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ABSTRACT

Light pulse atom interferometry can be used to realize high-performance sensors of accelerations and rotations.
In order to broaden the range of applications of these sensors, it is desirable to reduce their size and complexity.
Point source interferometry (PSI) is a promising technique for accomplishing both of these goals. With PSI,
rotations are measured by detecting the orientation and frequency of spatial fringe patterns in the atomic state.
These spatial fringes are primarily due to a correlation between an atom’s initial velocity and its final position,
which is created by the expansion of a cold atom cloud. However, the fringe patterns are also influenced by the
structure of the initial atomic distribution. We summarize several methods that can be used to investigate the
relationship between the spatial fringe pattern and the initial atomic distribution. This relationship will need to
be understood in detail to realize an accurate gyroscope based on PSI.
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1. INTRODUCTION

Light pulse atom interferometers (LPAIs) have achieved excellent performance as sensors of acceleration,1,2

rotation,3–6 gravity,7,8 and gravity gradients.9 So far, LPAIs have mostly been realized as large, laboratory scale
experiments. In order to realize the full potential of these sensors for applications such as inertial navigation
and gravimetric surveys, it is desirable to reduce the size and complexity of these systems to enable them
to move outside the laboratory environment.6,10,11 Towards this goal, we are investigating the Point Source
Interferometry (PSI) technique introduced by Dickerson12 et al. as an approach to realizing a compact, high
performance LPAI gyroscope.

In PSI, a π
2 −π−

π
2 pulse sequence is applied to an expanding cloud of cold, two-level atoms, and the expanded

cloud is imaged with state-selective detection.12 With this three-pulse sequence, the initial π
2 pulse puts each

atom into a superposition of two states with different momenta.13 After the first pulse, there is a free expansion
period of duration TR which allows the two parts of the superposition to separate in space. Then, the π pulse
exchanges the momentum kick between the two parts of the superposition. After a second free expansion period
with duration TR, the two parts of the superposition overlap again, and the final π2 pulse closes the interferometer.
The pulses are typically implemented with stimulated Raman transitions.13,14 With this approach, the internal
state of the atoms after the pulse sequence depends on the phase shift between the two paths the atoms can
take through the interferometer. With the three-pulse sequence, both accelerations (a) and rotations (Ω) of the
apparatus produce phase shifts, which are given by

Φa = ~keff · ~a T 2
R, (1)

ΦΩ = 2~keff ·
(
~Ω× ~v

)
T 2

R, (2)

where ~keff is the effective wave-vector for the Raman transitions, ~v is the velocity of the atoms, and TR is the
time between consecutive pulses.

In order to realize a gyroscope, we must be able to isolate the phase shift due to rotations. With PSI, this
is accomplished by exploiting the correlation between an atom’s initial velocity and its final position created by
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the expansion of the cloud. In particular, we can make the approximation ~r ≈ ~v Tex, where ~r is an atom’s final
position and Tex is the total expansion time. With this approximation, Eq. 2 becomes

ΦΩ =
(

2T 2
R

(
~keff × ~Ω

)
/Tex

)
· ~r = ~kΩ · ~r. (3)

Through the cloud expansion, the velocity-dependent rotation phase shift becomes a spatial gradient in the
interferometer phase described by ~kΩ. This phase gradient will give rise to a spatial fringe pattern which can be
detected by imaging the cloud. By measuring the frequency and orientation of the spatial fringes, we can infer
two components of ~Ω.

Point source interferometry has several features which suggest it is a promising candidate for a compact
LPAI gyroscope. The spatial fringe pattern makes it possible to isolate the rotation phase shift with only one
atomic source. In other three-pulse LPAI gyroscopes, two counter-propagating sources are required to distinguish
the effects of rotations and accelerations.3,6, 15,16 With PSI, the cold atom cloud does not have to be launched,
which further simplifies the experimental sequence compared to other cold-atom LPAI gyroscopes. The rotational
dynamic range can also be increased by the use of spatially resolved detection. Finally, PSI could enable the
characterization of the wave-front aberrations of the beam used to drive the interferometer pulse sequence.12

These aberrations are an important limitation to the long-term stability of state of the art LPAI sensors.15,17

However, the benefits offered by PSI come with a cost. In a real system, the correlation between the atoms’
initial velocities and their final positions is not completely determined by the expansion time. It also depends
on the detailed structure of the initial distribution. In previous work,18 we have shown that the structure of the
initial distribution can cause shifts in the gyroscope scale factor. Navigation grade gyroscopes are expected19

to have a scale factor stability of a few parts-per-million (ppm), and so the initial distribution will need to
be carefully controlled to realize a high-performance PSI gyroscope. If the initial distribution has a Gaussian
density profile and a velocity distribution characterized by a temperature T , then the bias introduced by the
initial distribution can be described as a scale factor shift. Here, we show that this is not the case for most
initial distributions. Therefore, it is important to investigate other biases on the rotation measurement that can
be introduced by structure in the initial distribution.

In this work, we describe several analytical tools that can be used to investigate the relationship between
the initial distribution and the spatial fringe patterns. Section 2 derives an expression for the PSI signal in
the point-source limit. Section 3 develops a model for the PSI fringes in the case of an initial cloud with an
extended spatial distribution, n0(r), and a temperature, T , by treating the initial cloud as a collection of many
point sources. The case of a cloud with a Gaussian initial density profile is considered in detail. In this case,
it is possible to obtain an analytical solution for the PSI fringes that reveals several new features. Section 4
considers the spatial fringes in the Fourier domain. This picture reveals that essentially any structure in the
initial distribution is expected to bias the frequency of the spatial fringes away from the point-source limit.
Section 5 develops a model of the PSI fringes in phase space. This phase-space picture both provides an intuitive
explanation of the effects of a finite initial cloud size and makes it possible to consider initial distributions where
the velocity distribution is not described by a temperature. Finally, Section 6 summarizes the conclusions from
these models.

2. THE POINT-SOURCE LIMIT

It is useful to consider the case where the atoms are initially concentrated in an infinitesimally small point source.
This case is analytically tractable, and it reveals the essential physics of the PSI measurement. In this section,
we will derive an expression for the density distribution of the population in one of the interferometer states after
the π

2 − π −
π
2 pulse sequence in the point-source limit. In the following sections, we will leverage this simple

case to model a cloud with a spatially extended initial distribution. To begin, consider a point source with N
two-level atoms at temperature T . The atoms have a velocity distribution given by

p(~v) =
N

(2π)
3
2 σ3

v

exp
(
−~v 2/2σ2

v

)
, (4)
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where the width of the velocity distribution is σv =
√
kBT/m. At t = 0, the cloud begins to expand. Since the

initial cloud is a point source, the position of each atom after an expansion time Tex is given by ~r = ~v Tex. The
cloud expansion essentially maps the velocity distribution into a spatial distribution. Applying this principle to
Eq. 4 gives

n(~r, Tex) =
N

(2π)
3
2 σ3

ps

exp
(
−~r 2/2σ2

ps

)
, (5)

where σps = σvTex characterizes the width of the expanded point source.

As the cloud expands, a π
2 − π−

π
2 pulse sequence is applied. The effect of the interferometer pulse sequence

is to change the internal state of the atoms. The probability for an atom to change its internal state can be
described by

p = (1 + c cos(Φ)) /2, (6)

where c is the contrast and Φ is the interferometer phase shift. In the point-source limit, the rotation phase shift
can be expressed as a phase gradient given by Eq. 3.

By combining Eqs. 3, 5, and 6, we obtain an expression for the final density profile of one of the interferometer
states in the point-source limit. The result is

nps(~r, t) =
N exp

(
−~r 2/2σ2

ps

)
(2π)

3
2 σ3

ps

(
1 + c cos

(
~kΩ · ~r + φ0

))
2

, (7)

where φ0 is a phase offset due to other sources of interferometer phase shifts. The density distribution for the
other output state has the same form with the sign of the contrast reversed.

In this derivation, we have neglected the effects of gravity and the Raman momentum kick on the motion
of the atoms because neither of these effects alter the wave-vector of the spatial fringes. The effects of gravity
and the Raman momentum kick during the π

2 − π −
π
2 pulse sequence are accounted for in the derivation of the

interferometer phase shifts. If ~g is not parallel to ~keff and the cloud is allowed to fall before the beginning of the
interferometer pulse sequence, then the change in the atoms’ velocity due to gravity will produce a phase shift
via Eq. 2. However, this phase shift will be the same for all the atoms in the cloud so it will not affect the phase
gradient in Eq. 3. The Raman momentum kick and gravity do influence the final position of the atoms during
detection. It is straight forward to include these effects in Eq. 7, but these details would only muddy the waters.

3. MANY POINT SOURCES—A GAUSSIAN INITIAL CLOUD

The case of an initial cloud with a density distribution n0(~r) and a temperature T can be described as a collection
of many point sources. The evolution of each point source during the interferometer sequence can be described
by Eq. 7, and the final distribution is given by the sum of all the expanded point sources.

It is useful to begin by considering a small volume dV of the initial cloud located at a position ~R. The number
of atoms contained in this region is given by Ni = n0(R) dV . After a time Tex, the atoms from this region will

have expanded into a density distribution described by (n0(R) dV )nps

(
~r − ~R, Tex

)
where nps(~s, Tex) describes

the profile of an expanded point source centered on ~s = 0. The final density distribution can be obtained by
integrating over all possible values of ~R, which gives

n(~r, Tex) =

∫
d3R n0(R)nps

(
~r − ~R, Tex

)
= n0(~r) ∗ nps(~r, Tex) , (8)

where the ∗ operator represents convolution.

In order to assess the implications of a finite initial size, it is useful to consider a Gaussian initial density
distribution. In this case, it is possible to evalute Eq. 8 analytically. Formally, the initial density distribution
can be described by Eq. 5 with a characteristic width σ0, and the point-source solution is described by Eq. 7.
After evaluating the integral, we find that the final density distribution of each of the interferometer states is
described by a Gaussian modulated by a spatial fringe as was the case for the point-source solution in Eq. 7.
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However, the cloud size, the fringe frequency, and the fringe contrast are all modified. The final cloud size

becomes σf =
√
σ2

0 + σ2
ps, which is the familiar result for an expanding cloud with a Gaussian initial density

profile. The spatial fringe wave-vector becomes

~kΩ,g = ~kΩ,ps

(
1− σ2

0/σ
2
f

)
, (9)

where ~kΩ,ps is the expected phase gradient in the point-source limit (Eq. 3). The fringe contrast becomes

c(Ω) = c0 exp
(
−k2

Ω,psσ
2
0

(
1− σ2

0/σ
2
f

)
/2
)
, (10)

where c0 is the interferometer contrast with Ω = 0.

Looking at Eq. 9 and Eq. 10, we can see that a finite initial cloud size has two effects. It causes the spatial
fringe contrast to decrease as a function of Ω, and it leads to a shift in the spatial fringe frequency. The loss of
contrast can be understood by noting that when the cloud has a finite initial size, atoms with different initial
velocities will end up at the same final position. Since our detection method is only sensitive to the final position
of the atoms, we must average over this distribution of phase shifts, which will wash out the spatial fringes.

The velocity spread at a point in the expanded cloud can be estimated by modeling the initial cloud as
a uniform ball with diameter d. The maximum velocity spread will be the difference in velocities between
atoms that start on opposite sides of the initial cloud, which is given by δv = d/Tex. Via Eq. 2, this velocity
spread corresponds to a range of phase shifts δφ = 2keffT

2
RΩδv. The maximum observable rotation rate roughly

corresponds to δφ = 2π, which leads to

Ωmax =
π

keffd

Tex

T 2
R

. (11)

The prediction of this simple model of the fringe contrast loss can be compared to the result obtained from
Eq. 8 by calculating a rotation rate that characterizes the contrast loss. A convenient choice is the rotation rate
where the contrast has fallen to 50 % of its initial value. For the case of a Gaussian initial cloud, Eq. 10 leads to

Ω50% =

√
ln 4

keffσ0

Tex

2T 2
R

(
1− (σ0/σf)

2
)−1/2

. (12)

Looking at Eqs. 11 and 12, we can see that these two models make similar predictions for the rotation rate
that characterizes the contrast loss. In the limit σf � σ0, the two rotation rates differ by only a constant, which
indicates that the simple picture of the contrast loss captures the essential physics.

Unlike the contrast loss, it is difficult to precisely identify the source of the spatial frequency shift with this
picture. By evaluating the integral in Eq. 8, we added up a large number of truncated sinusoids with central
frequency kΩ and obtained a truncated sinusoid with a different central frequency k′Ω. If we were working with
the more familiar case of infinite sinusoids, this would not be possible. In the case of truncated sinusoids, it is
possible for interference effects to shift the dominant frequency because each sinusoid actually contains a range
of frequencies.

This interference effect can be visualized by comparing the spatial fringes from different parts of the initial
cloud as shown in Fig. 1. In the left panel, each expanded point-source has a width that is equal to the initial
cloud width (σps = σ0). In this small expansion regime, the spatial fringes from different regions of the initial
cloud are out of phase with each other. As a result, they interfere and produce a final cloud with a spatial
frequency that is significantly shifted from the frequency of the individual point sources. In the right panel,
the point sources have expanded to be significantly larger than the initial cloud (σps = 3σ0), and so the spatial
fringes from the individual point sources are more in phase with each other. As a result, the individual point
sources combine to produce a cloud with a spatial frequency that is much closer to the point-source limit.

This spatial interference effect provides an explanation for the frequency shift caused by the structure of the
initial distribution, but it is difficult to generalize. We can gain more insight into the connection between the
spatial fringe frequency and the structure of the initial distribution by studying the spatial fringe patterns in the
Fourier domain.
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Figure 1. A visualization of the interference effect which leads to the spatial fringe frequency shift. Seven point sources
(colored lines) are used to approximate the spatial fringes produced with a Gaussian initial density distribution. The
number of atoms in each point source is determined by the initial cloud shape. The sum of the seven point sources (solid
black line) can be compared to a single point source (dashed line). In order to emphasize the spatial fringe, we plot the
difference of the density distribution for the two interferometer states, which eliminates the offset in Eq. 7. (a) The width
of each point source, σps, is equal to the initial cloud size, σ0, which corresponds to a final cloud size σf =

√
2σ0. In this

case, the fringes from the individual point sources are out of phase with each other. When all the individual point sources
are added together, the frequency of the resulting spatial fringe is clearly different than the frequency of the individual
point sources. (b) σps = 3σ0, which corresponds to a final cloud size σf =

√
10σ0. In this case, the fringes from the

individual point sources are more in phase and the frequency shift is much smaller.

4. PSI FRINGES IN THE FOURIER DOMAIN

So far, we have seen that the structure of the initial distribution can bias the frequency of the detected spatial
fringes away from the prediction of the point-source limit. For a Gaussian initial density distribution, this bias
takes the form of a shift in the scale factor connecting the spatial fringe to the detected fringe frequency, but it is
not clear if this shift is somehow unique to the case of a Gaussian cloud. In this section, we will see that frequency
shifts are expected to occur with essentially any initial distribution. We will also see that it is challenging to
identify a general procedure that can be used to exactly determine the rotation rate from a measurement of
the spatial fringe pattern. This indicates that detailed knowledge of the initial distribution will be necessary to
realize an accurate PSI gyroscope. As a first step, we will take a closer look at the fringe patterns produced by
a single point source.

4.1 One Point Source

Consider the density distribution for a single point source (Eq. 7) again. For simplicity, we’ll work in one
dimension with perfect fringe contrast (c = 1) and set the total atom number N = 1. With these simplifications,
a point source centered at position xc expands into a density distribution given by

nps(x) =
1√

2πσps

exp

(
− (x− xc)2

2σ2
ps

)
(1 + cos(kΩ (x− xc) + φ))

2
. (13)

The Fourier transform of the point-source solution is given by

n̂ps(k) =
e−ikxc

√
8π

(
exp

(
−
k2σ2

ps

2

)
+
eiφ

2
exp

(
−

(k + kΩ)
2
σ2

ps

2

)
+
e−iφ

2
exp

(
−

(k − kΩ)
2
σ2

ps

2

))
. (14)

The Fourier transform of the expanded point source, n̂ps(k), has an intuitively appealing structure. It is a sum
of three Gaussian peaks centered at k = ±kΩ and k = 0. Each peak has a width σk = 1/σps, determined by the
spatial width of the expanded point source. This structure is illustrated in Fig. 2a.
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Figure 2. An illustration of the Fourier spectrum of the spatial fringes from a single point source in various cases. Panel
a) illustrates a case where the spatial fringes are well resolved. The three peak structure is intuitive, but it only occurs
if the spatial frequency kΩ is sufficiently large (kΩ � 1/σps). Panels b) and c) show that when kΩ ≈ 1/σps, the Fourier
spectrum can have only one peak or even peaks at frequencies other than kΩ, depending on the interferometer phase φ.
Panel d) illustrates the real-space density distribution for the three cases shown panels in a) to c).

It is important to consider how we can determine the rotation rate from a measurement of the density
distribution in practice. One approach is to estimate the dominant frequency in the Fourier spectrum of the
imaged density distribution and convert it to a rotation rate with Eq. 3. This approach will work well as long
as the point-source spatial fringe frequency satisfies kΩ � 1/σps. Physically, this corresponds to the case where
one can observe several periods of the fringe pattern across the expanded cloud. In this case, the dominant
frequency in the Fourier spectrum coincides with kΩ as we intuitively expect. However, when kΩ ∼ 1/σps, the
Fourier peaks are not resolved. In this case, the Fourier spectrum can depend strongly on the interferometer
phase φ and peaks can appear at frequencies other than kΩ,ps as shown in Fig. 2b,c. This makes it difficult to
determine the rotation rate from the Fourier spectrum for small Ω.

In the point-source limit, we can accurately estimate the rotation rate by combining several measurements of
the density distribution with different overall phases. Each point in the cloud can be described by a fringe of the
form n(x) = y0 + A cos(φ0 + ϕ(x)), where y0 is the fringe offset, A is the fringe amplitude, ϕ(x) is the spatial
phase shift, and φ0 is an overall phase-shift which can be controlled experimentally. The three fringe parameters,
A, y0, and ϕ(x), can be determined from three separate images of the density distribution that correspond to
different overall phases. A convenient choice is the set φ0 = 0, π

2 , and π. In this case, the spatial phase is given
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by

ϕ(r) = arctan

(
I0 − Iπ

2Iπ/2 − (I0 + Iπ)/2

)
, (15)

where Iφ refers to the image with the corresponding value of φ0. For a single point source, ϕ(x) = kΩx with kΩ

given by Eq. 3 in all cases. However, things get more complicated if we allow even two point sources.

4.2 Two Point Sources

Consider two point sources with the same number of atoms separated by a distance x0. Using the Fourier shift
theorem, F(n(x− x0)) = exp(−ikxo) n̂(k), the two point-source Fourier spectrum can be expressed as

n̂2ps(k) = (1 + exp(−ikx0)) n̂ps(k) . (16)

It is easy to find cases where the dominant frequency in the two point-source spectrum is not kΩ. For example,
if kΩx0 = π, then n̂2ps(kΩ) = 0. The Fourier spectrum for this case is shown as a blue curve in Fig. 3a. Note
that while we have complete destructive interference at kΩ, there are still two peaks in the Fourier spectrum on
either side of kΩ. If we were dealing with infinite sine waves, we would have perfect destructive interference and
these peaks would vanish. However, because we are dealing with truncated sine waves, some oscillations remain
at frequencies other than kΩ.

We can also find cases where the Fourier spectrum is nearly a three peak spectrum, like the single point-source
spectrum shown in Fig. 2a, except that the dominant frequency is not kΩ. For example, the purple curve in
Fig. 3a illustrates the case where kΩx0 = 3.5, and the dominant peak in the Fourier spectrum is shifted to a
slightly higher frequency. A close inspection will show that there are also two small additional peaks at lower
frequencies in this case.

The spatial phase for these two examples is plotted in Fig. 3c. In the case kΩx0 = π, the phase is a pure
gradient with slope kΩ except for a π phase jump at x = 0.5. The case with kΩx0 = 3.5 is more complicated.
Looking at Fig. 3c, we can see ϕ(x) is well approximated by a gradient with a slope slightly larger than kΩ.
However, if we subtract the expected phase gradient kΩx, we can see that ϕ(x) is actually nonlinear as shown in
Fig. 3d.

It is useful to examine how these results change as the point sources expand for a longer time before detection.
Formally, this corresponds to increasing σps. In the limit σps → ∞, we are working with the familiar case of
infinite sinusoids. By adding many infinite sinusoids together, we can change the amplitude and the overall phase
of the sinusoids, but the frequency of the sinusoids remains constant. Based on this limit, we can expect that as
σps increases, the dominant frequency in the Fourier spectrum and the spatially resolved phase should converge
to the values that we expect for a single point source, possibly with a reduced amplitude or an overall phase shift.
Figure 4 illustrates this principle for the case of k0x0 = 3.5. In the case of kΩx0 = π, the oscillations completely
vanish in the limit σps → ∞, which is just what we expect for two sinuosoids with an equal amplitude and a
π phase shift. In the case kΩx0 = 3.5, we see that the peak in the Fourier spectrum converges to kΩ, and the
difference between the spatially resolved phase and the expected phase gradient becomes a constant phase shift.

This two point-source model offers several new insights. First, we can see how two truncated sine waves with
central frequency k can interfere to produce oscillations with a different dominant frequency, k′. The reason
is that the truncated sinusoids each contain a range of frequencies and each frequency will have a different
phase shift (represented by the exp(−ikx0) factor in Eq. 16). Since each frequency component has a different
phase shift, it is possible to suppress the oscillation at k while enhancing the oscillation at k′. Second, detailed
knowledge of the source distribution is needed to accurately estimate Ω from a measurement of either the spatial
phase or the dominant spatial frequency. We can see this by considering the variety of structure in the spatial
phase and Fourier spectrum in just the examples considered so far. In the point-source limit, the spatial phase is
a pure gradient, and the magnitude of the gradient is linearly related to the rotation rate. With only two point
sources, both of these features disappear. If the spatial phase is approximated as a gradient, it will be important
to ensure that any frequency biases introduced by non-linearities in the spatial phase are accounted for and
acceptably small. One approach to minimizing these frequency biases is to ensure that the cloud expansion is
sufficiently large. In the long expansion limit (σps → ∞), we must recover the dominant frequency and spatial
phase gradient predicted by the point source model.
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Figure 3. Examples of interference effects with two point sources. The model parameters are σps = 3 and x0 = 1. (a)
Examples of the two point-source model where the dominant spatial frequency is not kΩ. If kΩx0 = π (blue), there is no
oscillation at kΩ at all. If kΩx0 = 3.5 (purple), the dominant frequency is shifted to a higher frequency. The dashed lines
indicate kΩ for these two cases. (b) Real-space density distribution for these two cases of the two point-source model. (c)
Spatial phase for these two cases of the two point-source model (solid lines) compared to the phase gradient we would
expect for a single point source (dashed lines). If kΩx0 = π, the spatial phase is a gradient with slope kΩ, except for a π
phase jump at x = 0.5. For kΩx0 = 3.5, the spatially resolved phase is well approximated by a gradient with a slightly
higher slope than kΩ, but a closer look reveals that the phase is no longer a pure gradient as shown in panel d). (d)
ϕ(x) − kΩx for the case kΩx0 = 3.5. By examining this difference, we can see that in this case the spatial phase is no
longer a pure gradient. This is also illustrated in Fig. 4.

4.3 Other Initial Density Distributions

Now we will revisit the model for an arbitrary initial density distribution. Since Eq. 8 is a convolution, its Fourier
transform has the form

n̂(k, t) =
√

2π n̂0(k) n̂ps(k, t) , (17)

where n̂0(k) is the Fourier transform of the initial distribution and n̂ps is the Fourier transform of the point-source
solution. Based on Eq. 17, we can expect that for any localized initial density distribution, there will be a decay
of the spatial fringe contrast at large rotation rates and a shift in the frequency of the spatial fringes compared
to the point-source limit. This is because any localized density distribution will have a Fourier transform that
rolls off at large k so we can think of n̂0(k) as slowly decaying envelope. The decreasing amplitude of n̂0(k) will
lead to a decay in the contrast, and the slope of the envelope will cause a shift in the central frequency of the
spatial fringes. The details of the contrast decay and the spatial fringe frequency shift will depend on the initial
density profile.

These general features can be illustrated by comparing two initial density profiles: a Gaussian and a box,
both with full width characterized by 2σ0. The initial density distributions and their Fourier transforms are
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Figure 4. Effect of increasing σps in the two point-source model with kΩ = 3.5 and x0 = 1. (a) An illustration of the
evolution of the spectrum as the point sources expand. The peak in the Fourier spectrum reduces in amplitude and
converges to the expected frequency. (b) Difference between the spatial phase and the point-source phase gradient. As
σps increases, this difference smooths out to a constant so that the spatial phase is equal to the point-source phase gradient
with an overall offset.

shown in Fig. 5a)-b). By looking at the Fourier transform of the initial density distributions, we can conclude
that the contrast will decay more slowly for the box-like density distribution than the Gaussian one. We can
also predict that the shifts in the central frequency of the spatial fringes will be smaller for the uniform box than
for the Gaussian because the roll-off is slower.

These conclusions can be verified by examining the spatial fringe patterns produced with these initial density
distributions. Two cases are illustrated in Fig. 5c)-d). In panel c), the cloud has roughly tripled in size (σps =
3σ0), and one can clearly see shifts in the dominant frequency for both initial cloud shapes. As predicted, the
initially Gaussian cloud leads to a larger frequency shift and a smaller fringe contrast. In panel d), σps = 15σ0

and the dominant frequency in the spectrum cannot be distinguished from kΩ by eye for either initial distribution.

5. PSI IN PHASE SPACE

In the previous two sections, we have modeled the PSI fringes produced by a cloud with a finite initial size by
breaking the initial distribution down into many point sources. With this approach, we’ve identified two main
effects of the initial distribution. First, the spatial fringe contrast will decrease as a function of Ω. Second,
the dominant frequency of the spatial fringes for a given Ω will be shifted from the frequency calculated in the
point-source limit (Eq. 3). So far, we have explained this frequency shift as a consequence of the interference
of truncated sinusoids. This picture has allowed us to build some useful mathematical formalism, but it is also
rather abstract. It is important to note that all of the models presented so far assume the velocity distribution
of the atoms can be characterized by a uniform temperature.

We can gain more insight into the origins of the frequency shift by tracking the distribution of the atoms in
both position and velocity. This distribution is often called the phase-space density ρ(x, v). In this section, we
will develop an alternative perspective on the PSI fringes by studying how the phase-space density evolves as
the cloud expands. The first step is to derive an evolution equation for ρ. When the cloud is freely expanding,
the velocity of each individual atom is constant. In a time dt, each atom moves a distance dx = vdt. Thus, we
have ρ (x+ vdt, v, t+ dt) = ρ (x, v, t). After expanding ρ to first order, we find that

∂ρ

∂t
= −v ∂ρ

∂x
, (18)

which has solutions of the form ρ(x, v, t) = f(x− vt). In particular, if ρ0(x, v) describes the phase-space density
at t = 0, then at future times

ρ(x, v, t) = ρ0(x− vt, v) . (19)
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Figure 5. A comparison of the spatial fringes produced with a box-shaped initial cloud and a Gaussian initial cloud with
parameters σps = 2 and kΩ = 0.8. Panel a) shows the initial density distributions. Both are normalized to have area 1.
The rectangle has a diameter of d = 2σ0. Panel b) shows the Fourier spectrum of these initial distributions. According
to Eq. 17, the Fourier spectrum of the initial density distribution can be thought of as a filter acting on the point source
spectrum. Panels c) and d) show examples of the Fourier spectrum of the expanded cloud for these two initial density
distributions. In panel c), σps = 3σ0 so the cloud has roughly tripled in size. For both initial cloud profiles, the dominant
frequency is clearly shifted from kΩ, but the frequency shift is smaller for the box-like distribution. In panel d), σps = 15σ0,
and the dominant frequency cannot be distinguished from kΩ by eye.

The phase space density for one of the interferometer states can be found by multiplying ρ by the probability
for an atom to occupy that state. This leads to

ρe(x, v, t) = ρ0(x− vt, v)
1 + c cos

(
2keffvΩT 2

R + φ0

)
2

, (20)

where ρe is the phase-space density for atoms in state |e〉. The density distribution at time t can be found by
integrating over all velocities

n(x, t) =

∫
dv ρ(x, v, t) . (21)

So far, this is more mathematical abstraction. The real power of this approach comes from visualizing the
geometry of phase space. This is typically done by plotting position on the horizontal axis and velocity on the
vertical axis. With this approach, the expansion of the cloud can be visualized by noting that atoms in the upper
half of the plane move to the right, and the atoms in the lower half of the plane move to the left. At t = 0, a
point source is represented by a vertical line. At future times, the point-source phase-space density remains a
straight line described by v = x/Tex, which corresponds to a perfect correlation between the atoms’ position and
their velocity. The cloud expansion causes the line to rotate in the x− v plane.
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When the cloud has a finite initial size, its initial phase-space density can be visualized as a blob that is
roughly symmetric around the origin. The cloud expansion stretches the initial phase-space blob horizontally.
Since phase-space volume is conserved, this stretching also causes the phase-space density to thin out vertically
so that it tends to become like a long thin cigar. This thinning out of the phase-space distribution corresponds to
the build up of the correlation between the atoms’ final position and their initial velocity. The expansion of the
cloud in phase-space is illustrated for both a point source and a cloud with a Gaussian initial density distribution
and a temperature T in Fig. 6. The lower half of the figure illustrates the distribution of interferometer phase
shifts and the detected fringes. In these phase-space pictures, the interferometer phase shift is constant along
horizontal lines because the phase shift depends only on the atoms’ velocity and not their position.

By comparing the phase-space distribution for the Gaussian cloud to the distribution for a point-source, we
can see two effects of a finite initial size. First, the Gaussian cloud has a range of velocities at every point.
As we saw in Sec. 3, this blurring of the correlation between the atoms’ position and their velocity tends to
reduce the contrast of the spatial fringes. Second, the expanded Gaussian cloud is tilted at a different angle
than the point-source phase-space distribution. This tilt indicates that the average velocity is lower for the
Gaussian initial cloud then we would expect based on the point-source limit. With the phase-space formalism,
it is straightforward to calculate the average velocity at a given position for the Gaussian cloud case. The result
is

vavg(x) =

(
1− σ2

0

σ2
f

)
vps, (22)

where vps = x/Tex is the velocity the atoms would have if the cloud were a point source. For the Gaussian cloud,
this reduction in the average velocity corresponds exactly to the shift in the spatial fringe frequency we first
calculated in Eq. 9. With this perspective, we can see that the spatial frequency shift is fundamentally due to
the imperfect correlation between the atoms’ initial velocity and their final position.

6. CONCLUSION

We have described three pictures that can be used to quantify the relationship between the initial atomic
distribution and the detected spatial fringe patterns. In the first picture, the final density distribution is calculated
as the convolution of the initial density distribution with the point-source solution. This space-domain approach
can yield exact solutions for a few initial distributions, and it is a useful tool for studying the implications of
particular density profiles, but it is difficult to draw general conclusions about the relationship between the initial
distribution and the fringe pattern with this approach. In the second picture, we consider the detected density
distribution in the Fourier domain. With this picture, the Fourier transform of the initial density distribution
can be thought of as a transfer function which filters the point-source solution. This picture revealed that
frequency shifts are expected for essentially any localized initial distribution. The case of a Gaussian initial
cloud is somewhat special because the frequency shift takes the form of a scale factor shift, and the spatial phase
is expected to be a pure gradient. This will not be the case for most initial distributions. In the third picture,
we consider the phase space density. By tracking the distribution of the atoms in both position and velocity,
we can see that the spatial fringe frequency shift comes about because the atom’s final position is an imperfect
proxy for their initial velocity.

In order to realize a high performance, PSI gyroscope, these finite size effects will have to be understood and
controlled with excellent precision and stability. One approach would be to use an optical trap to control the
initial atomic distribution.20 Despite the challenges posed by these finite size effects, we believe the advantages
offered by the PSI technique indicate that this route to a compact, cold-atom LPAI gyroscope is worth pursuing.
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