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Optical frequency combs based on solitons in nonlinear microresonators open up new regimes for optical metrology and signal
processing across a range of expanding and emerging applications. In this work, we advance these combs toward applications by
demonstrating protected single-soliton formation and operation in a Kerr-nonlinear microresonator using a phase-modulated
pump laser. Phase modulation gives rise to spatially/temporally varying effective loss and detuning parameters, leading to an
operation regime in which multi-soliton degeneracy is lifted and a single soliton is the only observable behavior. We achieve
direct, on-demand excitation of single solitons as indicated by reversal of the characteristic “soliton step.” Phase modulation
also enables precise, high bandwidth control of the soliton pulse train’s properties, and wemeasure dynamics that agree closely
with simulations. We show that the technique can be extended to high-repetition-frequency Kerr solitons through subhar-
monic phase modulation. These results will facilitate straightforward generation and control of Kerr-soliton microcombs for
integrated photonics systems. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (190.5530) Pulse propagation and temporal solitons; (140.3948) Microcavity devices.
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1. INTRODUCTION

Dissipative temporal cavity solitons in Kerr microresonators [1–4]
have the potential to provide the revolutionary capabilities of fre-
quency combs in a chip-integrable platform. This would extend
the reach of frequency combs to applications in communications,
computation, and sensing with low size, weight, and power.
Progress has come rapidly in the field of microresonator-
soliton-based frequency combs, but for these combs to reach appli-
cations, simple, repeatable, and platform-independent methods of
soliton generation and control are needed. The basic challenge is that
solitons in microresonators are independent excitations, and a reso-
nator can host zero, one, or many co-circulating solitons at a given
pump-laser power and frequency. Further, under normal conditions
these solitons can be generated only by condensation from extended
modulation-instability (MI) patterns (primary comb/Turing pat-
terns, or noisy comb/spatiotemporal chaos) that provide appropriate
initial perturbations. Thermal stability must bemaintained as the in-
tracavitypowerdropsduring the transition fromahigh-duty-cycleMI
pattern to a low-duty-cycle soliton. A variety of schemes have been
demonstrated to address these challenges and obtain single solitons
[5–9], andmany achieve excellent performance.However, in general
these schemes increase procedural complexity by exploiting non-
adiabatic variations in pump-laser power and frequency, and/or in-
volve at least some amount of stochastic fluctuation in the output.

One notable possibility is modulation of the pump laser at a fre-
quency near the resonator free-spectral range (FSR) [10–13], which
can enable deterministic condensation of either one or zero solitons
from an MI pattern. Further, it has been demonstrated that phase
modulation (PM) can facilitate generation and control of single sol-
itons [12,14,15]. In this article we theoretically describe and then ex-
perimentally demonstrate the use of a phase-modulated pump laser
for deterministic excitation of single solitons directly from a chirped
background that remains otherwise stable, as was proposed in
Ref. [16]; the result is a train of solitons spaced by the round-trip time
exiting the resonator, as shown in Fig. 1(a). Importantly, this scheme
requiresno transientperturbation to the systemparameters for soliton
generation. In addition to exploring soliton generation, we also
demonstrate that PM at the FSR can be used for microsecond-level
control of the pulse train’s repetition rate, andwe conclude by discus-
singhowthe techniquecanbeappliedto resonatorswithFSRtoohigh
to be directly electronically accessible.

2. PHYSICAL MECHANISM AND THEORETICAL
EXPLORATION OF THE CONCEPT

Our results demonstrate a regime in which single-soliton opera-
tion is fundamentally protected without the degeneracy between
N � 0, 1 and many solitons that exists for a continuous-wave
(CW) pump laser. To motivate the experimental work that
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follows, we begin by presenting theoretical results that illustrate
the utility of a PM pump. We use the nonlinear partial-
differential Lugiato–Lefever equation (LLE) with modification
of the driving term for phase modulation with depth δPM
[1,16–19]:

∂ψ
∂τ

� −�1� iα�ψ � ijψ j2ψ − i
β2
2

∂2ψ
∂θ2

� FeiδPM cos θ: (1)

The normalized quantities used in the LLE are defined as follows
[17]: ψ is the envelope for the intracavity field normalized so that
jψ j2 � 1 at the absolute threshold for parametric oscillation;
τ � t∕2τph, where t is the time and τph � 1∕2πΔν is the cavity
photon lifetime, where Δν is the cavity resonance linewidth; α �
2�ν0 − νpump�∕Δν is the detuning between the pumped resonance
with frequency ν0 and the pump laser with frequency νpump; F is
the pump strength normalized so that F 2 � 1 at the absolute
threshold for parametric oscillation; and β2 � −2D2∕2πΔν <
0 is the anomalous resonator dispersion, with D2∕2π �
∂2νμ∕∂μ2jμ�0 > 0, where νμ represents the set of cavity resonance
frequencies and μ � 0 indexes the pumped mode. The azimuthal
angle θ co-rotates at the frequency f PM, which is presently as-
sumed to be equal to the FSR. We emphasize for clarity that
throughout this paper α > 0, and, therefore, that the pump laser

is always “red detuned” from the cavity resonance; decreasing
(increasing) α corresponds to increasing (decreasing) the laser fre-
quency νpump and moving it closer to (further from) the linear
cavity resonance.

We perform simulations of the LLE to investigate soliton
degeneracy for the range of pump-laser detunings over which sol-
itons exist. We use a fourth-order Runge–Kutta algorithm in the
interaction picture [20] with adaptive step size [21]. The resulting
soliton-energy-level diagrams for the CW case (δPM � 0) and the
PM case (δPM � π) are shown in Fig. 1(b). We find that PM
transforms the resonator excitation spectrum from a series ofN �
0, 1, 2,…,Nmax solitons to a smaller number of available energy
levels. In particular, for detuning α slightly greater than the lower
bound for soliton existence (below which lie extended MI pat-
terns), a single level N � 1 is the only available state, and soliton
degeneracy is eliminated.

The elimination of degeneracy and emergence of the protected
N � 1 level occurs as a result of spatial/temporal variations of
effective loss and detuning parameters that result from the phase
modulation. We can obtain an approximation for these param-
eters by inserting the ansatz ψ�θ, τ� � φ�θ, τ�eiδPM cos θ into
Eq. (1) [15]. By expanding the second-derivative term and setting
derivatives of φ to zero we arrive at an equation for the quasi-CW
background in the PM-pumped resonator:

F � �γ�θ� � iαeff �θ��φ − ijφj2φ: (2)

The effective loss and detuning terms are

γ�θ� � 1� β2
2
δPM cos θ, (3)

αeff �θ� � α −
β2
2
δ2PM sin2 θ: (4)

The field ψ can be approximated using these local parameters:

ψ � FeiδPM cos θ

γ�θ� � i�αeff �θ� − ρ�θ��
, (5)

where ρ�θ� � jφ�θ�j2 is the (smallest real) solution to the cubic
polynomial in ρ obtained by taking the modulus-square of
Eq. (2):

F 2 � �γ�θ�2 � �αeff �θ� − ρ�θ��2�ρ�θ�: (6)

In neglecting the spatial derivatives of φ but retaining the deriv-
atives of the term eiδPM cos θ, we make the approximation that the
dominant effect of dispersion is its action on the existing phase-
modulation spectrum. We note that a full analysis of the rich
behavior of Eq. (1) without this approximation remains a
promising avenue for future research.

Figure 2(a) compares the predictions of simulations of the LLE
(color) and the analytical model discussed immediately above
(black) for the quasi-CW background in the resonator in the pres-
ence of phase modulation. The two agree quantitatively for weak
modulation (δPM � π

2 , blue) and qualitatively for larger depth
(δPM � 4π, green); both indicate that the field ψ exhibits ampli-
tude variations due to spatially varying effective loss and detuning.
These parameters determine whether the quasi-CW background
locally (as a function of θ ) exhibits the bistability that is well
known in the case of a CW pump laser [19,22], which suggests
a mechanism for spontaneous single-soliton generation: as α is
decreased, the stable effectively red-detuned branch of the reso-
nance locally vanishes at the larger peak of the quasi-CW

Fig. 1. (a) Schematic for soliton generation in a PM-pumped resona-
tor, neglecting interference at the output. (b) Simulated energy-level dia-
grams for the CW- (orange) and PM-pumped (blue, δPM � π) resonator
for F 2 � 4, β2 � −0.0187. With PM, an interval in α exists for which
the single soliton is the only available energy level. This interval is fairly
narrow, but we find that it is readily accessible in experiment. We also
observe non-stationary states for values of α ≤ 2.7 in the PM case (red
shading); whether the system exhibits one of these non-stationary states
or anN � 2 soliton state is determined by the initial conditions that seed
the formation of the soliton ensemble.
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background at θ � 0, leading to the formation of a soliton. If α is
decreased further, the stable effectively red-detuned branch van-
ishes at the smaller peak at θ � π and a second soliton is formed.
By following the analysis in, e.g., Ref. [19] [Eqs. (11)–(14)],

we can approximate the detunings α1 and α2 where the first
and second solitons are generated, respectively, by determining
at what detuning the red-detuned branch vanishes for θ � 0
and θ � π. For parameters matching the level diagram shown
in Fig. 1(b), this predicts generation of the first soliton at
α1 � 2.741 and generation of the second at α2 � 2.705, in ex-
cellent agreement with the values α1 � 2.729 and α2 � 2.699
obtained in numerical simulations. A simulation of single-soliton
generation enabled by pump phase modulation is shown in
Fig. 2(b).

If solitons exist at θ ≠ 0 in a PM-pumped cavity, they drift to
the intracavity intensity maximum at θ � 0 [15], making super-
positions of N > 1 solitons unstable and practically forbidden for
values of detuning α > α2 (for α ≤ α2, a second soliton is sponta-
neously generated at θ � π and persists there). We depict the
simulated collapse to N � 1 of such a superposition in Fig. 2(c).
Thus, over the range of detuning α2 < α < α1, application of PM
to the pump laser removes the degeneracy between N � 1 and
N � 0 and also between N � 1 and N > 1 solitons. Single-
soliton generation and operation then simply require tuning
the pump power and frequency to appropriate values, regardless
of initial conditions.

Quantitative determination of the full soliton level structure
plotted in Fig. 1(b) is numerically quite involved. However, a
qualitative estimate of the dependence of the detuning interval
α2 < α < α1 for protected single-soliton generation and opera-
tion on pump power F 2 and modulation depth δPM can be ob-
tained by generalizing the process described above: as a function
of F 2 and δPM, one determines at what values of detuning the
bistability vanishes for θ � 0 (defining α1) and θ � π (defining
α2). We present example approximations in Fig. 2(d). The basic
observation is that the interval between α1 and α2 over which
single-soliton operation is protected increases in size as δPM in-
creases, as a result of the scaling of the θ-dependence of γ�θ� with
δPM in Eq. (3). In a sample comparison of these approximations
with a determination of α1 and α2 in an LLE simulation we find
that this basic observation holds, but that the prediction for the
absolute location of the interval α2 < α < α1 becomes less
accurate for larger δPM; this is consistent with the greater deviation
between approximation and simulation at higher δPM seen in
Fig. 2(a).

Before discussing our experimental implementation of the
approach described above, we note that it is natural to consider
whether a similar technique can be employed using amplitude
modulation (AM) outside of the pulsed-pumping limit [13]
(this limit requires prior generation of a train of temporally short
input pulses, which brings additional complexity). While we have
not conducted an exhaustive study of soliton generation with
AM, as that is not the primary subject of this work, our prelimi-
nary simulations show that AM can indeed be used to spontane-
ously generate single solitons. Specifically, simulations indicate
that one implementation with complexity comparable to our
PM technique, in which a single Mach–Zehnder-type modulator
with sinusoidal modulation is used to generate a 50% duty-
cycle train of nearly flat-topped pulses (see Ref. [23]), is likely
to be successful under a somewhat smaller range of parameters
than the PM scheme we discuss here. A full quantitative
study of AM is, however, beyond the scope of the present
work, and is accordingly left as a promising avenue for future
research.

Fig. 2. (a) Simulated quasi-CW background intensity without (or-
ange) and with PM of depth π∕2 (blue) and 4π (green), with F 2 �
3 and β2 � −0.02, with analytical approximations in black. Here α is
slightly larger than α1, the critical value for soliton formation. Dashed
traces show the simulated phase profile of the field ψ (green) and of
the driving term FeiδPM cos θ (red) with modulation depth 4π. The phase
of the field is very nearly the phase of the drive plus a constant offset.
(b) A simulation of spontaneous single-soliton generation using a phase-
modulated pump laser with δPM � π, F 2 � 4, and β � −0.0187. Left: α
is decreased smoothly as a function of time τ and then held constant after
a soliton is generated. Middle: false-color plot of the intensity in the cav-
ity as a function of time, with the final intensity shown above. Right:
false-color plot of the comb spectrum on a logarithmic scale as a function
of time, assuming a repetition rate of 22 GHz. Final spectrum is shown
above. (c) A simulation of the collapse of a soliton ensemble to N � 1
with initial N � 5 for α � 2.8, F 2 � 4, and β � −0.0187. To slow
down the initial dynamics for clarity, the modulation depth is initialized
at δPM � 0, and then linearly ramped to δPM � π from τ � 50 to
τ � 550. We note that the simulations presented in parts (b) and
(c) are similar to simulations presented in Ref. [16]; we present these
for clarity without claiming novelty. (d) Plots of approximations (ob-
tained as described in the text, β2 � −0.0187) to the values α1 and
α2 of detuning at which the first soliton and a second soliton are gen-
erated, respectively, with a zoomed plot depicting details in the upper
right. Several values of PM depth are plotted: δPM � 0 (blue), δPM �
π (yellow), and δPM � 2π (green). For each the line to the right is
α1 and the line to the left is α2; the single line for δPM � 0 represents
the line at which the bistability of the CW background vanishes every-
where in this case. Horizontal lines indicate the interval α2 < α < α1
obtained in the corresponding LLE simulations with F 2 � 5.1.

Research Article Vol. 5, No. 10 / October 2018 / Optica 1306



3. EXPERIMENTAL RESULTS: SOLITON
GENERATION

We implement the approach described above to realize determin-
istic generation of single solitons without condensation from an
extended pattern. Our approach is summarized in Fig. 3, and re-
sults are depicted in Fig. 4. We use a 22 GHz FSR silica wedge
resonator with Δν ∼ 1.5 MHz linewidth [24] (loaded Q ∼ 129
million, see also Ref. [25]), pumped by a laser with normalized
power F 2 between 2 and 6, phase modulated at a rate f PM ∼
22 GHz with relatively small depth δPM ∼ π. The pump laser
is derived from a seed CW laser using a single-sideband modulator
driven by a voltage-controlled oscillator (VCO) [25], yielding
high frequency-control bandwidth. To overcome the challenges
presented by thermal instabilities [26], we also address the
resonance with a counter-propagating probe beam that is fre-
quency shifted in an acousto-optic modulator (AOM) by
f AOM � 55 MHz. We phase modulate this probe beam at a
variable frequency f PDH < 55 MHz to enable Pound–Drever–
Hall (PDH) locking of the red-detuned PDH sideband of the
probe beam to the resonance [25]; the lock is achieved by feeding
back to the pump-laser frequency using the VCO. This enables
real-time measurement and control of the detuning ν0 − νpump

according to ν0 − νpump � f AOM − f PDH. A frequency-domain
depiction of our detuning-control system is presented in Fig. 3(a),
and a schematic depiction of the components used to realize this
scheme is shown in Fig. 3(b). Future work could simplify the
apparatus while maintaining useful detuning stabilization and
control.

To generate solitons we decrease the detuning from a large
initial value (∼40 MHz) by increasing the frequency f PDH of
the PDH modulation—this is done by simply turning the
frequency knob on the function generator by hand. A soliton
is generated when the detuning is near 5 MHz (dependent upon

the pump power and coupling condition). Measuring the power
converted through four-wave mixing to new frequencies, the
“comb power,” reveals a step upon soliton formation, shown in
Fig. 4(a). This indicates direct generation of a soliton from the
background, and represents a reversal of the characteristic “soliton
step” that typically signals condensation of solitons from an ex-
tended pattern. After soliton generation the comb exhibits the
sech2 spectral envelope and quiet repetition-rate tone character-
istic of single-soliton operation, shown in Figs. 4(b) and 4(c).
Once single-soliton operation is achieved, α may be increased
again without loss of the soliton, consistent with the level diagram
shown in Fig. 1(b). We have verified that it is possible to turn off
the PM while preserving the soliton if the PM is turned off by first
decreasing its amplitude slowly (i.e., on the timescale of 1 s)
before turning it off entirely (see also Ref. [16]).

To investigate the repeatability of our technique, we automate
soliton generation by repeatedly decreasing α from a large initial
value and then increasing it again—control of α is achieved
through adjustment of f PDH. The termination points of the
scan are chosen such that at the lower end of the scan a soliton
is generated before α begins to increase again, and at the upper
end of the scan the soliton has been lost (because the maximum

Fig. 3. (a) Frequency-domain depiction of the experiment, with cavity
modes shown in blue and laser frequencies shown in red. Modulation of a
counter-propagating probe beam at f PDH after shifting by f AOM and
subsequent locking of the red PDH sideband to the resonance allows
detuning control via ν0 − νpump � f AOM − f PDH, with adjustments
implemented by changing f PDH. (b) Schematic depiction of the compo-
nents of the experiment used for frequency control of the system.

Fig. 4. (a) Measurement of a reversed soliton step in the comb power
associated with soliton generation from the background. Inset shows
qualitatively similar dynamics observed in an LLE-simulated comb-
power trace. (b) Measured optical spectrum of the soliton generated with
a phase-modulated pump laser. The spectrum of the pump, which con-
tains phase-modulation sidebands, is visible in the center. The soliton’s
spectral envelope closely matches the sech2 envelope that has been over-
laid in dashed red. (c) Plot of the out-coupled soliton pulse train’s rep-
etition rate as recorded by a photodetector, exhibiting a characteristically
high signal-to-noise ratio. We emphasize that this data is obtained
with the phase modulation turned off; otherwise the recorded RF
signal is dominated by through-coupled phase-modulation sidebands
at f PM ∼ f FSR ∼ f rep. (d) Histogram of measured offset in detuning
from a reference value at which a soliton is generated over 160 successive
trials, with a Gaussian fit shown in red. The width of the interval over
which solitons are generated is larger than the calculated width of the
protected N � 1 level shown in Fig. 1(b), but the model does not
include laser fluctuations and other experimental effects.
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detuning for soliton existence has been exceeded) before α begins
to decrease. Specifically, the scan runs linearly between detuning
values of approximately 5 and 20 MHz. We observe generation
and extinction of 1000 solitons in 1000 trials over 100 s with this
automated scan, with a 100% measured success rate indicated by
the comb-power trace recorded during the repeated sweep. Our
probe-laser setup enables measurement of the detuning at which
soliton generation occurs, which changes little from run to run.
Figure 4(d) presents a histogram of detuning measurements for
the generation of 160 solitons.

4. EXPERIMENTAL RESULTS: SOLITON CONTROL

Besides enabling protected single-soliton operation, PM pumping
also naturally provides timing and repetition-rate control, because
the solitons are pushed toward the intracavity phase maximum
[15]. We explore this control, with results summarized in
Fig. 5. In our experiments, the repetition rate of the out-coupled
pulse train �f rep� remains locked to f PM over a bandwidth of
∼� 40 kHz. In Fig. 5(a), we show a spectrogram of f rep mea-
sured as f PM is swept sinusoidally over�50 kHz. The repetition
rate follows the PM except for glitches near the peaks of the
sweep. In the inset of Fig. 5(a) we overlay the results of LLE
simulations (see below) that qualitatively match the observed
behavior. These simulations indicate that the periodic nature
of the glitches is due to the residual pulling of the phase modu-
lation on the soliton when the latter periodically cycles through
the pump’s phase maximum. Our observed locking range of ∼�
40 kHz agrees well with an estimate δPM × D2∕2π ∼ 44 kHz
[15] using the approximate measured value D2∕2π � 14 kHz
per mode and modulation depth δPM � π.

To investigate fast control of the repetition rate, we measure
f rep as f PM is rapidly switched by �40 kHz around the soliton’s
natural repetition rate. We plot the resulting data as eye diagrams
in Figs. 5(b) and 5(c). In Fig. 5(b), f PM is switched with 200 μs
period and 10 μs transition time; in Fig. 5(c) it is switched with
100 μs period and 60 ns transition time. This data is obtained by
detecting a portion of the pulse train’s spectrum that excludes the
pump laser with a sufficiently fast photodetector and passing the
resulting f rep signal through two paths, one with an element that
induces a frequency-dependent phase shift. After calibration, the
repetition rate can be obtained from the resulting phase shift in
real time. These eye diagrams show that the PM enables exquisite
control of the soliton pulse train.

We perform LLE simulations to further explore the dynamics
of repetition-rate switching. We introduce the term�β1

∂ψ
∂θ to the

right-hand side of Eq. (1), where β1 � −2�f FSR − f PM�∕Δν
represents a difference between the modulation frequency and
the FSR of the resonator near the pump wavelength [15,16];
β1 may be varied in time. In Fig. 5(c) we overlay a simulation
of switching conducted for parameters (Δν � 1.5 MHz,
δPM � 0.9π) near the experimental values, and the agreement be-
tween measurements and simulation indicates that the measure-
ments are consistent with fundamental LLE dynamics. We
present the results of additional simulations in Fig. 5(d); the basic
observation is that the switching speed of f rep is limited by
the resonator linewidth, and can be modestly improved by
increasing δPM.

5. APPLICATION OF THE TECHNIQUE TO HIGH
FREE-SPECTRAL RANGE RESONATORS VIA
SUBHARMONIC PHASE MODULATION

One apparent barrier to the use of PM for protected single-soliton
operation is the electronically inaccessible FSRs of some micro-
comb resonators. However, this challenge can be overcome by
applying PM at a subharmonic of the FSR. Simulations indicate
that solitons can be generated with small modulation depth, e.g.,
δPM � 0.15π. In this limit only the first-order PM sidebands are
relevant, and their amplitude and phase relative to the carrier

Fig. 5. (a) Measured spectrogram of f rep as f PM is swept over
�50 kHz, with glitches where the locking range is exceeded. Inset: quali-
tative agreement with simulations, shown in red, when f PM is outside of
the locking bandwidth. As the soliton and the pump phase evolve at dif-
ferent frequencies f rep and f PM, the soliton periodically approaches the
maximum of the phase profile. The soliton’s group velocity changes,
nearly locking to the phase modulation, before becoming clearly un-
locked again. (b) Measured eye diagram of f rep as f PM is switched
�40 kHz with 10 μs transition time. (c) The same with 60 ns transition
time, and an LLE simulation of the dynamics (red) with depth δPM �
0.9π and resonator linewidth Δν � 1.5 MHz. (d) Simulated switching
dynamics for various linewidths and modulation depths. The theory trace
from (c) is reproduced in solid red in both panels. Top, solid black:
modulation depth 0.9π as in (c), and Δν � 10 MHz (fastest, left),
3 MHz, and 1.4 MHz. Bottom, dashed red: linewidth Δν �
1.5 MHz as in (c), with modulation depths of 2π and 6π (curves nearly
overlap).
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control the dynamics. A small desired modulation depth δPM,eff
defined by the relationship between the carrier and the lowest
order sidebands that are coupled into the resonator can be ob-
tained by modulating with depth δPM at a frequency
f PM ∼ f FSR∕N , so that the N th-order PM sidebands and the
carrier address resonator modes with relative mode numbers
−1, 0, and 1, where δPM is chosen in order to achieve effective
depth δPM,eff . When N is odd, PM is recovered when the side-
bands of order −N , 0, and N address resonator modes −1, 0, and
1. When N is even, pure AM results, with a driving term
like F �1� A cos θ�.

Figure 6 presents a simulated example of this technique. In
general, the values δPM, N , and δPM,eff are related non-trivially
through Bessel functions according to the Jacobi–Anger expan-
sion (see, e.g., Ref. [27], Section 10.12); for this example we
choose N � 21 and δPM,eff � 0.15π. To achieve this effective
modulation depth we employ real phase modulation depth of
δPM ∼ 8.3π at f PM � f rep∕21. The phase modulation spreads
the optical power into the PM sidebands, so this technique re-
quires higher optical power for the same effective pumping
strength; in this example, the power must be increased by
∼15.6 dB. In fact, δPM,eff � 0.15π can be recovered with smaller
δPM; however, this comes with far lower spectral efficiency (as de-
fined by the fraction of total optical power that is coupled into the
resonator). While the required modulation depth and pump
power are higher with subharmonic PM, neither is impractical.
This technique could be used for protected single-soliton gener-
ation and operation in high-repetition-rate systems; the example
above indicates that it could be immediately applied to determin-
istic single-soliton generation in a 630 GHz FSR resonator
with 30 GHz phase modulation. In principle, the ratio

N � f FSR∕f PM can be increased, allowing smaller phase-
modulation frequencies to be applied to a given resonator;
however, this comes at the cost of lower spectral efficiency and
correspondingly higher required total optical power.

6. FINAL REMARKS

In this work, we have shown that phase modulation of the pump
laser fundamentally changes a resonator’s excitation spectrum and
enables an interesting new regime of protected single-soliton oper-
ation. In our experiments phase modulation of the pump laser, com-
bined with our approach for detuning control, enabled deterministic,
on-demand soliton generation with an observed 100% success rate.
While our proof-of-concept experiments made use of sophisticated
frequency- and detuning-control techniques, we expect simplifica-
tion of the approach to be possible in the future, and this will facili-
tate its implementation in systems for photonics applications.

This technique is applicable to resonators with electronically
accessible f rep, which are important components of proposals for
photonic integration of Kerr solitons [28,29], and can reach
higher repetition-rate systems via subharmonic modulation.
After soliton generation, the PM can optionally be turned off,
recovering the properties of the non-PM soliton. We expect this
technique to enable new experiments. For example, in principle,
PM-pumped solitons are generated with known absolute timing,
enabling immediate transduction of the modulation phase onto
the pulse train; this is impossible with solitons stochastically con-
densed from an extended pattern. Our work brings microresona-
tor solitons closer to applications.
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