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29.1 Introduction and Clock Statistics

This chapter describes a number of methods that can be
used to distribute time and frequency information with
the goal of calibrating or synchronizing a local clock. The
primary focus will be on methods that use the signals from
global navigation satellites — primarily the signals from the
US GPS satellites. However, the basic techniques are quite
general and are not limited to any specific navigational sat-
ellite constellation.

The two-way method of estimating the delay in the link
between the local clock and the remote time reference will
also be discussed. Unlike methods that use the signals from
global navigation systems, in which both the local and
remote systems passively receive the signals from the satel-
lites, both end points actively transmit and receive in all
implementations of the two-way method.

The discussion assumes that the user has a local clock or
frequency standard, and that the purpose of receiving time
and frequency information from a remote source is to
improve the time accuracy or the frequency stability of
the local device. The goal then is to combine the data from
the remote reference with the reading of the local clock to
produce a combination that incorporates the best features
of both contributions and to realize a combination that is
better than either one by itself. From this perspective,
any discussion of distribution methods should include
some understanding of the characteristics and limitations
of real clocks and frequency standards. These concepts will
be introduced in the next section.

The statistical methods that are used for characterizing
the performance of frequency standards are also useful
for describing the statistics of the network connection to
the remote reference. In most of the situations that will
be discussed in this chapter, the characteristics of the
remote reference clock itself are not very important because
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the remote clock is often much more stable and accurate
than the channel delay.

The first step in the synchronization process is to receive
the time datum from the GNSS satellite. The methods for
doing this are the same as the methods for position or nav-
igation applications. The signals received from the GNSS
satellites are processed to extract the pseudorange, with
the difference that the position of the receiver is presumed
to be known a priori by some method outside of the scope of
the synchronization process. Therefore, the signal from a
single satellite is sufficient, since the only unknown in
the pseudorange determination is the difference between
the satellite time and the time of the local system clock.

The pseudorandom code transmitted by each satellite con-
tains an explicit link to the time as derived from the clock
onboard the satellite. The parameters in the ephemeris mes-
sage can link this time to the satellite system time and also to
UTC, or Coordinated Universal Time, which is the legal time
scale in most countries. For the signals from the GPS satellite
constellation, the link to UTC is through UTC(USNO), the
time scale of the US Naval Observatory. Other satellite sys-
tems have comparable links. These links are generally pre-
dictions computed by the ground controllers and uploaded
into the satellite periodically. Many timing laboratories
and national metrology institutes monitor the time of the
constellation and publish the offset between satellite system
time and UTC(lab), the UTC time scale of that laboratory.
These data are generally not available in real time. From
these considerations, it is clear that the stability and accuracy
of the clock in the satellite are most important for short aver-
aging times and real-time applications, while the character-
istics of the system time and the link to the time scale of the
US Naval Observatory are relevant for longer averaging
times and non-real-time applications.

It is also possible to compute the pseudorange by using
the phase of the carrier. This method supports greater
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resolution, since the frequency of the carrier is 1540 times
the frequency of the L1 code. However, the computed pseu-
dorange is ambiguous modulo an unknown number of car-
rier cycles. The signal-to-noise ratio (SNR) on the code is
usually not adequate to determine this integer uniquely,
and other methods must be used. A geodetic solution has
the same ambiguity, and the methods for resolving the
ambiguity are similar. Although the data from a single sat-
ellite is adequate for code-based time transfer when the
position of the station is known a priori, it can be difficult
to resolve the integer ambiguity in a carrier-phase solution
with the data from only a single satellite.

A significant problem with carrier-phase pseudoranges is
the possibility of a cycle slip, and most carrier-phase algo-
rithms contain a method for detecting and removing these
time steps. The cycle-slip detection problem is complicated
when the L3 ionosphere-free combination (see discussions
in Section 29.3.1) is used to compute the pseudorange, since
the magnitude of the cycle slip can be ambiguous in this
case. It is especially difficult to detect a simultaneous step
in the L1 and L2 contributions to the L3 pseudorange if
the steps in the two frequencies are of opposite sign.

Since the carrier-phase measurements are not unambig-
uously linked to the time of the satellite clock, a carrier-
phase analysis typically combines a contribution of the
code as well. A common method is to weight the carrier
and code contributions in the ratio of 100:1. The code helps
determine the correct phase integer. Therefore, a carrier-
phase analysis provides increased resolution of the time dif-
ferences but not necessarily increased accuracy.

The following discussion assumes that the pseudorange
has been calculated from the data received from at least
one satellite, and the reader is referred to Chapters 2 and
14 in this volume for more details about this. In general,
the symbol z will be used to indicate the elapsed time
between data points. It is generally convenient to use a con-
stant value for the time interval, but most of the analysis
does not require that this be the case.

29.1.1 Physics of Clocks and Oscillators and
Their Parameters

All clocks consist of two components: a device that pro-
duces a series of periodic events and a counter that
counts the number of events and possibly also interpo-
lates between consecutive events to improve the resolu-
tion of the measurement. The count is relative to some
origin that is defined by considerations that are inde-
pendent of the clock itself. As a practical matter, the time
origin is generally chosen sufficiently far in the past that
most epochs of interest have positive times with respect
to the origin.

The choice of any particular time origin is important for
everyday timekeeping, but its definition is generally not
important for discussing the properties of clocks and oscil-
lators, and this chapter will not discuss the real-world
issues associated with the definition of the calendar and
related questions. The time of a clock or the frequency of
an oscillator can be considered as the algebraic difference
between the device being described and a second, ideal,
noiseless device that realizes the definitions of the stan-
dards of time or frequency. Both devices generate an output
signal at the same nominal frequency. Output signals at
1 Hz and at 5 MHz are commonly used, and these output fre-
quencies are synthesized from the internal frequency of the
device, which may be quite different and which usually
varies from one type of device to another one. The terms time
difference and frequency difference are often used as syno-
nyms for the time and frequency defined in the previous
sentence to avoid any possible ambiguity in the discussion.

Early clocks used a frequency reference derived from a
mechanical oscillation - the swing of a pendulum, for
example, or the oscillation of a balance wheel. Starting in
the 1920s and 1930s, the mechanical frequency reference
was based on the resonance in the vibration of quartz crys-
tals. These crystals were combined with various electronic
components to generate a periodic electrical signal derived
from the vibration frequency of the crystal.

Although the frequency stability of a quartz-crystal oscil-
lator is far superior to that of a simple pendulum clock, the
frequency of a device based on a quartz crystal has poor
long-term stability. In addition, because its frequency is
based on a physical artifact, it is difficult to reproduce
exactly the same frequency from different crystals. There-
fore, atomic frequency standards, whose frequencies are
referenced to the transition frequency of some atom, were
developed starting in about 1955. Although atomic fre-
quency standards are universally used whenever frequency
stability and accuracy are important requirements, quartz-
crystal oscillators are central to almost all atomic frequency
standards, and it is important to understand their statistics
and limitations in designing a distribution algorithm.

To introduce the concepts, let us consider the ideal clock
as an electrical oscillator that provides an output signal
voltage of the form

V = V,sin (2zft) (29.1)

where V, and fare the constant amplitude and frequency of
the oscillator, respectively, and ¢ is the time measured in
seconds. This ideal oscillator generates a “tick” each time
the output voltage goes through zero with a positive slope.
The times of the ticks, T,,, are given by
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where n is any integer. The output voltage of the second
device we are considering is

(29.2)
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so that the amplitude and frequency of the device under test
are well-defined quantities, and the amplitude and fre-
quency modulations are small perturbations on the output
signal. The ticks of the second device will be at times
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The time difference with respect to the ideal device is
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The frequency difference between the two devices is the
evolution of this time difference, which is driven by the
time derivative of the phase difference:

y (29.8)
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If ¢ is measured in radians and fin hertz, then x is meas-
ured in seconds and y is dimensionless. The phase angle, ¢,
in Eq. 29.3, is ambiguous modulo 2z, and this integer cycle
ambiguity results in a corresponding ambiguity of the time
in Eq. 29.6 and the time difference in Eq. 29.7. In both cases,
the value is ambiguous modulo 1/f, and every measurement
strategy depends on the fact that cycle slips are relatively rare
events and can be detected when they occur because the time
difference associated with a cycle slip is much larger than the
value predicted by Eq. 29.8. In general, a cycle slip is treated
as an outlier, and its effect is removed from the data. The
time difference in Eq. 29.7 implicitly assumes that we have
identified the same integer cycle number in both clocks. This
is easy to do in a laboratory setting, where the measurement
noise is much smaller than the 1/f ambiguity, but this is a
significant issue when the channel delay is noisy and not
very stable. This issue will be discussed in a later section.
As in the discussion above, we will continue to use the
symbols ¢, measured in seconds, and f, measured in cycles

29.1 Introduction and Clock Statistics

per second or hertz, to describe the physical time and
frequency of the clock, where these quantities are expressed
in SI units. We also recognize the minute, the hour, and the
day, which are exact integer multiples of the time of the
clock measured in SI seconds. Thus, the standard day
consists of exactly 86 400 SI seconds.

The length of the standard day is modified on an irregular
basis by the addition (or subtraction, in principle) of an
extra “leap” second. These extra seconds are important
for real-world timekeeping, but should not affect the
statistics of the clock. For the purposes of the current
discussion, we will assume that both the standard device
and the device under test implement the leap second in
the same way. At worst, this can produce a transient change
to the time difference of +1 s, where the sign of the
transient depends on whether the device under test is fast
or slow with respect to the standard device. This transient
time difference is ignored in estimating the statistical
characteristics of the device.

Unfortunately, a number of time-service providers
implement the leap second in various non-standard ways,
and this can be a source of ambiguity. The leap second is
defined as the last second of a specified day, and its official
name is 23:59:60. It is the 61st second of that last minute.
The following second is 00:00:00 of the next day. Some
time-service providers add the extra second to 00:0:00 of
the day following the specified day. This has the same
long-term characteristics as the definition, but there will
be an error of 1 s in the vicinity of the leap second.
A more difficult issue is time-service providers who
amortize the leap second by a frequency adjustment over
some period before the leap second occurs. This method
will have both a time and a frequency error during the
amortization period. In addition, there is no standard
method for implementing this adjustment, so that different
realizations may see different errors. This method also has
the correct long-term behavior. All of the methods will have
a step in the time interval or the frequency if the calculation
of either of these parameters crosses a leap second event.

Egs. 29.7 and 29.8 can be generalized to clocks that
generate periodic “tick” events but that do not necessarily
generate the ticks from sinusoidal signals. We will define
the time of a clock as the algebraic difference, measured
in seconds, between the clock and the standard device,
and the frequency of a clock as the evolution of this time
difference, measured in seconds per second, where the
measurements are made with the output ticks and may
not be derived from a corresponding phase angle. The
frequency is a dimensionless quantity. These definitions
are effectively the same as those in the previous discussion,
except that there is no longer any connection between time
and phase or between time and the amplitude of the signals.
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This frequency has no connection to f, the internal
operating frequency of the device, and the two devices
may generate ticks using different internal mechanisms.

Although Eq. 29.8 defines an instantaneous frequency
difference in principle, the practical realization of the
frequency involves the evolution of the measurements of
the time difference in Eq. 29.7 over some averaging time,
7, which is generally measured in seconds. (The same
implicit averaging time is used even when the time and
frequency of the device are not derived from a sinusoidal
signal.)

The frequency of a clock often has both deterministic and
stochastic variation, and these variations, which are given
by the time derivative of y, are expressed in units of seconds
per second” or 1/s. The time, frequency, and frequency
variation of a clock with respect to the standard reference
device will be represented by x, y, and d, respectively. It
is possible in principle to model the behavior of a clock
by adding higher-order derivatives of the time difference,
but this is not done in practice for reasons that we will
discuss in a following section.

29.1.2 Clock Noise

With the assumption of Eq. 29.4, the amplitudes of the two
signals do not enter into the time difference, and the ampli-
tude modulation in Eq. 29.3 generally does not have a sig-
nificant impact on the time and frequency differences,
provided that the tick of each clock is realized by a zero-
crossing detector. This is the most common measurement
technique, although some systems determine the time dif-
ference as the delay needed to maximize the cross-
correlation between the signals defined by Egs. 29.1 and
29.3 (or by some equivalent method that maximizes the
cross-correlation between a signal from the reference clock
and the same signal generated by the local device).
Although this method has the potential advantage that it
uses the entire signal rather than just the signal near the
instant of the zero crossing, it can be sensitive to harmonic
distortion and to amplitude-modulation noise, and the
methods for addressing these problems often reduce the
theoretical advantage of the cross-correlation method.
The cross-correlation method, based on pseudorandom
codes, is used in GNSS signals because it requires less peak
power in the transmitter. The binary nature of the pseudo-
random codes used in GNSS signals minimizes the impact
of intermodulation distortion.

An important contribution to the noise budget of a time-
difference measurement is the stochastic variation in the
phase of the oscillator. This phase noise introduces a corre-
sponding stochastic variation in the time difference
through Eq. 29.7. Although we have generalized the

concept of time difference to include ticks that are not nec-
essarily related to the zero crossing of a sinusoidal signal,
the fluctuations in the time differences of clocks are gener-
ally referred to as “phase noise” in the literature even when
the output of the generator is not sinusoidal. This chapter
will use this designation as well.

In many oscillators, the fluctuations in the phase noise of
the clock are rapid compared to the time interval between
measurements. The impact of the instantaneous phase fluc-
tuation on any measurement is then nearly independent of
the impacts on the previous or following measurements,
and we can model the stochastic contribution of the phase
noise to the time differences by

(x(t + 7)x()) = 6°5(1) (29.9)
where 8(r) = 1 if £ = 0 and is 0 otherwise. The variance of
the time differences is ¢”.

The Fourier transform of Eq. 29.9 describes the power
spectral density of the fluctuations; this transform is a con-
stant at all Fourier frequencies, so that this variation is usu-
ally referred to as white phase noise. As we will mention
again in subsequent discussions, the integral of a constant
Fourier spectral density over all frequencies diverges to
infinity, implying infinite total power. This is not a problem
in real systems, where the Fourier spectrum in practice
is modeled as band-limited at the low-frequency end by
1/T, the inverse of the total time of the measurement and
at the upper-frequency end by 1/2z, twice the reciprocal
of the time between measurements. The assumption that
the signal is band-limited in this way is particularly
important when the data are modeled with a discrete
Fourier transform because the sampling interval of the
discrete transform aliases power above the high-frequency
limit of the model into a lower frequency in the modeled
passband. Power at Fourier frequencies below the
low-frequency cutoff appear as long-period drifts, which
are not well characterized in the Fourier domain.

An implicit assumption of the statistics of the time differ-
ences in Eq. 29.9 is that the data are stationary. That is,
Eq. 29.9 does not depend on the value of ¢ - the same sta-
tistical result would be obtained from a calculation that
used any section of the data. This assumption is difficult
to verify experimentally because any data set consists of
only a finite number of measurements, and it is extremely
unlikely, and probably impossible, for every section of data
to satisfy Eq. 29.9 exactly. In practice, the best that we could
hope for is that the deviations from the prediction of
Eq. 29.9 for any block of data are consistent with the usual
statistics of random variables. This is a self-fulfilling state-
ment in many practical situations, since estimates that do
not conform to Eq. 29.9 are treated as outliers and ignored.



The fluctuations in the time of the clock also drive corre-
sponding fluctuations in the frequency, and we will discuss
the characteristics of these fluctuations in the next sections.
For now, it is important to recognize that these time and
frequency differences are related, and that both arise from
the stochastic properties of the clock itself.

29.1.3 Measurement Noise

It is useful to consider again the model that was introduced
in the previous section. We will consider an oscillator that
produces a sinusoidal signal as in Eq. 29.3. The device
generates a “tick” each time the output voltage passes
through zero with a positive slope, and these ticks are
counted to realize the time of the clock. The circuit that
detects this zero crossing has some internal noise, V(t),
and this noise introduces a corresponding variation in
the detection of the time of the tick. The slope of the output
signal in the vicinity of the time of the zero crossing is given
by 2zfA, so that the noise voltage introduces a jitter in the
time of the zero crossing, 8T,/, given approximately by

27rfA6Tn’(t) =Vu(t) (29.10)
Or
\4
T, = n .
0T, 27fA (29.11)

This point is illustrated in Figure 29.1.

In this simple model, the noise voltage is a random input
that has a mean value of zero and a well-defined standard
deviation that does not depend on time. We assume that the
stochastic variation in V,, is stationary in the sense of the
previous section. We also assume that the noise contribu-
tion is not correlated with the signal. Thus

Volts 1

Time—

| Output ticks | = T‘_' 8T,

Figure 29.1 Time jitter associated with the hardware the
generates an output “tick” each time the input voltage from an
oscillator goes through zero with a positive slope. The output
voltage in the vicinity of the zero crossing is shown in the red line,
and the noise of the zero-crossing detector introduces a time jitter
with an amplitude on the order of 8T,
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<Va(t+7)Va(t) > = < V2> §(7) (29.12)
and, therefore,
i ! 1 2 2
rerorio) = v @

where 8(7) = 1 if r = 0 and is zero otherwise.

The power spectra of the noise voltage and time jitter are
driven by the Fourier transform of Eq. 29.12. The result is a
constant value for all Fourier frequencies, so that this effect
contributes to the white phase noise discussed in the previ-
ous section. The previous comments with respect to the
bandwidth limits discussed in that section apply here
as well.

In this simple model, the measured time difference is
unbiased and converges to the true time difference,
although the convergence may not be uniform. That is,
the mean estimated from N measurements will have a
smaller formal standard deviation than the mean estimated
from N — 1 measurements, but it is not guaranteed to be
more accurate for any specific choice of N. The N-th meas-
urement can deviate from the mean by an arbitrary
amount, although large deviations become increasingly
unlikely. As a practical matter, most measurement proto-
cols treat a value as an outlier and ignore it if it deviates
from the mean by more than 3 or 4 standard deviations.
This limit is imposed administratively and is outside of
the scope of a strict statistical evaluation of the data.

There is an important difference between estimating the
mean value by using all of the data in a single batch process,
and estimating it in an iterative fashion as each new data
point is acquired. The batch process algorithm computes
the mean of N data points in the usual way:

1 N
XN = Nin
1

The N data points enter the sum symmetrically, and all of
them are treated equally. However, if we compute the mean
iteratively as each new data point is received, and if we use
Eq. 29.14 for N — 1 points and then again for N points, then
the mean after the N-th point is given in terms of the mean
value computed from the previous N — 1 points by

(29.14)

- = 1 =
XN =XN-1+ N(xN_xN_l) (2915)
Thus, when the calculation is done iteratively, each new
point is weighted by the factor 1/N, and its contribution to
the new estimate of the mean depends on how far it devi-
ates from the running estimate. If the mean is calculated in
this way, it is important to reject outliers that are acquired
early in the measurement process, since they may bias the
mean estimate for many subsequent measurement cycles.
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Eq. 29.15 is a specific example of a more general process,
where the “innovation” - the term in parentheses on the
right side of the equation, which describes the difference
between the current measurement and the mean value
based on previous data, is weighted by a “gain function”
-1/N in this case. The weight in Eq. 29.15 is independent
of the magnitude of the innovation, but most real
algorithms reject a data point whose innovation magnitude
exceeds some preset threshold determined by the running
estimate of the standard deviation. This effectively sets the
weight to zero. Typical thresholds are three or four times
the running standard deviation. Most algorithms com-
pletely ignore the rejected point, so that the weight assigned
to the next value after the rejected one is N + 1 rather than
N + 2.

29.1.4 Analysis for Pure White Phase Noise

If we assume that the time, frequency, and frequency drift
parameters of the device under test are strictly constant
during the measurements and that the stochastic variation
in the estimates of these parameters arises totally from the
white phase noise of the measurement process, then it is a
simple matter to estimate the state parameters by using
conventional least squares. We model the measured time
differences by

. 1.,

x(t) = Xo +y0t + Edot (2916)
and we would adjust the constant parameters xy, o, and dy
to minimize the mean square differences between the mod-
eled time differences and the measurements. The residuals
of the least-squares fit are driven by the noise process in
Eq. 29.13, and the estimates of the time, frequency, and fre-
quency drift parameters in Eq. 29.16 are unbiased estimates
of the true values. An important assumption of this analysis
is that the white phase noise arises solely from the measure-
ment process and that there is no associated stochastic
frequency variation. In other words, the deterministic para-
meters of the clock itself are constant values; the white
phase noise contribution of Eq. 29.9 is negligible relative
to the contribution of Eq. 29.13.

The simple least-squares analysis based on the clock

model in Eq. 29.16 is useful in some limited circumstances,
but is generally not optimal for three reasons.

1) The parameter estimation method of Eq. 29.16 is a batch
process, and all of the previous data must be saved to
compute a new estimate each time a new measurement
is completed. This becomes increasingly cumbersome as
the number of measurements increases, and is particu-
larly difficult in many situations where the measure-
ment process never ends.

2) Each new measurement can potentially modify the pre-
viously computed estimates of the parameters of the
device, and this may be undesirable if the previously
computed parameters have already been used in some
application. A batch analysis is not suited to real-time
time scale calculations for this reason.

3) The assumption that the time, frequency, and frequency
drift of a device are strictly constant is not an accurate
description of most real oscillators, and the fundamental
assumption of the least-squares analysis in Eq. 29.16 is
not adequate to model real devices.

Section 29.1.8 will address these limitations by generaliz-
ing the batch model of Eq. 29.16 to an iterative model.

29.1.5 White Frequency Noise

An atomic clock typically consists of a “physics package,”
which prepares atoms in the lower state of a specified
“clock” transition. The atoms are illuminated by the output
of an oscillator, which is typically a quartz-crystal oscillator
that can be electrically tuned over a small range of frequen-
cies. The frequency of the oscillator is adjusted so as to max-
imize the number of atoms that make a transition to the
upper state of the specified clock transition, and the fre-
quency is electronically locked to that point.

The frequency lock typically uses an error signal derived
from the first derivative of the transition rate. The first
derivative goes through zero at the peak of the transition
rate as a function of frequency. (A number of effects can
introduce an offset between the frequency corresponding
to the center of the absorption line and the frequency at
which the first derivative is zero. For the moment, we will
assume that these effects are either constant or else change
only very slowly in time.) If the deviation of the frequency
from the center of the transition frequency is not too large,
the magnitude of the error signal is proportional to the
frequency offset, and the sign gives the direction of the fre-
quency error. In principle, the linearity of the relationship
between the error signal and the frequency offset is not
important in first order, and the frequency of the oscillator
reproduces the frequency of the atomic transition (with a
possible constant offset). In practice, the zero-crossing
detector in the frequency lock loop has some electronic
noise, which is completely analogous to the phase noise
of the previous section. This electronic noise interacts with
the finite slope of the frequency error signal. This noise is in
the frequency control loop and therefore introduces short-
term random fluctuations in the output frequency of the
device. See Figure 29.2.

The white frequency noise generated by the noise in the
control loop introduces a random fluctuation into the evo-
lution of the time of the clock. Since the frequency
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Figure 29.2 An atomic clock typically combines a quartz-crystal oscillator and a “physics package,” which consists of atoms that
have been prepared in a specific lower energy state. The atoms interact with the output of the oscillator (green arrow), and the frequency
of the oscillator is adjusted until the atoms undergo a transition to a specific upper state. The oscillator frequency is then locked to
the frequency that maximizes the transition rate (red arrow). There is some noise in the lock loop, analogous to the phase noise
source in Figure 29.1, but this noise affects the frequency of the oscillator and not its output phase. This gives rise to white frequency

noise in @ manner analogous to the white phase noise of Figure 29.1.

fluctuations are uncorrelated from one measurement inter-
val to the next one, the evolution of the time difference (not
the time difference itself as in the previous section) is now
randomly distributed about the current value. In other
words, the time of the clock is now a random walk with
a variable step size. If the frequency noise is a zero-mean
process, after any measurement of the time of the clock
the time at the next measurement will be randomly distrib-
uted around the current value, with a magnitude deter-
mined by the time between measurements and the
amplitude of the frequency noise. The optimum prediction
of the next value is exactly the current value with no aver-
aging. The estimate is optimum in the sense that it is unbi-
ased, and no more accurate estimate is possible. The mean
time is no longer a meaningful stationary parameter; the
calculated mean time depends on how much data are
included in the calculation, and the mean will vary depend-
ing on exactly which ensemble of measurements are
included in the calculation.

It is clear that the least-squares analysis based on
Eq. 29.16 is no longer appropriate because the frequency
is now a random variable, and it cannot be treated as a con-
stant value over the entire data set. Since the fluctuations of

the frequency are assumed to have a mean of zero, the
mean frequency is still a well-defined quantity in this situ-
ation, so that the average of consecutive frequency esti-
mates will converge to the true value. If the average
frequency is estimated from N equally spaced time differ-
ences, then the average is given by

- 1 {XZ—Xl + X3 — Xy " xN_xN—l} _ XN —X1
YENU - T h T - Nt
(29.17)

The average frequency over the total time interval is com-
puted from the two end-point values and the total elapsed
time. If the frequency has a white spectrum, then this esti-
mate is unbiased and converges to the true frequency of the
device. The mean time of the device, computed from any
finite ensemble of measurements, exists in a formal sense
but is not well defined. The white frequency noise implies
that the evolution of the time difference after any measure-
ment is randomly distributed about the current value, so
that the optimum estimate of the next value for any time
in the future is the current value with no averaging. This
estimate is unbiased; the prediction error will have a mean
of zero on average, and the variance of the time difference is
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driven by the variance of the frequency noise acting over
the interval between the measurements. As with any
random variable, the variance of the mean frequency
decreases as 1/N as more frequency estimates are com-
puted. If the frequency is estimated over some time interval
Nz, the standard deviation of the prediction error of the
time difference over the same interval into the future
increases as the square root of the prediction interval.

29.1.6 Frequency Drift

All quartz oscillators and many atomic frequency standards
also have both deterministic and stochastic frequency drift.
The frequency of a quartz-crystal oscillator depends on a
number of environmental parameters such as temperature
and humidity, and the transition frequency of the atoms in
the physics package is affected by extraneous electric and
magnetic fields (the Stark effect and the Zeeman effect,
respectively), by collisions between the atoms themselves
and between the atoms and the container in which they
are trapped, and all of these effects often change slowly
with time. These effects complicate the analysis of the
previous section, because the fluctuations in the output
frequency of the device are no longer a simple random
variable. As with all other parameters, the deterministic
variation is much less troublesome than the stochastic var-
iation, because the deterministic variation in the frequency
can be estimated or modeled and removed.

For example, it is straightforward to estimate a determin-
istic, constant frequency drift in the presence of pure white
frequency noise. In this simple situation, we could model
the frequency at any time, ¢, in terms of the assumed con-
stant frequency drift, d, the time that has elapsed since the
measurements were started at time ¢, and the frequency at
that time, y,.

y(t) =y +d(t—to) (29.18)

and we would estimate the two parameters, y, and d by
using standard least squares. The residuals of the fit would
be driven by the white frequency noise, and the estimates of
the initial frequency and the frequency drift would be unbi-
ased. Although this procedure is simple in principle, it often
has a practical difficulty because the stochastic fluctuations
in the frequency caused by the white frequency noise are
larger than the impact of the deterministic frequency drift,
so that the drift determination has a significant uncertainty
unless very long measurement times are used. In other
words, the frequency drift, which is the slope parameter
in Eq. 29.18, is not well constrained by the least-squares
process because the scatter of the frequency estimates about
the least-squares straight line is too large. This problem will

appear again when discussing the iterative model of the
clock parameters.

This problem becomes more serious if higher-order deri-
vatives are used in the model. For example, if we were to
assume that the frequency drift also had a constant deter-
ministic variation, Ad, then we could estimate it by adding
a quadratic term to the right side of Eq. 29.18:

y(t) = yo + do(t — o) + %(Ad)(t— to)’ (29.19)

where y,, dy, and (Ad) are the values of the frequency and its
linear and quadratic variability, and all of them are
assumed to be constants for the entire data set. The impact
of the Ad parameter on the frequency increases as the
square of the elapsed time, so that it is very important in
the long run. However, separating its impact from the fluc-
tuations in the frequency noise may be difficult in real mea-
surements which span a relatively short time interval. In
many practical devices, the elapsed time needed to estimate
the drift parameters in the presence of white frequency
noise is so long that the assumption that the parameters
are constant is no longer accurate.

29.1.7 The Fourier Picture and Flicker Noise

All of the white processes discussed in the previous sections
are characterized by an autocorrelation function similar to
the relationships in Eq. 29.9 or Eq. 29.13, and therefore all
of them have a power spectral density that is constant for all
Fourier frequencies as discussed above (with the under-
standing that every real process must be band-limited in
some way and that the infinity implied by a constant power
spectral density is not a real-world problem).

However, during any measurement interval, the evolu-
tion of the frequency has two components: a random com-
ponent due to the white frequency noise and the integral of
the frequency drift fluctuations. Likewise, the evolution of
the time has three components: a random component due
to the white phase noise, the integral of the frequency fluc-
tuations over the interval between measurements, and the
double integration of the deterministic and stochastic con-
tributions of the frequency drift. Each of these time-domain
integrations multiplies the input power spectral density by
a factor proportional to 1/F°, where F is the Fourier fre-
quency of the noise contribution. The evolution of the time
difference, which is typically the only parameter that is
observed, therefore has a noise spectrum that is very far
from a white process - the spectrum of the time differences
typically has a very strong divergence at low Fourier fre-
quencies, which is the result of the integrations discussed
earlier. (This can be a serious problem if a discrete Fourier
transform is computed, since a large fraction of the power



may be concentrated in the first one or two frequency esti-
mates. This is an important justification for the use of the
time-domain statistics to be discussed in the next sections.)

In addition to the even-power noise spectra discussed
above, real data also exhibit a noise contribution to each
parameter whose power spectral density varies as 1/F.
There is no simple physical explanation for these so called
“flicker” processes, although flicker of phase, for example,
can be modeled as intermediate between white phase noise,
where the estimate of the time difference continues to
improve without limit as more data are acquired, and white
frequency noise, where the best estimate of the time differ-
ence is the current value with no averaging. From this per-
spective, a flicker process has a finite optimum averaging
time; the data look coherent over some time interval, but
that coherence is not sustained as more data are acquired
because the underlying driving term is a random process.
The integral of the power spectral density of a flicker proc-
ess diverges logarithmically, so that a real process must be
band-limited as discussed above for white processes.

There is no guaranteed optimum strategy for predicting
the state parameters of a clock in the presence of flicker
noise as there was for the even-powered noise processes dis-
cussed in the previous sections, since measurements driven
by a flicker process are not a Gaussian random variable
with a well-defined mean and standard deviation. If ¢ is
the current time and x(¢) is the time difference at that
instant, then, if the system noise is pure flicker frequency
fluctuations, an approximate prediction 7 seconds into
the future is given by

x(t + 1) = 2x(t) —=x(t—7) + (A%) (29.20)

avg

The first two terms on the right side of Eq. 29.20 are
simply the prediction based on the assumption of a linear
extrapolation based on a constant frequency offset. The
third term is the average value of the second difference of
the data over the previous measurements, where the second
difference is also computed with an averaging time of 7.

29.1.8 The Iterative Model of Clock Behavior

As mentioned at the outset, the implicit purpose of receiv-
ing time information from a remote reference is to charac-
terize a local clock so that the local clock reading can be
used in some application. (Although it is possible in princi-
ple to dispense with the local clock and to directly use the
time data received from the remote reference, this is almost
never an optimum strategy because the stability of the local
clock provides useful information, as discussed below. Its
time is also used in “holdover” mode if the connection to
the remote reference fails.)

29.1 Introduction and Clock Statistics

Based on the discussion of the previous sections, the time
of the local clock has a complicated noise spectrum, and the
calibration algorithm must be designed with these noise
contributions in mind. Since neither the frequency nor
the frequency drift can be regarded as simple constants over
extended time intervals, and since any batch analysis algo-
rithm has practical difficulties as discussed above, we
replace the simple model of Eq. 29.16 with a more realistic
model that supports the evolution of the clock parameters
that are needed for real-world devices.

As before, we characterize the state of the clock with
three parameters: the time, the frequency, and the fre-
quency drift, but these parameters have stochastic contri-
butions driven by noise inputs, are no longer constant
but evolve with time. The parameters at time ¢, are esti-
mated based on the previous values at time t;_;:

%(t) = x(tx_1) + Y(te_1)7 + %d(tk_l)rz +e
Y(te) = y(te-1) + d(te-1)7 + 1
d(tx) = d(te-1) + ¢

T=1l—1tk-1 (29.21)

It is convenient to work with a constant time interval
between measurements, but that is not a requirement of
the model.

Each of the three state parameters has an associated noise
contribution, which is assumed to be a random process
with no correlation to the other noise contributions and
with no dependence on the time, ¢. All of the noise terms
obey relationships of the form

(&t +7)¢(1)) = (1)
{@On(t)) =0

The goal of the measurement process is then to estimate
the deterministic parameters in these equations so that the
predicted state of the clock for some interval into the future
is as accurate as possible. In general, the calibration process
consists of measuring the time difference between the
device under test and the reference device. We assume
for now that the data from the reference device is correct
and that the communications channel is noise-free. We will
return to the real world in Section 29.3.

The fundamental difficulty with this process is that there
is a single measurement - usually the time difference, but
the variance of this measurement must be distributed
among three deterministic (x, y, d) and three stochastic
(& n, &) parameters, none of which are known a priori in
general. At best, the only things known about the stochastic
parameters are their variances. Furthermore, there is no
term that models the flicker contribution in any of the
equations.

(29.22)
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In addition, the equations themselves have an implicit
inconsistency. For example, the first equation assumes that
the frequency y; is a constant for the entire time interval
between f,.; and f, but the second equation explicitly
contradicts this assumption. The equations are a reasonable
approximation only if the variation in the frequency
between measurements is small enough to be ignored.
That is,

{d(tk—1)7 + npr < y(tk-1) (29.23)

Since the deterministic and stochastic parameters are
characteristics of the device and are generally not adjusta-
ble, this equation implicitly limits the maximum time
between measurements, which started out as a free param-
eter. On the other hand, if the goal of the measurement
process is to estimate the deterministic model parameters
of the clock, then the measurement interval must be long
enough so that the measurements are not dominated by
the white phase noise of the measurement process. That is,

1 2
Y(te-1)z + Sd(te-1)" > ¢ (29.24)

These two equations define the range of the time interval
between measurements, although there are strategies that
can sometimes reduce the requirement of Eq. 29.24. To
see this, suppose that we choose an interval between mea-
surements that reverses the inequality in Eq. 29.24. That is,
we choose an interval between measurements short enough
such that

1 2
Y(te-1)z + Sd(te-1)” <€ (29.25)

In this case, the first Eq. 29.21 shows that the measured

times are limited by pure white phase noise,

X(te) = x(te—1) + & (29.26)

and the mean of N of these rapid measurements, made over
some small time interval, dt, will have a standard deviation

of &/4/N.

1 a=dt/2

o) =< Y. xtior+a) (29.27)
x = —dt/2

a(fc(tk) =¢/VN (29.28)

We can now use Eq. 29.21, replacing the time state, x(#_;),
by the estimated mean value of the time state computed by
using Eq. 29.27. The phase noise contribution has been
reduced by the factor 1/ \/ N, and this reduction can be used
to modify the requirement of Eq. 29.24 and thereby allow a
shorter time interval between measurements.

In summary, this measurement strategy consists of
groups of measurements made very rapidly so as to be
dominated by white phase noise. The groups are separated
by a longer time interval as defined by Egs. 29.23 and 29.24.
The primary advantage of this shorter time interval
between measurements is to provide more rapid detection
of outliers and other errors. In practice, Eq. 29.27 would be
modified to reject outliers — data points that did not satisfy a
consistency comparison with the running standard devia-
tion. Another technique would compare the running stand-
ard deviation, computed over the previous points, with a
value computed from a longer time series. This method
can be used to detect a change in the statistical character-
istics of the device under test that is not limited to a single
outlier point. As discussed before, rejection of outliers is an
administrative decision that is outside of the realm of
statistics.

This example illustrates a more general requirement. In
order to design any measurement algorithm, we must first
estimate the contributions of the stochastic parameters in
Eq. 29.21, recognizing that the process is under-determined
because there are three noise parameters but measure-
ments of only a single quantity - the time difference
between the device under test and the reference device.

An important result of this section is that the averaging
time between measurements is constrained by the magni-
tude of the various noise processes. The two-sample Allan
variance provides a mechanism for estimating the contribu-
tion of each noise term to the variance of the measurement
for any specified averaging time, and statistic will be intro-
duced in the next section.

29.1.9 Time-Domain Statistics, the Simple Two-
Sample Allan Variance and Its Fancier Relatives

To introduce the concept, suppose we wish to determine
the frequency difference between two clocks that have no
intrinsic noise of any type. We estimate the frequency
difference by two measurements of the time difference
separated by a time interval, z. See Figure 29.3. Each of
the time-difference measurements has an uncertainty, e,
which is illustrated by the error bars on the two measure-
ments. This noise is a property of the measurement process
- not the clocks. Although the true frequency difference,
shown by the red line, is constant, the noise in the measure-
ment of the time differences introduces an uncertainty in
the estimate of the frequency difference as shown by the
two yellow lines. The magnitude of this uncertainty is
approximately 5y(r)=\/2£/1, and we would expect that
repeated estimates of the frequency difference between
the two devices would scatter around the true value by this
amount. We can turn this result around and assert that if
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Figure 29.3 Estimating the frequency difference between two
noiseless clocks. The estimate is based on two time differences
separated by a time z. The noise in the two time-difference
measurements is shown by the two error bars and has a magnitude €.
The noise in the time differences translates into an uncertainty in the
estimate of the frequency difference, as discussed in the text.

we measure the frequency difference between two devices
by two time differences separated by a time interval z, and
if these frequency estimates exhibit a standard deviation,
dY(z), that varies as the reciprocal of the time between
measurements, then the noise type of the measurements
is characterized as white phase noise that has a standard
deviation on the order of z8y(z)/ \/ 2. A log-log plot of
8y(z) as a function of r would have a constant slope of
—1, and the intercept would provide information on the
amplitude of the white phase noise in the measurement
process, €.

It is important to keep in mind that the variance of the
frequency estimates we have computed has nothing to do
with a variation in the actual frequency of the clock itself.
It arises purely from the phase noise of the measurement
process, and using these data to steer the frequency of the
clock would be a mistake. The clock will be more stable if
left alone. Likewise, trying to improve the measured
frequency stability by improving the clock will have no
effect. If we are not satisfied with the noise in the data,
then it is the measurement process that needs improve-
ment. We will use similar considerations in the next
sections to obtain additional insight into the optimal strat-
egy for synchronizing a local clock based on data received
from an imperfect remote clock over a noisy communica-
tions channel.

The two-sample Allan variance, cszy(r), is a more general
version of this idea. It uses the dependence of the variance
of the measured frequency of a device, (4y)?, as a function

29.1 Introduction and Clock Statistics

of the time interval between measurements to infer the
underlying noise type:

() = 5 (@) = 5 ((4%)?)

> (29.29)

where the variance in the first-order difference of the fre-
quency measurements is typically realized by a second-
order difference in the measured time differences as shown
by the second form of the definition. The Allan variance is
often estimated by means of a series of time differences, x;,
with a constant time interval between measurements, 7. If
the first measured time difference is x, at time t,, the n-th
measurement is at time ¢, + (n — 1)z. If there are N mea-
surements with indices 0, 1, ..., N — 1, the two-sample Allan
variance for an averaging time nr is then computed by

1 N-2n-1

Z (Xi+ 20— X n + %)
i=0

) = =2

(29.30)

The Allan variance assumes that the data are stationary,
and therefore the estimate does not depend on ¢, The
usefulness of the Allan variance derives from the fact that
a log-log plot of the variance as a function of the averaging
time has a slope that serves as an indication of the under-
lying noise type, and it is very often the case that only one
noise type dominates the variance at any averaging time.
The relationship between the slope of the Allan variance
and the underlying noise type is given in Table 29.1.

The simple two-sample Allan variance is widely used to
characterize all types of clocks and oscillators, but it has a
number of intrinsic characteristics that follow from its def-
inition and that limit its usefulness in some situations.

1) The Allan variance is a measure of frequency stability
and not frequency or time accuracy. It is not sensitive
to a constant time difference or a constant frequency

Table 29.1 Slope of the log-log plot of the Allan variance and
Allan Deviation (square root of the variance) as a function of the
averaging time for the five common noise types

Slope
Noise type Avar Adev
White phase noise -2 -1
Flicker phase noise -2 -1
White frequency noise -1 —0.5
Flicker frequency noise 0 0
Random walk frequency noise +1 +0.5

The simple Allan variance cannot distinguish between white phase
noise and flicker phase noise.
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difference, even though those parameters might be
important in some applications.

2) A clock that has a constant frequency drift is just as
stable and predictable as a clock that has a constant
frequency and no frequency drift, but the Allan variance
treats the two situations very differently - the constant
frequency is ignored, but the constant drift is not. In fact,
a clock whose frequency variation can be accurately
modeled in any algorithmic way is just as predictable
as a clock whose frequency is constant. Again, the
two-sample Allan variance treats these two situations
quite differently.

3) The simple Allan variance cannot distinguish between
white phase noise and flicker phase noise (see
Table 29.1). This ambiguity is removed by the modified
Allan variance, which computes the original recipe over
blocks of measurements rather than individual ones:

1
T 22m2(N—-3n+1)

N-3n+1 n+j-1 2
E i=1 (E i (xi+2n—2xi+n+xi))

(29.31)

mod.c; (n)

The slope of the log-log plot of the modified Allan vari-
ance is —3 for white phase noise and —2 for flicker phase
noise, which removes the ambiguity. See Table 29.2.

The normalization constants for both variances are
defined so that the estimate for white phase noise agrees
with the estimate based on the conventional variance,
which is optimal for a white process.

The time variance, o,%(7), estimates the time dispersion
associated with the frequency fluctuations estimated by
the modified Allan variance. It is defined as

TZ

o2(r) = —modcf,(‘r)

2 3 (29.32)

Table 29.2 Slope of the log-log plot of the Modified Allan
variance and Modified Allan Deviation (square root of the variance)

as a function of the averaging time for the five common
noise types

Slope
Noise type Mod Avar Mod Adev
White phase noise -3 -3/2
Flicker phase noise -2 -1
‘White frequency noise -1 —0.5
Flicker frequency noise 0 0
Random walk frequency noise +1 +0.5

Note: The modified Allan variance distinguishes between white phase
noise and flicker phase noise.

so that the slope of a log-log plot of the time variance as a
function of the averaging time is 42 relative to the slope of
the modified Allan variance for any noise type.

The slopes of log-log plots of the modified Allan variance
or the time variance as functions of the averaging time
provide estimates of the noise type, but the significance
of the magnitude of these statistics at any averaging time
assumes that the data will be used with the same averaging
algorithm that is used in the definition of the statistic. This
is often not the case, and a more conservative statistic of the
time dispersion at any averaging time is often used. This
statistic estimates the time dispersion over an averaging
time of 7 as 7 X oy(7).

29.1.10 Statistics in the Frequency Domain

In many cases, the characteristics of the clock or the
measurement channel are characterized in the Fourier
frequency domain rather than in the time domain, as in
the previous discussion. In this method, the stochastic
performance is characterized by a spectral density, S,(F),
as a function of the Fourier frequency, F. (The Fourier
frequency is the independent variable of the power spectral
density, and is not related to the relative frequency of the
device with respect to some reference standard, which is
identified as y or to the SI frequency of the device, which
is identified as f.) If the spectral density function is known,
the two-sample Allan variance can be calculated as

0= |

0

® | sin*(xFr)

| S

(29.33)

The quantity in brackets in the integrand is the weighting
function that maps the contribution of the spectral density
at some Fourier frequency to the two-sample Allan vari-
ance. At Fourier frequencies such that F << 1/z, the
weighting function tends to zero as F°. This dependence
results from definition of the variance in terms of the first
difference of the frequency. At very high Fourier frequen-
cies such that F>> 1/7, the weighting function also tends
to zero as 1/F° because the frequencies estimates are com-
puted by averages of the evolution of the time difference
during the time interval z. The corresponding relationship
between the spectral density and the modified two-sample
Allan variance is given by

2 [ sin3(zf7) :
w510 = [ 2| | U
(29.34)

The asymptotic behavior of Eq. 29.34 is similar to that of
Eq. 29.33. Egs. 29.33 and 29.34 do not have inverse relation-
ships in general, so that it is usually not possible to compute



the spectral density from either the two-sample Allan var-
iance or the modified version. As a special case, if Sy(F) ~ F*
and ayz(r) ~ 7, where o and p are small integers, then o =
—p — 1. Thus, if the noise type can be characterized by an
integer slope of the log-log plot of the two-sample Allan var-
iance, it can also be characterized by an integer slope of the
log-log plot of the power spectral density as a function of the
Fourier frequency.

An important second special case is when there is a
“bright line” in the spectrum of the fluctuations in the
phase or the time difference. That is, the difference has a
periodic contribution with a Fourier frequency Fy:

x(t) = Asin(2zFot) (29.35)

The power spectral density is a delta function in F, and
the contribution of this variation to the two-sample Allan
variance is given by

2A
oy(7) = = sin*(zFor) (29.36)
T
which has a peak at an averaging time that is somewhat less

than one-half of the period of the frequency F, superim-
posed on an envelope proportional to 1/z.

29.1.11 Summary of Clock Statistics

The two-sample Allan variance machinery is most useful in
characterizing noise processes, especially those processes
that have a power spectral density that diverges at low
Fourier frequencies. These processes are commonly found
in time and frequency applications. Although a standard
Fourier analysis expands the observational data in a com-
plete set and can always represent the same information
in principle, it can be more difficult to understand the char-
acteristics of the oscillator because so much of the power in
a Fourier analysis is concentrated in the lowest frequency
estimates for this type of data. On the other hand, the
two-sample Allan variance is less useful in modeling data
that have deterministic contributions - a deterministic fre-
quency drift, for example, or a noise contribution that is
well characterized by a bright-line spectrum. It is almost
always a better strategy to pre-whiten the data in these
situations and apply the two-sample Allan variance to
the residuals after the deterministic effects have been esti-
mated and removed. This method is not perfect, of course,
since the deterministic and stochastic contributions are not
perfectly independent of each other. It is also difficult to
pre-whiten data when a bright-line contribution to the var-
iance is smeared out in frequency space by amplitude mod-
ulation from an unknown source, or when the bright-line
spectrum is not sinusoidal so that the effect in frequency
space is a series of harmonically related bright lines.

29.1 Introduction and Clock Statistics

(a) White Phase Modulation
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Figure 29.4a Simulated data with pure white phase noise.
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(b) Flicker Phase Modulation
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Figure 29.4b Simulated data with pure flicker phase noise.

Estimating and removing each of these contributions is pos-
sible in principle, but can be difficult in practice, especially
when the Fourier estimation is complicated by the presence
of a sloping noise background.

Figures 29.4a-e show simulated 1 s time-difference data
computed from each of the five noise types. In each case,
the time series are constructed to have the same two-sample
Allan variance for an averaging time of one sample. From
Eq. 29.21, we can see that the frequency drift is implicitly
integrated to compute effective frequency, and the fre-
quency is integrated to compute the time difference. These
integrations scale the power spectral density of the input
fluctuations by a factor proportional to the inverse of the
Fourier frequency squared. This scaling “reddens” the
power spectrum, and the data appear smoother in the short
term as a result. However, the appearance is misleading -
all of these data sets are pure noise processes. It is clear from
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PHASE DATA
(c) White Frequency Modulation
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Figure 29.4c Simulated data with pure white frequency noise.

(d) PHASE DATA
Flicker Frequency Modulation
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Figure 29.4d Simulated data with flicker frequency noise.

(e) PHASE DATA
Random Walk Frequency Modulation
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Figure 29.4e Simulated data with random walk frequency noise.

the figures that the classical variance is not stationary and
depends on how much data are used to calculate it.

29.2 Accuracy and Traceability

In the previous sections, we developed the machinery that
is used to characterize the performance of a local clock. The
discussion was focused on stability in general and on tech-
niques for quantifying stochastic variations and identifying
the source of the noise, especially noise contributions that
are often found in clock data and that cannot be adequately
addressed by standard Gaussian statistics.

Characterizing the stability may be enough in some
applications, but accuracy is often an equally important
characteristic, and the discussion of the previous
section does not provide any insight into this parameter.
By “accuracy” I mean how closely does the time or fre-
quency of the device under test conform to accepted stan-
dards - typically the standards of time and frequency
maintained by a national metrology institute or timing lab-
oratory. The standards maintained by these institutions are
in turn linked to the international definitions maintained
by the International Bureau of Weights and Measures
(the BIPM in French).

Not all applications, however, depend on accuracy with
respect to an international or national standard of time
and frequency. In some applications, the accuracy require-
ment is that all of the members of a group of clocks agree
with some common definition of time or frequency that
may be only loosely related to the international definitions.
For example, the navigational accuracy of the GPS system
(as opposed to the timing accuracy) depends on the fact that
the difference between the time signals transmitted by all of
the satellites and the GPS system time be as accurately esti-
mated and predicted as possible. The relationship between
GPS system time and the international definition of time,
which is Coordinated Universal Time (UTC), is not impor-
tant from the navigational perspective. Since the para-
meters broadcast by each satellite are predictions, the
accuracy requirement is driven by the frequency stability
of the satellite clocks and the resulting time dispersion over
the time interval between uploads. The melting pot version
of common-view, to be discussed below, has a similar
requirement — the method depends on the accuracy with
which the time transmitted by every satellite can be related
to the GPS system time. There are many other examples
where the operation of a complex system depends on the
time synchronization of its independent components and
only indirectly on the connection of the time to national
or international standards.



Long-term stability is a necessary prerequisite for accu-
racy, but it is not sufficient. A well-designed measurement
process will be limited by white phase noise, which is ame-
nable to averaging. The mean converges to the unbiased
value and does not degrade the timing accuracy. This
assumes that the clock and the measurement hardware
are sufficiently stable to support whatever averaging time
is required; that the averaging is confined to the white
phase noise domain and that the application does not
require a real-time output with a delay shorter than the
required averaging time. In the same way, the frequency
accuracy of a clock will not be degraded by white frequency
noise, since the average frequency will converge to the true
underlying frequency with no bias, provided that the aver-
aging is confined to the white frequency noise domain.
However, the time of the clock does not have a meaningful
average value in this situation.

Every accuracy claim assumes a comparison with some
standard, where the standard may be the time scale of a
timing laboratory or the ensemble average of a number
of clocks. The accuracy claim should be supported by trace-
ability documentation, which I will describe in the next
section.

29.2.1 Technical Traceability

In the technical sense, a calibration result is traceable if
there is an unbroken chain of measurements between the
end-user device and a recognized national metrology insti-
tute or standards laboratory. Each link in the chain of mea-
surements must be characterized by an uncertainty.
Generally, the calibrations that establish traceability must
be repeated periodically because there are often long-term
changes in the system that affect its calibration. For exam-
ple, the links to the time scales of most national metrology
institutes and the International Bureau of Weights and
Measures are calibrated every two years. In the United
States, technical traceability to the standards of time and
frequency is satisfied if the chain of measurements is linked
to the time scales at the US Naval Observatory or the
National Institute of Standards and Technology.

Traceability of a frequency application can usually be
satisfied by documenting the stability of the link delay over
the averaging time of the frequency measurement, since the
channel delay does not matter provided that it can be
shown to be constant. The long-period stability of the chan-
nel delay is usually not important. This is not adequate
traceability for an application that requires accurate time,
since the channel delay enters in first order at every aver-
aging time.

Full technical traceability can be very difficult to realize
in many configurations because the last link in the
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measurement chain is often not calibrated or certified.
For example, the signal in space from a navigation satellite,
such as a satellite in the GPS constellation, is traceable
because it is monitored by the US Naval Observatory,
and the offset between the transmitted time and the time
scale maintained by the Observatory is transmitted by the
satellite as part of the navigation message. (The situation
is actually somewhat more complicated, because the satel-
lite transmits a prediction of this offset based on previous
measurements. The actual offset between the time broad-
cast by the satellites and the time scale of the US Naval
Observatory is published after some delay. Similar data
are acquired and published by other national metrology
institutes and timing laboratories. Therefore, full traceabil-
ity is realized only after the fact by including these ancil-
lary data.)

However, this traceability does not extend to the user
equipment in general because it has neither been calibrated
nor monitored in real time. The same limitation applies to
downstream applications that use the time signals from a
satellite receiver. This limitation will become increasingly
important as jamming and spoofing of satellite signals
becomes more common. Jamming is a denial-of-service
attack, and the user can usually detect that it is happening,
but spoofing, in which a rogue transmitter transmits signals
that appear to originate from a real satellite, can be
extremely difficult to detect. Furthermore, there are a num-
ber of local corrections, such as the additional delay intro-
duced by the troposphere, that change with time and that
cannot be estimated a priori.

Although the focus of this discussion of traceability is on
signals from navigation satellites, the lack of calibration
and the generally inadequate characterization of the last
link in many time distribution systems is a more general
problem. In most configurations, the last link in the meas-
urement chain is not under the control of the source of the
time signals, and so it is the responsibility of the end user to
ensure that any traceability requirement is satisfied. Unfor-
tunately, the end user often does not understand the subtle-
ties of traceability and has neither the expertise nor the
equipment to calibrate the end-user system. This problem
is certain to become more serious as the requirements for
traceable time become more accurate.

29.2.2 Legal Traceability

A number of users at financial and commercial institutions
are legally required to maintain a reference time source that
is traceable to national standards. In addition to the
requirements of technical traceability discussed in the pre-
vious section, there are additional documentation require-
ments. Some of these documentation requirements are
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imposed by the regulators, and others may be needed to
document traceability that might be important in a poten-
tial future adversary proceeding in which the time accuracy
of a financial transaction is a factor. For example, insider
trading is fundamentally a time-based crime, and the accu-
racy of the time stamp applied to a transaction is a deter-
mining factor. The requirements are more legal than
technical and are outside of the scope of this description.
However, a very common problem is a reporting system
that reports only failures and problems. A system that is
operating properly may have no entries in the log file in this
case, and it may be difficult to distinguish at some later time
between a system was operating properly and a system that
was totally inoperative.

29.3 Determining the Time Delay
Through the Distribution Channel

In general, the accuracy of any process that is used to dis-
tribute time and frequency information is limited by the
accuracy of the estimate of the delay through the calibra-
tion channel. While it is true that an application that
depends on the distribution of frequency does not require
a determination of the absolute channel delay, it does
depend on the fact that the delay is a constant during the
transmission process, and determining that the delay is,
in fact, adequately invariant is often not substantially easier
than going the full way and measuring it. There are a num-
ber of methods that are used to evaluate the channel delay
or to remove its effect, and they will be discussed in the fol-
lowing sections.

29.3.1 The Two-Way Method

A widely used method for estimating the delay is the two-
way method, in which the one-way delay between the ref-
erence clock and the local device is estimated as one-half of
the measured round-trip value. There are several different
implementations of the two-way method; we will describe
the version that is generally used to estimate the delay in a
digital network, but the general principles are the same for
other implementations.

The two-way conversation makes use of two messages
sent in opposite directions along a single channel. (The sub-
tle implications of a “single channel” will be discussed
below.) System 1 transmits a time packet at time t;5 as
measured by its internal clock. The message is received
at system 2 at time t,, as measured by the clock on system
2. System 2 sends a reply back to system 1. The reply is sent
at time t,; as measured by the clock on system 2 and is
received back at system 1 at time t,.

The round-trip network path delay is given by

A = (tyy — tis) — (tas — tar) (29.37)

The first term on the right side of Eq. 29.37 is the total
elapsed time for the round-trip exchange as measured by
the clock on system 1, and the second term is the latency
between when system 2 received the request and when it
replied. Most digital-network implementations use the
query-response model in which one of the systems initiates
the conversation and the second one replies only when it
receives the request. Both terms will be non-negative in this
configuration.

It is also possible to design a system in which both ends
transmit continuously and asynchronously. Without loss of
generality, this configuration may be analyzed in the same
way as above by pairing transmissions in both directions so
that both terms in Eq. 29.37 are always positive.

From the perspective of the clock on system 1, the signal
that was transmitted at time ¢;; reached system 2 at time
t;s+d, where d is the one-way path delay. This message
reached system 2 at time t,,. The time difference between
systems 1 and 2 is estimated by

012 = (tls + d) — o (2938)

If the inbound and outbound delays are equal, then d =
A/2. With this assumption, the one-way delay in Eq. 29.38 is
estimated as one-half of the round-trip estimate in
Eq. 29.37. The time difference in Eq. 29.38 becomes

_ his + br by + I
b2 = -
2 2

(29.39)

The magnitude of the round-trip delay is not important.
The accuracy of the estimate of the one-way delay is limited
by the assumption that the round-trip delay is symmetric:
that the inbound and outbound contributions are equal.
If the true inbound and outbound delays are not equal, then
the computed time difference will be incorrect.

Suppose that the outbound delay is not A/2 but kA, where
the parameter k can have any value between 0 and 1. The
value k = 0 implies that the outbound delay is negligible rel-
ative to the delay in the opposite direction, while k = 1
implies the reverse. The assumption of perfect path delay
symmetry will introduce a time error of

e=(k—0.5)A (29.40)

so that the maximum possible error is one-half of the
round-trip delay, and the asymmetry problem can be mini-
mized by minimizing the round-trip delay.

Eq. 29.40 shows that the two-way method attenuates an
asymmetry in the loop delay by a factor of 2. On the other
hand, a delay that is outside of the two-way measurement
loop is not attenuated at all. Therefore, it is advantageous to



include as many of the delay contributions as possible into
the two-way measurement loop. In other words, the local
end point of the measurement loop should coincide as
closely as possible with the application that will use the
time datum.

The channel that links the two systems must be able to
transmit messages in both directions. Real-world two-way
systems can be implemented as two one-way channels that
are assumed to have the same characteristics, as a single
half-duplex channel where the message direction can be
reversed, or as a full duplex channel that supports transmis-
sions in both directions simultaneously.

Packet-switched networks can transmit data in both
directions, but the messages in the two directions generally
cannot be transmitted simultaneously. Therefore, the two-
way cancellation depends on the fact that the characteris-
tics of the channel do not change in the short interval
between the transmissions in the two directions.
A residual asymmetry on the order of a few percent of
the round-trip delay is quite common in these networks.
Since a typical round-trip delay is on the order of 100 ms,
the residual asymmetry, which limits the accuracy, is on
the order of a few milliseconds.

Two-way message exchanges can also use a microwave
link through a communications satellite. Many timing
laboratories use this configuration to compare clocks and
time scales at the different laboratories. Although the path
delay to a geosynchronous communications satellite is
much longer than for a packet-switched network, the asym-
metry is much smaller, and it possible to realize sub-
nanosecond time comparison in this way. The accuracy
of two-way satellite time transfer comes at the price of sig-
nificant complexity and expense of the ground-station
hardware. Maintaining the symmetry of the inbound and
outbound delays is complicated by the fact that the two
directions do not use the same hardware. The situation
can be further complicated by the difference in the environ-
mental parameters at the two stations, since the delay
through the ground-station hardware may have an asym-
metric sensitivity to the ambient temperature.

29.3.1.1 Limitations of the Two-Way Method
The accuracy of the two-way method is limited by a static
asymmetry, and there is generally no way of detecting or
removing this type of asymmetry unless the true time dif-
ference between the two clocks is known from some other
method. It is often possible to estimate and remove the fluc-
tuations in the asymmetry, and I will describe how this can
be done below.

In addition, the two-way method requires that both the
local and remote stations cooperate in establishing a meas-
urement schedule and protocol; anonymous collaborations
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are not possible. Both the local and remote stations must
maintain state variables so as to compute the round-trip
delay by the use of Eq. 29.37 and the time difference by
Eq. 29.39. This can become a significant issue when a
remote calibration station is communicating with many
stations simultaneously.

The two-way method is not possible if the data are
received from a navigational satellite, since the transmis-
sions are only in one direction, and other methods must
be used.

29.3.2 Estimating the Delay from Ancillary
Parameters

A common way of estimating the transmission delay is to
use parameters transmitted by a navigation satellite or
determined by ancillary measurements made on the
ground. For example, all navigation satellites transmit
orbital parameters that can be used to compute an estimate
of the position of the satellite at any time. These parameters
can be combined with the known position of the receiver
(determined by some method outside of the time and fre-
quency application) to compute the delay due to the geo-
metrical time of flight. This computed delay might be
augmented by estimates of the ionospheric delay derived
from ionospheric models or by a measurement of the
two-frequency dispersion - the apparent difference in the
transit time of signals transmitted by the satellite at two dif-
ferent frequencies. Finally, the additional delay due to the
refractivity of the troposphere can be estimated from
ground-based measurements of atmospheric temperature
and pressure. However, single-point measurements of these
parameters, acquired near the receiving antenna, may not
be representative of the values along the path, especially for
elevation angles far from the zenith.

The uncertainty of each of these contributions is not
directly related to their magnitude. For example, the geo-
metrical path delay from a navigation satellite to a receiver
on the ground is approximately 65 ms, but the uncertainty
in this delay is determined by the error in the satellite
ephemeris and any error in the position of the receiver.
These two contributions might result in a timing error on
the order of 10-20 ns, several orders of magnitude smaller
than the geometrical delay itself.

The same attenuation can be realized in the contribution
due to the refractivity of the ionosphere. This refractivity
adds approximately 65 ns to the geometrical delay, but this
additional delay can be estimated by using the dispersive
nature of the ionosphere, and the uncertainty of the esti-
mate is an order of magnitude (or more) smaller than the
contribution itself. However, there are other considerations
that will be discussed below.
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The refractivity of the ionosphere is proportional to 1/f,
where fis the frequency of the carrier of the signal transmit-
ted by the navigation satellite. The proportionality constant
depends on the free-electron density of the ionosphere,
which generally has a strong diurnal variation. The details
of this constant, or its diurnal variation, are not important
because the refractivity can be expressed as a product of a
function that depends only on the properties of the iono-
sphere and a function that depends only on the carrier
frequency.

With this separation of the refractivity into a product of
two functions, it is possible to construct an “ionosphere-
free” combination of the signals transmitted by GPS (and
other) navigation satellites at the two different frequencies.
The transmitted frequencies are called L1 and L2, and this
combination, which is often called L3, cancels the addi-
tional deterministic component of the contribution of the
ionosphere to the path delay. (The calculation of L3 implic-
itly assumes that the L1 and L2 signals travel along the
same path and therefore sample the same refractivity. This
assumption neglects the differential bending of the two sig-
nals at the boundary between media having different indi-
ces of refraction as calculated from Snell’s law.)

The stochastic component of the signals at the two fre-
quencies are usually not correlated and do not cancel in
the computation of the L3 signal. A detailed analysis shows
that the L3 signal is approximately three times noisier than
either of the two transmitted frequencies that were used to
construct it, assuming that the stochastic contributions to
the L1 and L2 signals are approximately equal. This price
is worth paying in the current context because the improve-
ment in removing the refractivity of the ionosphere is worth
the threefold increase in the noise. However, we will recon-
sider this point in the next section, where the conclusion is
not so clear.

There is also a much smaller additional delay as the sig-
nal travels through the troposphere because its refractivity
(the difference between the index of refraction of the
medium and the vacuum value of exactly 1) is small, but
not zero. The refractivity of the troposphere is not disper-
sive at radio frequencies, so that the two-frequency method
that is used to estimate the refractivity of the ionosphere
cannot be used.

The refractivity of the troposphere at the microwave fre-
quencies used by the navigation satellites (on the order of
1.5 GHz) is about 300 ppm, and the scale height of the
atmosphere is about 7 km. The refractivity results in an
optical path that is approximately 2 m longer than the geo-
metrical distance, so that the additional delay is typically
about 6 ns when the satellite is at the zenith. If we assume
a simple model of the refractivity where it is homogeneous

and isotropic, then the additional delay due to the refractivity
increases as the elevation decreases roughly as the recip-
rocal of the sine of the elevation angle. If this model
was really accurate and if there were no other sources of
noise, then we could observe a satellite as its elevation
angle changes, fit the 1/sin(elev. angle) model to these
time-difference data, and extract the delay of the tropo-
sphere at the zenith. We could use the same method to
observe several satellites simultaneously at different ele-
vation angles and extract the zenith delay of the tropo-
sphere. More sophisticated mapping functions could
also be used in the same way.

These methods of estimating the contribution of the trop-
osphere to the transit time might work in some ideal situa-
tions, but they are not really of much use in practice
because there are too many other noise sources that have
the same signature in time or in comparing the data from
several satellites. They might be better than nothing at
all, but they are often too simplistic to accurately model
the true refractivity, especially at a location with a topogra-
phy like that of Boulder, Colorado, which has mountains to
the West and plains to the East so that the refractivity of the
troposphere is unlikely to be either homogeneous in eleva-
tion or isotropic in azimuth. In addition, although any com-
bination of multiple signals may attenuate a correlated
contribution such as the refractivity of the troposphere,
the uncorrelated contributions do not cancel, and the sto-
chastic magnitude of the combination is almost always
worse than the stochastic magnitudes of any one of the con-
tributing signals taken singly. This is the same effect
described above with respect to the calculation of the ion-
ospheric-free signal L3 from L1 and L2. The improvement is
usually worth the price in the case of the ionosphere, but
the situation in the case of the troposphere is less clear.

In summary, the tropospheric delay often makes a larger
contribution to the overall error budget of the measure-
ment, even though its overall contribution to the total
delay is much smaller than the other contributions
I have discussed. There are also a number of smaller con-
tributions to the calculation of the delay such as the
motion of the station due to the Earth tides, which have
a total diurnal and semi-diurnal amplitude on the order
of 0.3 m in position or 1 ns in time, and the polar motion
of the entire Earth. These effects are included when the
very highest accuracy is required, but are normally
ignored in more routine applications. Although the one-
way method that estimates the propagation delay is often
used in routine applications, it is not adequate when nan-
osecond accuracy is required, and other methods are used
for these applications. These methods will be discussed in
the next sections.



29.3.3 Physical Common View

In a physical common-view measurement, two or more
receivers observe a single physical source at the same time.
Each receiver measures the arrival time of the signal from
the source with respect to its local clock, and the two mea-
surements are exchanged over a separate channel and sub-
tracted. If the path delays between the source and the two
receivers are equal, then both the delay and the character-
istics of the source cancel in the difference. Common-view
observations of the signals from navigation satellites will be
discussed in this chapter, but the method is more general
than that, and many signals have been used for common-
view measurements.

An important advantage of the common-view method is
that the transmitter need not “know” that it is being used
for this purpose. (Compare the two-way method described
above, which cannot support anonymous calibrations.) For
example, signals from TV transmitters and the LORAN
navigation system have been used for common-view mea-
surements. The only important requirement is that the
delays from the source to each receiver be as equal as pos-
sible and that it is possible to estimate any residual differ-
ence in the delays of the two paths.

Although the common-view method is simple in princi-
ple, there are a number of subtle considerations. If the
delays along the two paths from the satellite to the receivers
on the ground are exactly equal, then the delays cancel in
the common-view difference, and the time of the satellite
clock cancels as well. However, it is very difficult to realize
this exact cancellation, and it is more usual for the paths to
be only approximately equal. In this case, the differential
delay makes a first-order contribution to the time differ-
ence, and this differential delay must be determined. This
difference is typically determined from the known position
of the receiver and the position of the satellite computed
from the ephemeris. (The differential contributions of the
ionosphere, the troposphere and the other effects that were
discussed in the previous section must also be included.)

When the path delays are not equal, however, the signals
that arrive simultaneously at the two receivers were not
emitted at a single time by the satellite, so that the evolution
of the satellite clock and the satellite position during this
time difference must be computed. Conversely, if the com-
mon-view method makes use of a single signal from the sat-
ellite, then it does not arrive at the same time at both
receivers, and the evolution of the receiver clocks during
this time interval must be evaluated. Most common-view
algorithms adopt this latter configuration and apply a time
tag derived from the time of reception. The time of trans-
mission of the signal received by each receiver must then
be computed iteratively by computing the position of the
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satellite at the instant of reception, calculating the transit
time, subtracting this time from the time of reception,
and using the adjusted time to re-compute the position of
the satellite. The satellite orbital velocity is about 4 km/s,
so that the satellite moves about 4 X 10° X 0.065 = 260 m
during the transit time of the signal from the satellite to
the receiver. The diurnal rotation of Earth implies a tangen-
tial speed of about 440 m/s at the equator, so that a receiver
on the equator moves by about 440 X 0.065 = 28 m during
the transit time of the signal from the satellite to the
receiver. The exact change in the range depends on the
details of the geometry. This iteration normally converges
after one or two cycles.

A second consideration is determining which signal to
use for computing the common-view difference. It was nat-
ural to use the ionosphere-free L3 signal in the previous
one-way discussion because the L3 signal canceled the
additional delay caused by the refractivity of the iono-
sphere, but it is not so clear that that is the correct strategy
in the common-view method. As mentioned in the previous
section, the L3 signal has more noise than the L1 and L2
signals from which it was computed. If the receiving sta-
tions are not too far apart, the use of L1 may be a better
choice because the signals to both stations have the same
ionospheric delay, which is going to cancel in the com-
mon-view difference, and there is no point in paying the
price of constructing L3 when the effect of the ionosphere
is going to be cancelled by common-view anyway. The
same sort of argument applies to the troposphere, although
the troposphere generally has shorter-wavelength variation
so that it is less likely that the signals to the two receivers
will have the same tropospheric delay unless the path
length between the two receivers is quite short.

The choice between common view based on L1 and the
common view based on L3 depends on the distance
between the receiving stations compared to the wavelength
of the variation of the delay through the ionosphere. This
choice was not available to the first generation of GPS recei-
vers, since they could receive only L1 signals. However,
more modern multi-channel receivers can process both
L1 and L2 signals simultaneously, and the choice between
common view based on L1 and common view based on L3
can be made after the fact.

29.3.4 The “Melting Pot” Method of
Common View

The common-view method discussed in the previous
section depends on the fact that the receivers that are par-
ticipating in the measurement can receive the signals from
the same physical transmitter. When the signals from nav-
igation satellites are used in common view, stations that are

839



840

29 Distributing Time and Frequency Information

sufficiently far apart cannot see any common satellite, and
so the simple version of common view cannot be used.

However, the time signals transmitted by all of the nav-
igation satellites in the same constellation are related to the
system time of the constellation. A prediction of the offset
between the satellite time and the system time is transmit-
ted as part of the navigation message; this offset can be com-
bined with a measurement of the physical time difference
between the signal received from the satellite and the time
of the local clock to compute a common-view time differ-
ence with respect to the system time rather than the phys-
ical time transmitted by the satellite. The result is a
“logical” common view between the user clock and the sys-
tem time, which is a common view with respect to a paper
time scale that is not realized by any real clock in the
constellation.

The usefulness of the melting pot method depends on
both the accuracy of the calculation of the transmission
delay from the satellite to the receiver and on the accuracy
of the link between the physical time signals transmitted by
the satellite and the system time scale. The time of the sat-
ellite clock with respect to the system time scale is com-
puted by the ground controllers and is uploaded to the
satellite periodically. Therefore, this relationship is gener-
ally a prediction rather than a measurement.

The stations that are participating in the melting pot
method are generally not receiving signals from the same
satellites, so that all of the path delay estimates discussed
in a previous section must be computed by each station,
and there is no cancellation of errors in these computations
as there would be in simple common view of a single signal
from a single physical source. The usefulness of the melting
pot method is made possible by the increased accuracy of
the position and clock solutions of post-processed ephemer-
ides, but this has the disadvantage that these ephemerides
cannot support real-time applications.

29.3.5 Physical Common View and Melting Pot
Compared

A comparison between the two common-view methods
depends on the distance between the two receiving stations
on the ground. When the distance is very short, the two sta-
tions receive signals from the same satellites in the constel-
lation, and so the two methods are effectively equivalent.

The physical common-view method computes the time
difference satellite by satellite for all of the satellites that
are in common view and then averages the resulting time
differences. (Some outlier detection is often included in this
average computation.) The melting pot method computes
the time difference between the time at the receiver and
the satellite system time and then averages those

differences. (Again, some outlier detection is generally
included.) Since the same satellites are used in the calcula-
tion by both stations, the offset between the satellite clock
of each satellite and the system time cancels in the
difference.

As the length of the baseline between the two receivers
increases, the comparison between the two methods is a
trade-off of two effects. The common-view method based
on a common physical signal from a single source is less
sensitive to the details of the transmitter and the character-
istics of the path delay because a significant fraction of
these parameters are common to the signals received by
both receivers and cancel in the difference. On the other
hand, receivers that use the melting pot method can make
use of signals from more satellites in general, so that meas-
urement noise will be attenuated provided that the orbital
parameters and the relationships between the clocks on the
satellites and the system time are known with sufficiently
small uncertainties. For sufficiently long baselines, the
melting pot method is the only choice.

The increased accuracy of post-processed ephemerides
generally favors the melting pot method for all applications
except those that require real-time calibrations. Neither of
the common-view methods provides any attenuation of
local effects — the calibration of the receiver delay, for exam-
ple, and any error in the position of the antenna. The full
advantage of either of the common-view methods is gener-
ally not realized in practice because these local effects dom-
inate the error budget in both cases. A very important local
effect is caused by multipath reflections, and will be dis-
cussed in the next section.

29.3.6 Multipath Reflections

The multipath effect is the result of the sum of the direct
signal from the satellite and a copy of the signal that reaches
the antenna after reflection from some surface that is gen-
erally close to the antenna. The reflected signals always
travel a longer path than the direct version, and therefore
always arrive afterward. The receiver combines the direct
and reflected signals with the result that the measured time
difference is systematically too large.

The offset caused by the multipath reflection always has
the same sign, so that it cannot be removed by averaging the
measurements. The magnitude is a complicated function of
the geometrical relationship between the satellite, the
reflectors, and the antenna; and it therefore varies with
time as the satellite moves through the sky.

Figure 29.5 shows the importance of the multipath con-
tribution. The data in the figure are the time differences,
computed every second, between two receivers observing
a single satellite for the entire time that the satellite was
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Figure 29.5 The short-baseline common-view time difference
between two GPS receivers that were observing a single satellite
and were connected to the same reference clock. The three traces
were acquired on consecutive days and have been displaced
vertically for clarity. In each case, the satellite is tracked from
horizon to horizon. The scale of the vertical axis has not been
altered. The time of the points in successive traces have been
shifted left by 4 min as discussed in the text. The horizontal bar
near the x-axis shows the length of the 13 min averaging time that
is typically used to compute common-view time differences.

in view. The two receivers were connected to the same
clock and the antennas of the receivers were a few meters
apart on the roof of the NIST laboratory building in Boul-
der, Colorado. The three traces were obtained on consecu-
tive days. The traces are offset vertically for clarity, but the
vertical scale is not changed. The time of each trace is
shifted by 4 min earlier with respect to the previous trace
for reasons discussed below. The bar near the x-axis shows
the duration of thel3 min averaging time that is typically
used by national metrology institutes and timing labora-
tories. The variation of the short-baseline time difference
during the 13 min averaging time is significant.

The very strong correlation between the “noise” on con-
secutive days after the time tags of the data have been shifted
by 4 min is a very strong indication that the fluctuations are
due to multipath and are not a stochastic contribution at all.
The significant increase in the magnitude of the variation
near the ends of the traces, when the satellites are low in
the sky, is also a characteristic of multipath reflections.

The p-p multipath contribution is several nanoseconds
for the entire data set, and is significantly larger than this
value near the start time and end time of the observing
period, when the elevation of the satellite is relatively
low in the sky.

It is clear that the effect of multipath is not canceled in
common view, even when the antennas of the two receivers
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are close together at the same location. This is important for
the relative calibration of a receiver, which is often realized
by short-baseline common view as discussed below.

A “choke ring” antenna is an active-element antenna sur-
rounded by a series of passive concentric rings that have a
geometry that attenuates signals reaching the antenna from
low elevations. The assumption is that a low-elevation sig-
nal probably is a reflection from a nearby object and should
be attenuated. The dimensions of the rings in the usual
choke ring antenna are designed to attenuate signals at
the L1 frequency, but dual-wavelength choke rings, which
are cut with an internal step near the bottom of the rings,
will also attenuate low-elevation L2 frequency signals. The
choke ring antenna is also mounted on a ground plane to
block signals reaching the active element of the antenna
from below. These signals, which are reflected from the
material directly below the antenna, can be quite large,
especially when the satellite is near the zenith.

An impedance mismatch at the connection of the
antenna cable to the receiver results in an effect that is sim-
ilar to multipath. The impedance mismatch causes a
reflected signal to go back up the cable toward the antenna,
where it may be reflected again and arrive back at the
receiver delayed by twice the travel time through the
antenna cable. It is very difficult to match the impedance
of the cable to the effective input impedance of the receiver,
since the front-end is often an active device with a complex
effective impedance. This problem can be addressed by
inserting an attenuator in the antenna cable. The direct sig-
nal passes through the antenna once, but the reflected mul-
tipath-like signal passes through the attenuator two
additional times and is therefore differentially attenuated
much more strongly.

One way of addressing the multipath problem caused by
external reflectors near the antenna is to adopt an observa-
tion schedule for every satellite that advances by 236 s
(roughly 4 min) every day as was done in the discussion
of the data in Figure 29.5 above. This advance exploits
the fact that the satellite returns to the same point in the
sky with respect to the receiver with a sidereal-day period,
so that the geometry that gives rise to the multipath effects
also repeats with this period. This strategy converts the
multipath effect at every point in the track to a constant off-
set that varies from point to point and is unique to each sat-
ellite that is observed. The International Bureau of Weights
and Measures (BIPM) adopted this strategy in the design of
the tracking schedules for the common-view time compar-
isons between timing laboratories that use signals from the
GPS navigation satellites.

The 4 min advance of the track schedule for each satellite
is a mixed blessing. It removes the variability of the
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multipath effect, but it converts it to a systematic offset that
is constant over short periods for each track but changes
slowly as the long-period variation of the satellite orbit
modulates the multipath correction. This slow variation
in the apparent time difference between the two stations
can be hard to separate from the long-period random walk
of the frequency, as discussed in the previous section.

The sidereal-day advance that converts the multipath
effect to a constant offset can be exploited in a different
way. If the time differences between the receiver and the
satellite clock are used to estimate the frequency difference
between the clock in the satellite and the clock in the
receiver with an averaging time of exactly one sidereal
day, then the multipath contribution to the time difference,
which repeats every sidereal day, will cancel in this fre-
quency estimate. This estimate can be computed point by
point as long as the satellite is in view with the hope that
the multipath contribution will cancel in these differences
even when the magnitude of its contribution is not well
known. This technique is not very useful if the time differ-
ence is required, since the various frequency calculations
have an unknown and varying multipath time offset. This
method depends on the fact that the clock at the receiving
station is sufficiently stable so that an estimate of its fre-
quency over a sidereal day is a meaningful operation. For
example, if the uncertainty of the time-difference measure-
ments is on the order of a few nanoseconds, the local clock
must have a stability on the order of 10™'* for an averaging
time of one sidereal day to be meaningful. In a later section,
we will show that this requirement restricts the method to a
high-performance cesium clock or a hydrogen maser.

The multipath effect is sensitive to the details of the sat-
ellite position and the magnitude of the multipath contribu-
tion is different for different satellites observed at the same
time. The magnitude of the contribution can be difficult to
detect in methods that average the time-difference data
derived from signals received from all of the satellites in
view at any time for this reason. Both the standard com-
mon-view and the melting pot method typically report
these averages, and the temporal variation of the multipath
contribution to the average is generally attenuated by the
averaging process and not easily detectable. However, the
multipath contribution to the time differences is always a
systematic effect, and a residual, site-dependent bias almost
always remains. Since the periods of the satellites are not
exactly one sidereal day, the multipath contribution of each
satellite changes slowly with a period of several months,
and this is likely to introduce a long-period variation in
the effective calibration of the receiver, especially if the cal-
ibration is performed with a short-baseline common-view
comparison as will be described in the next section.

29.4 Determining the Time Delay
Through the Antenna and the Receiver

The time delay through the antenna and receiver is atten-
uated in the two-way method, and the delays at the two end
stations will cancel exactly if they are equal. There is no
need to know the magnitude of the delay, and this is a sig-
nificant advantage for the two-way method. However, these
delays enter directly when one-way data from a global nav-
igation system satellite are used.

There are two techniques that are used to calibrate the
delay through the receiving system. The two methods pro-
duce somewhat different calibration values. The difference
is generally on the order of 1-2 ns, which will be significant
only for the highest-accuracy applications, which use some
form of the common-view method as described above.

29.4.1 Short-Baseline Common View

In this calibration technique, two receivers are connected to
a common clock, and the antennas for the two systems are
placed close together. Both receivers are used to measure
the difference between the signals received from all of
the satellites in view and the local clock. The difference
between the two data sets is the relative calibration delay
of the two receivers. The calibration obtained in this way
is a relative calibration, but is adequate if the two receivers
will be used in the common-view method, which depends
only on the difference in the delays of the two receivers and
not on the absolute value of either delay.

The receivers of the national metrology institutes and
timing laboratories are calibrated with this technique,
where the short-baseline common view is measured with
respect to a “standard” traveling receiver. The result is
the differential calibration between the receiver at each lab-
oratory and the traveling receiver, which acts as a transfer
standard. The absolute delay of the traveling receiver is not
important, provided only that it is constant for the duration
of the calibration campaign.

The main advantage of this system is that it calibrates the
combination of the receiver, the cable and the antenna in a
way that is as close as possible to how the receiver will actu-
ally be used. Although the antennas from the two receivers
are placed close to each other, the multipath effect can be
quite different as shown above. The multipath effect varies
from one site to another, so that the accuracy of the differ-
ential calibration may be compromised if the multipath
effect is significant. It can be difficult and challenging to
realize a calibration whose uncertainty is on the order of
nanoseconds for this reason.



29.4.2 Hardware Calibration

A second calibration technique uses a GNSS signal simula-
tor to calibrate the response of the receiver. The cable can
be calibrated at the same time, or its delay can be deter-
mined separately by time-domain reflectometry or an
equivalent method. The delay through the antenna is usu-
ally determined by placing the antenna in an anechoic
chamber and measuring its transmission characteristics
by using a standard antenna driven from a simulator. An
important parameter in this calibration is the stability of
the delay as a function of the position of the transmitting
antenna. This variation is often specified as the stability
of the electrical phase center of the antenna as a function
of the direction to the source.

This method has greater resolution because there is no
noise in the measurement, and potentially greater accuracy
because there is a known, accurate relationship between
the signal that is used to test the hardware and the timing
reference that drives the simulator, and there is no problem
with local effects such as multipath. However, the real
accuracy is uncertain because the system is not tested in
the same way as it is going to be used. Most timing labora-
tories do not have a GNSS simulator, so that this method is
not generally used, and most receivers are calibrated by the
short-baseline common-view method described in the pre-
vious section.

29.5 Synchronization Strategies

We can combine all of the previous discussion to derive a
number of synchronization strategies. We will first discuss
the considerations that define each of the strategies, and
then give a number of examples based on real data.

29.5.1 Do No Harm

The general goal of synchronizing a local clock by using
data received from a remote GNSS system (or any other
technique, for that matter) is to improve the performance
of the local clock. In terms of the language of the preceding
sections, we would use the data from the remote GNSS sys-
tem if, and only if, the two-sample Allan variance of the
received data was smaller than the corresponding free-
running variance of the local clock for some averaging time.
Since neither the statistics of the local clock nor the statis-
tics of the data received from the GNSS constellation are
adjustable, the primary output of any strategy is the opti-
mum averaging time and the statistics of the local clock that
can be expected. We will present a simplistic, somewhat
artificial strategy to illustrate the idea in the next section.

29.5 Synchronization Strategies

There may also be other considerations that we will discuss
in the following sections.

29.5.2 A Simple Strategy

Suppose that the timing signal from the GNSS constellation
can be characterized as white phase noise over a very wide
range of averaging times. This is a simplifying assumption
because it is quite unusual for the data to be this stable.
With this assumption, the two-sample Allan deviation
can be written in the form

(29.41)

where R is a proportionality constant. Next, assume that the
time of the local clock can be measured by a local process
with negligible white phase noise. With this assumption,
the statistics of the local clock are driven by only the white
frequency noise of its oscillator. Again, this is an optimistic
assumption because it assumes that the local clock has no
deterministic or stochastic frequency drift. With this
assumption, the two-sample Allan deviation of the local
clock is given by

L

oy(7) = 5 (29.42)
where L is another proportionality constant. Egs. 29.41 and
29.42 have different dependencies on the averaging time.
Eq. 29.41 increases more rapidly than Eq. 29.42 at short
averaging times, which means that the remote clock seen
through the communications link is less stable than the
local clock at these averaging times, since the time of the
local clock can be measured at a local device. Conversely,
at longer averaging times, the two-sample Allan deviation
defined by Eq. 29.41 will be smaller than the corresponding
deviation for the local clock, so that the remote clock is
more stable. The two will be equal when

R 2
(1)

and this specifies the minimum averaging time at which the
data from the remote clock will begin to improve the statis-
tics of the local clock. The optimum averaging time
increases as the statistics of the remote clock seen through
the channel become larger. The local clock is more stable
than the remote clock for averaging times less than the
value given in Eq. 29.43, and using the remote data to adjust
the time of the local clock will degrade its statistics by add-
ing channel noise. The local clock would be more stable if it
were left alone.

(29.43)
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29.5.3 Rapid Error Correction

An important consideration in some applications is the
requirement to minimize the time during which an error
in the local clock remains undetected. Since time errors
are generally outside of the statistical framework, it is gen-
erally not possible to evaluate the optimal response to this
concern in any quantitative way. It is certainly possible to
use a time interval between measurements that is shorter
than the optimal time interval calculated based on the con-
siderations outlined above, but the statistical arguments
suggest that adjusting the clock based on these measure-
ments is counterproductive, since the local clock would
have been more stable on the average if it were left alone.
The strategy used in the NIST time service is to use a meas-
urement interval that is about 30% of the optimal interval
calculated by means of the considerations outlined in the
previous section, but to not adjust the clock based on these
data unless the time error is at least three times the two-
sample Allan deviation of the clock and the measurement
channel evaluated at this shorter averaging time. This is an
administrative decision made more on the basis of experi-
ence than on hard statistical evidence. This method detects
a possible time error approximately 0.1% of the time — about
one measurement in a thousand. Classifying these mea-
surements as time errors, as opposed to low-probability
measurements that are consistent with the statistical char-
acteristics of the data, is an administrative decision based
more on experience than on a rigorous statistical
justification.

All of these methods are less successful at detecting fre-
quency errors because the time dispersion they produce
can be difficult to separate from the measurement noise
at short averaging times. The short averaging times, which
are often used to detect time errors quickly, make the detec-
tion of frequency steps more difficult. This is especially
troubling in real-time applications. The effect of the fre-
quency error has already compromised the previous data
by the time it has been detected. A change in the frequency
drift, which is often seen in rubidium devices and hydrogen
masers, is even more difficult to detect in real-time applica-
tions for the same reason.

29.5.4 Multiple Satellite Error Detection

Every one of the methods described so far requires the data
from only a single satellite to compute a time-difference
value. Since there are often many satellites in view at the
location of the receiver, it is possible to compute multiple
nominally independent estimates of the time difference.
This technique is called a “Redundant Array of Independ-
ent Time Measurements” (T-RAIM) analysis. All of these
calculations should give results that differ from each other

by an amount that is consistent with the statistical estimate
of the measurement noise. Any computation that differs
from the mean of the others by a statistically significant
amount is an indication of a problem, although it is not
always easy to identify the source of the trouble.

The T-RAIM algorithm is most useful for methods that
are based on the simple one-way time transfer or that use
the melting pot version of common view, since these tech-
niques are sensitive in first order to errors in the ephemeris
or the clock model of each satellite. The simple common-
view method attenuates these effects in the common-view
subtraction, so that they are both more difficult to detect
and less harmful to the calculation with this method.

29.6 Illustrative Data

Concepts discussed in the previous sections will be illus-
trated with examples of typical atomic clocks and time-
difference data acquired at NIST in Boulder. As discussed
above, the basis for all synchronization strategies is the
free-running stability of the local clock oscillator.

29.6.1 Statistics of Atomic Clocks

Figures 29.6 and 29.7 show the Allan deviation and the
approximate time dispersion for three atomic clocks: a
rubidium standard, a conventional cesium standard, and
a “high-performance” cesium standard. All of the devices
are commercial instruments, and the values in the figures
are derived from the manufacturer’s literature. The time
dispersion is calculated as = X oy(7). In general, actual
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Figure 29.6 Two-sample Allan deviation of rubidium oscillator
(solid line), cesium oscillator (dotted line), high-performance
cesium (dashed line).
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Figure 29.7 Time deviation of rubidium oscillator (solid line),
cesium oscillator (dotted line), high-performance cesium
(dashed line).

devices are often more stable than the published specifica-
tions by a factor of about two or three.

The two-sample Allan deviation of both cesium devices
varies as the reciprocal of the square root of the averaging
time over almost all of the values in the figure, so that the
stochastic noise of these devices can be characterized as
white frequency noise at almost all averaging times (see
Table 29.1). There is some evidence of the onset of flicker
frequency noise at the longest averaging times of sev-
eral days.

The statistics of the rubidium standard are much less
favorable. The two-sample Allan deviation is larger, and
the device has reached the flicker floor at an averaging time
of several hours. The time stability is approximately 10 ns at
that averaging time, which is adequate for many applica-
tions. The time stability of a cesium standard is a few nano-
seconds even at averaging times of a few days.

29.6.2 Statistics of GPS Time

Figure 29.8 shows the average time difference between
UTC(NIST) and GPS time. Each 5 min data point is the
average time difference computed using the code data from
all of the satellites that were in view at that time. The short-
term fluctuations, which have an amplitude of about 5 ns p-
p, are approximately flicker phase noise (compare to
Figure 29.4a and Figure 29.4b) and are mostly due to the
measurement noise of the GPS receiver. Figure 29.9 shows
the time deviation of the data (defined in Eq. 29.32). The
data in Figure 29.8 show clear diurnal and semi-diurnal
periodic effects, and these are confirmed in the time devi-
ation plot, which shows peaks at roughly one-half of the
periods of these contributions (Eq. 29.36). The longer-
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Modified Julian Days, data starts at 20 April 2016

Figure 29.8 UTC(NIST) - GPS time, 5 min averages of the time
difference estimated by using data from all of the satellites in view
at each time.
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Figure 29.9 Time deviation of the data shown in the previous
figure. The peaks near 20 000 s and 40 000 s suggest semi-diurnal
and diurnal “bright lines in the spectrum (Eq. 29.36)".

period variation may be some combination of contributions
from errors in the broadcast ephemeris or the difference
between GPS system time and UTC(NIST).

To use these data to synchronize a local clock, we would
compare the time deviation of the received data in
Figure 29.9 with the time deviatioin of the free-running
clock as shown in Figure 29.7, and the interval between cal-
ibration cycles would be chosen so that the stability of the
GPS data as received is better than the stability of the local
clock. For example, the cross-over would be at a period of a
few hundred seconds for the rubidum device whose charac-
teristics are shown in Figure 29.7. This algorithm would
regard the diurnal and semi-diurnal variations as “signal”
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rather than “noise,” and the control loop would steer the
local clock to remove them. This is a mistake, as will be
shown below, but this cannot be recognized from
these data.

The optimal algorithm for synchronizing a high-
performance cesium standard is more complicated. There
is an intial cross-over between Figure 29.9 and
Figure 29.7 at a period of about 20 000 s, but the GPS data
has a diurnal and semi-diurnal variation that makes its sta-
bility worse at periods from several hours to about one day.
As with the algorithm to synchronize a rubidium standard,
there is no way of identifying this variation as noise from
these data, although the stability of the local device would
support this assumption as reasonable, but not proven.

Figure 29.10 shows the common-view code time differ-
ence between cesium clocks at the NIST Boulder Labora-
tory and the NIST radio station WWYV, which is located
approximately 100 km northwest from Boulder. The figure
shows the average common-view time difference computed
satellite by satellite for all of the GPS satellites in view at
each time. Figure 29.11 shows the time stability of the data
in Figure 29.10.

These data confirm that a large part of the variation
shown in Figures 29.8 and 29.9 is not due to the fluctuations
in the local clocks or to other local effects such as multipath,
since the variations are very significantly attenuated by the
common-view subtraction. There is a residual peak in the
time deviation at one-half of the diurnal period, but the
magnitude of the time deviation is less than 1 ns for all aver-
aging times greater than a few hundred seconds. Based on
other data, this peak is most likely due to multipath reflec-
tions at NIST.

UTC (NIST) - WWV
20 —

Time difference in ns
o

57500 57502.5 57505 57507.5 57510
Days, start 20 April 2016

Figure 29.10 UTC(NIST) -cesium clocks at WWV 5 min averages
of the time difference estimated by using data from all of the

satellites in common view at each time. Note that the common-
view method has significantly improved the variance of the data.
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Figure 29.11 Time deviation of the data shown in the previous
figure. The peak near 40 000 s suggests a diurnal “bright line
(Eq. 29.36)". Note how the common-view method has improved
the stability relative to the data in the previous figures.

The example of the common-view time difference
between WWYV and NIST, Boulder, illustrates the power
of the common-view subtraction, but may be more favora-
ble than average because the separation between the sta-
tions is only 100 km. However, most common-view
station pairs can support synchronizing a high-
performance cesium device after an averaging time of a
day or two, and these common-view time differences are
still used to compare the time scales of some national
metrology institutes and timing laboratories. These time
scales are generally realized as ensembles of high-
performance cesium devices and hydrogen masers.

29.7 Adjustment Methods

In the previous section, the concept of the optimum aver-
aging time was introduced, which was derived from a con-
sideration of the two-sample Allan variance of the local
clock and the two-sample Allan variance of the remote
clock as seen through the communications channel. If we
have decided that the local clock should be adjusted by a
time T, seconds based on the results of the calibration proc-
ess, how should we apply the adjustment? There is no
“best” answer to this question - the choice depends on a
number of administrative considerations, which will be dis-
cussed in the next sections.

29.7.1 Correcting the Clock with a Single
Time Step

This is the easiest solution to implement if the hardware
supports a step adjustment. However, most algorithms
use this type of adjustment only following a cold-start of



the control loop. There are three reasons for this. If the
adjustment moves the time backward, then causality may
be violated by a process that uses the clock time because
moving the clock backward can reverse the time ordering
of two events if the event that occurred later is assigned
an earlier time stamp. If the time adjustment is positive,
then some time values will not exist, and an application
that is waiting for an explicit time to perform some action
may wait forever because the time may never arrive.
Finally, an estimate of the frequency of the clock based
on the evolution of the time difference over some measure-
ment interval will not give the correct value if the time
interval crosses the adjustment instant.

29.7.2 Slewing Adjustment Rate

A slewing adjustment amortizes the time error by adjusting
the frequency of the local clock. The frequency is raised if
the time adjustment is positive and lowered if it is negative.
The magnitude of the frequency adjustment is a compro-
mise between time accuracy, which would favor a large fre-
quency offset so as to amortize the time error over the
smallest possible interval, and frequency stability, which
would favor a small frequency offset to minimize the deg-
radation of the frequency stability of the local clock. Fre-
quency adjustments are normally applied as a single step
in the frequency, but it is also possible to slew the frequency
over some averaging time, which is equivalent to adjusting
the frequency drift parameter. In either case, the length of
the adjustment is calculated to produce the desired modifi-
cation to the time of the clock

A frequency adjustment may be realized in hardware or
in software, depending on the capabilities of the system. In
the software system, which is used to discipline the clock in
most computer systems, a physical oscillator generates ticks
at a known rate. The operating system adds a constant to a
register which then holds the accumulated time since the
origin used by that computer operating system. The effec-
tive frequency of the clock can be adjusted by modifying
the constant value added on each physical tick - increasing
the value raises the effective frequency of the software clock
and causes the time of the clock to become more positive
relative to the reference time. Decreasing the constant
value has the opposite effect. The change in this parameter
is typical about 0.3%, so that it takes approximately 5 min to
amortize a time error of 1 s. This adjustment rate, which is
often fixed as an internal parameter in the operating soft-
ware, is quite large, since it changes the effective frequency
of the clock by a factor of perhaps 1000 relative to its free-
running stability. This rapid adjustment rate implicitly
assumes that the frequency stability of the clock oscillator
is not as important as the time accuracy of the system.

29.8 Summary

At the other end of the scale, a national metrology insti-
tute generally steers its realization of UTC to agree with the
paper time scale of the International Bureau of Weights and
Measures. The frequency stability of such a time scale is
important, and the maximum steering rate used at NIST
is typically 0.5 ns/day, which is a fractional frequency
adjustment of about 5 X 107", A typical steering adjust-
ment would be a fraction of this value, and the intent would
be to amortize the time error over a period of about ten
days. The frequency offset implied by these parameters is
about the same as the free-running stability of the time
scale, so that the steering correction generally is not observ-
able by most users.

29.8 Summary

The stochastic variations in the time and frequency of
clocks and oscillators are not well modeled by the usual sta-
tistical methods or by the standard statistical parameters
such as the mean and the standard deviation. Instead,
the two-sample Allan variance provides insight into the
variation of the time and frequency and the source of this
variation. The two-sample Allan variance can also provide
an indication of the presence of a “bright line” in the spec-
trum of the variation. The power spectral density provides
the same information as the two-sample Allan variance in
principle, but the time-domain statistic is usually easier to
interpret because most of the power in the Fourier compu-
tation is usually concentrated in the lowest few Fourier fre-
quency bands.

A statistically optimal technique for synchronizing a
clock by using data from a navigation satellite is to compare
the two-sample Allan variance of the received data with the
corresponding parameter for the free-running stability of
the local clock. The statistical performance of the combina-
tion will include the best features of each contribution and
so will generally be better than either contribution by itself.
This is because the free-running stability of the local clock
typically exceeds the stability of the data received from the
satellite system at sufficiently short averaging times, while
the opposite is true at longer times. These considerations
emphasize the conclusion that it is almost always better
to synchronize a local clock to a remote time source rather
than to use the signals from the remote time source directly
in the local application.

An algorithm that is based on statistics does not provide
any estimate of accuracy. In addition, its estimate provides
a root-mean-square error and has no information about
worst-case performance. Therefore, statistical estimators
are normally combined with some method of detecting

847



848

29 Distributing Time and Frequency Information

and rejecting outliers. The method used for outlier detec-
tion assumes that these data points are non-conforming
errors rather than conforming errors, but very low probabil-
ity statistical events. The detection of an outlier is therefore
outside of a statistical discussion by definition.
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