.
Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon,
M. Haas, U. D. Juentschura, and C. H. Keitel, Phys. Rev.
Lett. 92, 230802 (2004).

[26] T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, Y.
Louyer, and D. J. E. Knight, Phys. Rev. A 74, 062509
(2006).

[27] P. R. Hemmer, M. S. Shahriar, V. D. Natoli, and S. Ezekiel,
J. Opt. Soc. Am. B 6, 1519 (1989).

[28] E. Blanshan, S. M. Rochester, E. A. Donley, and J. Kitching,
Phys. Rev. A 91, 041401(R) (2015).

[29] Y. Yano, W. J. Gao, S. Goka, and M. Kajita, Phys. Rev. A
90, 013826 (2014).

[30] G. S. Pati, Z. Warren, N. Yu, and M. S. Shahriar, J. Opt. Soc.
Am. B 32, 388 (2015).

[31] S. M. Shahriar, P. R. Hemmer, D. P. Katz, A. Lee, and M. G.
Prentiss, Phys. Rev. A 55, 2272 (1997).

[32] J. W. Pollock, V. I. Yudin, M. Shuker, M. Y. Basalaev, A. V.
Taichenachev, X. Liu, J. Kitching, and E. A. Donley, Phys.
Rev. A 98, 053424 (2018).

[33] V. I. Yudin, A. V. Taichenachev, C. W. Oates, Z. W. Barber,
N. D. Lemke, A. D. Ludlow, U. Sterr, C. Lisdat, and F.
Riehle, Phys. Rev. A 82, 011804 (2010).
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