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ABSTRACT  

 

We report on a preliminary design of a new Kalman-filter Hydrogen-maser time scale at NIST. The time scale is composed of 

a few Hydrogen masers and a Cs clock. The Cs clock is used as a reference clock, to ease operations with existing data. All the 

data used in this paper are real measurement data, except mentioned specifically. Unlike most other time scales, this time scale 

uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e., time 

error, frequency error, or frequency drift error) automatically. A frequency step of 6.8×10-15 s/s (which typically corresponds 

to ~ 20C temperature change of a H-maser chamber) in a clock only leads to ~ 2.5 ns change in the time scale in 100 days, 

thanks to the advanced error-detection technique. A frequency-drift step of 5.4×10-21 s/s2 in a clock only leads to ~ 11 ns change 

in the time scale in 100 days. These features make the new time scale stiff and less likely to be affected by a bad clock. Tests 

show that the time scale deviates from the UTC by less than ± 5 ns for ~100 days, when the time scale is initially aligned to the 

UTC and then is completely free running. Once the time scale is steered to an external frequency standard (such as a Cs 

fountain), it can maintain the time with little error even if the external frequency standard stops working for tens of days. At 

NIST, we have the Cs fountain running in 2015 September (23 days), 2015 December (14 days) and 2016 February (18 days). 

Although the Cs fountain runs for only 55 days in total, the time scale steered to the Cs fountain has a deviation of less than 4 

ns (peak-to-peak) from the UTC, during MJD 57265 – 57500 (235 days). This can be helpful when we do not have a 

continuously-running fountain, or when the continuously-running fountain accidentally stops, or when optical clocks run 

occasionally. 

 

I. INTRODUCTION  

 

At timing laboratories, we want to have a time scale which is accurate, precise, and reliable [1]. By definition, a Cs fountain is 

naturally accurate. However, a Cs fountain is typically noisier than a Hydrogen-maser (H-maser) for an averaging time of less 

than several days. Thus, some people have formed a time scale composed of a continuously-running Cs fountain and an H-

maser [2]. The short-term output of the time scale is determined by the H-maser, while the long-term output of the time scale 

is determined by the Cs fountain. In this way, the time scale is both accurate and precise. To improve reliability, some people 

add an additional back-up H-maser [2], to avoid the consequence of an H-maser failure.  

 

In this paper, we propose a different architecture of a time scale. The time scale is composed of a Cs fountain and an ensemble 

of H-maser clocks. The ensemble of H-maser clocks, forming a free-running time scale using Kalman filter, is steered to the 

Cs fountain. Since we have a few H-masers, the short-term stability of the time scale is better than a single H-maser due to 

averaging. Also, it is easier to detect and mitigate unobvious clock errors (such as a small frequency step, or a small frequency-

drift step), which improves the reliability of the time scale.  

 

In Section II, we will discuss the basic principle of the time scale. Section III will test the performance of the free-running time 

scale. In Section IV, we will steer the free-running time scale to a Cs fountain and form the final time scale. 

 

II. KALMAN-FILTER H-MASER TIME SCALE 

  
The Kalman filter has been widely used to do prediction based on real-time measurements. The fundamental assumption in 

Kalman filter is that the noise type in both measurement and physical quantity is white. Although the clock behavior is only 

approximately white, the Kalman filter still works well [3].  

 

Here, we build a new Kalman filter time scale, following Chapter 4 of [4]. The time scale is composed of a few H-masers and 

a commercial Cs clock. The Cs clock is used as a reference clock to ease operation with existing data. Each clock is 
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characterized in terms of three parameters: time, frequency, and frequency drift. Although the Kalman filter is straightforward, 

we do not have measurements of each clock in the current situation. Instead, we only have measurements of the time difference 

between each clock and the reference Cs clock. Thus, we have three degrees of freedom: the reference clock’s time, frequency, 

and frequency drift. To limit the freedom of the reference clock’s time, we require that the weighted sum of the differences 

between the current time estimates and their predicted values is zero, which is called the basic time-scale equation [5-7]: 

∑ 𝑤𝑖𝑥𝑖(𝑘 + 1)𝑁
𝑖=1 = ∑ 𝑤𝑖𝑥𝑖(𝑘 + 1|𝑘)𝑁

𝑖=1 ,                  (1) 

where 𝑤𝑖  is the weight of clock i based on the statistics of prediction error, 𝑥𝑖(𝑘 + 1) is the time estimate of clock i at epoch 

k+1, and 𝑥𝑖(𝑘 + 1|𝑘) is the predicted time of clock i at epoch k+1 based on the clock state at epoch k. 

 

However, in many time scale algorithms, little effort is made to limit the freedom of the reference clock’s frequency and 

frequency drift. The freedom of the reference clock’s frequency can be viewed in this way: suppose the reference clock’s 

frequency is changing in a specific pattern, our measurement results are still the same as long as other clocks’ frequencies 

change accordingly. Thus, the reference clock’s frequency can be any value, and therefore is a degree of freedom. The freedom 

of the reference clock’s frequency drift can be viewed similarly. To limit the freedom of the reference clock’s frequency and 

frequency drift, we need to extend the basic time-scale equation to three equations: 

∑ 𝑤𝑖_𝑥𝑥𝑖(𝑘 + 1)𝑁
𝑖=1 = ∑ 𝑤𝑖_𝑥𝑥𝑖(𝑘 + 1|𝑘)𝑁

𝑖=1 , 

∑ 𝑤𝑖_𝑓𝑓𝑖(𝑘 + 1)𝑁
𝑖=1 = ∑ 𝑤𝑖_𝑓𝑓𝑖(𝑘 + 1|𝑘)𝑁

𝑖=1 ,                  (2) 

∑ 𝑤𝑖_𝑑𝑑𝑖(𝑘 + 1)𝑁
𝑖=1 = ∑ 𝑤𝑖_𝑑𝑑𝑖(𝑘 + 1|𝑘)𝑁

𝑖=1 , 

where x is time, f is frequency, and d is frequency drift. We need to have three sets of weights, 𝑤𝑖_𝑥 for time, 𝑤𝑖_𝑓 for frequency, 

and 𝑤𝑖_𝑑 for frequency drift. By limiting the freedom of the reference clock’s frequency and frequency drift, the time scale has 

better long-term stability, because we give higher weights to those clocks that are more stable in frequency and frequency drift. 

As an extreme example, if a clock frequently has a big frequency drift variations or some frequency drift jumps, it will pull the 

whole ensemble significantly if we only use Eq. (1). However, if we use Eq. (2), we can give this clock a very small weight in 

𝑤𝑖_𝑑, so that it has tiny impact on the long-term stability of the time scale. We will show a real instance and discuss this issue 

further in Section III. 

 

In addition to the above feature, the new Kalman-filter time scale has another new feature in comparison to the AT1 algorithm 

[5]. It can detect a clock time/frequency/frequency-drift error automatically. Thanks to the real-time estimation of time, 

frequency, and frequency drift, we can find a clock error quickly, and then remove the clock from the ensemble by giving the 

clock 0 weights in Eq. (2), before the clock pulls the ensemble too much. Also, it updates the statistics of each clock 

automatically. As an example, the time scale computes the standard deviation of frequency drift and adjusts the weights 𝑤𝑖_𝑓𝑑 

accordingly. 

 

These two features make the new time scale stiff and less likely to be affected by a bad clock. We will test the performance of 

this time scale in the next Section. 

 

III. PERFORMANCE OF FREE-RUNNING TIME SCALE 

 
Now, we run the time scale for Modified Julian Date (MJD) 56650.0 – 56950.0. For test purposes, we only use four H-masers 

in the time scale, so that it is less complicated. At 56650.0, we initialize the time scale, by estimating the clock states (time, 

frequency, and frequency drift) with respect to UTC. In this way, the time scale is well aligned with UTC at the very beginning. 

Then we let the time scale completely free-run. The result is shown in Figure 1. We can see that after 100 days of free running 

(i.e., at 56750.0), the time scale is only ~ 3 ns away from UTC. This illustrates that the new time scale is quite stiff. Because 

the time scale is composed of H-masers and an H-maser can have some small change in frequency drift, the time scale typically 

has a non-zero frequency drift in the very long term (> 100 days) as indicated in Figure 1. The frequency drift is approximately 

2.5×10-22 s/s2, in this case. 

 

Figure 2 shows the frequency drift of H-masers with respect to the time scale. Overall, all 4 H-masers have quite stable 

frequency drift. The mean values of frequency drifts are -3.5×10-22 s/s2, -34.8×10-22 s/s2, -167.8×10-22 s/s2, and -7.4×10-22 s/s2, 

for ST0005, ST0006, ST0007, and ST0022, respectively. However, we can still see some abnormal behaviors in frequency 

drift, from time to time. For example, there is a spike in ST0005 around MJD 56868.7. Checking the ST0005 chamber 
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temperature data (see Figure 3), we find a temperature spike around MJD 56868.6. This confirms that our estimation of 

frequency drift is done properly and it can reflect the actual physical change of a clock. For another example, there is a change 

in the red curve of Figure 2 (ST0005) starting from around MJD 56915. At the same time, there is also a quick change in 

frequency of ST0005. By checking the chamber temperature for ST0005, we find that this clock change corresponds to the 

temperature change from 25.3 0C to 25.2 0C at around 56914. We should mention that the change in the chamber temperature 

is small (only 0.1 0C) and there is some delay for the whole H-maser to change to 25.2 0C. Also, the tiny frequency change of 

ST0005 is somehow correlated with the time noise. Thus, we practically observe 1-day latency of the clock error detection. As 

the last example, there seems some abnormal behavior in ST0006 at around MJD 56881. We do not observe any environmental 

change of this clock. This behavior may come from the mechanical or electronic components of the clock. 

 

 
Figure 1. Free-running Kalman-filter H-maser time scale with respect to UTC. 

 

 
Figure 2. Frequency drift of H-masers. 
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As we have mentioned in Section II, once the clock error is detected, we give the clock 0 weights in the three equations of Eq. 

(2), no matter what the physical reason is. In this way, the time scale is not affected by a bad or abnormal clock. If the clock 

error disappears later, it gets back the weights it deserves.  

 

From Figure 2, it is not easy to guarantee an H-maser to be always good. If we steer a single H-maser to the Cs fountain, it is 

quite likely to have a large timing error when the fountain stops working. In contrast, if we have an ensemble of H-masers, we 

can detect a bad clock and mitigate its impact. In this way, we may have still a tiny timing error, but we can avoid a big timing 

error.   

 
Figure 3. Chamber temperature for ST0005. 

 

Next, we simulate a frequency jump and a frequency-drift jump in a clock, and see how the time scale output is affected by 

these jumps. Ideally, we want to detect the frequency/frequency-drift error and remove the clock from the ensemble 

immediately when the error occurs. Practically, the filtering process, kind of a low-pass filter, will lead to some time delay of 

reflecting the actual jump in frequency or frequency drift (because a jump contains all frequencies in the frequency domain). 

Also, we determine if there is a frequency/frequency-drift error, based on the criteria that the frequency/frequency-drift at the 

current epoch is greater than 4 times the standard deviation of the frequency or frequency drift. Thus, it is difficult to completely 

eliminate the impact of the frequency/frequency-drift error of a clock. Nevertheless, by giving the clock 0 weights in Eq. (2) 

once we determine that the clock is bad, we can mitigate the impact significantly.  

 

Figure 4 shows an example. We artificially add a frequency jump of 6.8×10-15 s/s in ST0006 at MJD 56700.0. This frequency 

jump corresponds to around 2 0C H-maser chamber temperature change [8]. Because of this frequency jump, ST0006 is 

supposed to be 147 ns away from what ST0006 should be, at MJD 56950.0. If we assume that ST0006 has the same weight as 

other H-masers, a conventional time scale will be pulled by 36.7 ns at MJD 56950.0. This is the result of a conventional time-

scale algorithm. From the red curve in Figure 4, we can see that the new time scale is pulled by only ~ 3.5 ns at MJD 56950.0. 

This is because we give ST0006 0 weights in Eq. (2) once we observe the abnormal behavior of ST0006. Thus, we mitigate the 

impact of a frequency jump by more than 90 %.  

 

Figure 5 shows an example of a frequency-drift jump. Similarly, we artificially add a frequency-drift jump of 5.36×10-21 s/s2 

in ST0006 at MJD 56700.0. As we have seen in Figure 2, all the 4 clocks during the whole 300 days do not have such a large 

change in frequency drift. Thus, a jump of 5.36×10-21 s/s2 is rare and not likely to happen in practice. This simulation result 

shows the performance of the new time scale, in such an extreme situation. ST0006 is supposed to be 1250 ns away from what 

ST0006 should be, at MJD 56950.0. This leads to the 25 % × 1250 ns = 312.5 ns change of a conventional time scale at MJD 

56950.0, conventionally. From the red curve in Figure 5, we can see that the new time scale is pulled by only ~ 23.6 ns at MJD 

56950.0, because ST0006 has 0 weights in Eq. (2) after the abnormal behavior is detected. Similar to the situation in the 

frequency jump, we mitigate the impact of a frequency-drift jump by more than 90 %. 
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From the above analysis, the new time scale is much stiffer than a conventional time scale, thanks to the three basic time-scale 

equations (i.e., Eq. (2)) and the advanced error-detection technique. Thus, it is nearly immune to abnormal clock behaviors, 

especially when the clock error is not large.  

 
Figure 4. Response of the time scale to a frequency jump. We artificially add a frequency jump of 6.8×10-15 s/s in ST0006 at 

MJD 56700.0. 

 

 
Figure 5. Response of the time scale to a frequency-drift jump. We artificially add a frequency-drift jump of 5.36×10-21 s/s2 

in ST0006 at MJD 56700.0. 

 

IV. STEERING TIME SCALE TO CS FOUNTAIN 

 

In Section III, we have demonstrated that the new time scale is stiff and cannot be easily pulled by a bad clock. Thus, it can 

serve as a good flywheel. If it is steered to a Cs fountain, the final output is accurate, precise, and reliable.  
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At NIST, we ran the NIST F1 Cs fountain during MJD 57264.9 – 57287.8, 57360.0 – 57374.0, and 57420.8 – 57439.0. We 

first run a free-running time scale during MJD 56980.0 – 57500.0, and then steer it to the Cs fountain (Figure 6). Note, the 

steering algorithm corrects both the frequency and the frequency drift of the free-running time scale, using the Cs fountain.  

 

The free-running time scale is composed of six H-masers and a reference commercial Cs clock. The H-masers are ST0005, 

ST0006, ST0007, ST0010, ST0012, and ST0022. At MJD 56980.0, the time scale is well aligned with UTC. The blue curve 

shows the result of the free-running time scale (note: the blue, black, green, and red curve are the same during 56980.0 – 

57264.9). We can see that the time scale has a very good match (< ±1 ns) with UTC during MJD 56980.0 – 57080.0. This again 

confirms that the time scale is good at keeping time for approximately three months once it is initially aligned with the UTC or 

a Cs fountain. After MJD 57080.0, the time scale starts to have a tiny positive frequency drift. Because of this frequency drift, 

the time scale starts to walk off from UTC, and at ~ MJD 57230, it is ~ 10 ns away from UTC. Then its frequency drift slowly 

becomes negative, and at MJD 57500, it is ~ −15 ns away from UTC.  

 

Next, we steer the time scale to the first Cs fountain period (i.e., MJD 57264.9 – 57287.8). The result is shown by the black 

curve. Note, the black curve is the same as the red curve during 56980.0 – 57360.0. By comparing the black curve with the 

blue curve during MJD 57264.9 – 57500.0, we can find that because of using the Cs fountain, the frequency drift in the free-

running time scale is removed. Also, the big frequency offset at 57264.9 in the blue curve is corrected by the Cs fountain. The 

black curve walks off from the UTC by less than ~ 5 ns, for the first 90 days (i.e., 57287.8 – 57377.8) after the time scale is 

steered to the fountain. 

 

The green curve is the result of steering the free-running time scale to the two Cs fountain periods (i.e., MJD 57264.9 – 57287.8, 

and MJD 57360.0 – 57374.0). Note, the green curve is the same as the red curve during 56980.0 – 57420.8. Again, the green 

curve walks off from the UTC by less than ~ 5 ns, for the first 90 days (i.e., 57374.0 – 57464.0) after the time scale is steered 

to the fountain. 

 

Last, the red curve shows the result of steering the free-running time scale to the three Cs fountain periods (i.e., MJD 57264.9 

– 57287.8, 57360.0 – 57374.0, and 57420.8 – 57439.0). During 57264.9 – 57500.0, the red curve has a change of less than 4 

ns, with respect to the UTC. Figure 7 shows the frequency-stability analysis of the free-running time scale and the time scale 

using three fountain periods, during 57264.9 – 57500.0. From the blue curve and the red curve in Figure 6 and Figure 7, the 

improvement of steering to the Cs fountain is significant in both time and frequency stability. Remember that we only run 55 

days of Cs fountain, over the whole 235 days. In other words, with Cs fountain running for less than 25 % of the time, we 

successfully maintain the time within 4 ns. This opens a new possibility for designing a time scale. To achieve less than 5 ns 

error, we only require the Cs fountain to be run from time to time, instead of having a continuously-running Cs fountain. This 

can be helpful when we do not have a continuously-running fountain. Also, a continuously-running fountain may accidentally 

stop. By using our new time scale algorithm, we allow ~ 3 months for repairs. During the three months, the timing error is at 

most 5 ns, according to the tests in this paper. Most importantly, nowadays, NIST has many excellent optical clocks under 

active development. However, it is difficult to run optical clocks for a long time (> a few days), due to engineering obstacles. 

Because of this, many people believe that the optical clock cannot contribute to the time scale for the time being. However, 

from this example, we can imagine that occasional optical-clock running (e.g., 1 hour every week) could be very helpful to the 

long-term (e.g., > 15 days) performance of the time scale. Thus, instead of waiting until all engineering obstacles are solved, 

we should consider incorporating an optical clock into the time scale now. 
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Figure 6. Steering the free-running time scale to the NIST F1 Cs fountain. Note, the blue curve is the same as the red curve 

during MJD 56980.0 – 57264.9; the black curve is the same as the red curve during MJD 56980.0 – 57360.0; the green curve 

is the same as the red curve during MJD 56980.0 – 57420.8. 

 
Figure 7. The frequency stability of the time scale using three fountain periods (red curve), versus the frequency stability of 

the free-running time scale (blue curve). 

24



V. SUMMARY 

 
This paper discusses a new Kalman-filter Hydrogen-maser time scale at NIST. The new time scale is designed to be stiff and 

nearly immune to an abnormal clock behavior. Tests show that when the time scale is initially aligned to the UTC and then is 

free-running, it deviates from the UTC by less than ± 5 ns for ~100 days. Thus, it is a good flywheel. Once the time scale is 

steered to a Cs fountain, it can maintain the time with little error (< 4 ns) even if the Cs fountain stops working for tens of days. 

Thus, an occasional-running Cs fountain is good enough to guarantee the accuracy of the time scale. This time scale algorithm 

also makes incorporating an occasional-running optical clock into the clock ensemble possible. 

 

 

Contribution of NIST – not subject to U.S. copyright. 
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