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Probing beyond the laser coherence time in optical clock comparisons
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We develop differential measurement protocols that circumvent the laser noise limit in the stability of optical
clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows
for probe times longer than the laser coherence time, avoids the Dick effect, and supports Heisenberg-limited
measurement precision. We present protocols for such frequency comparisons and develop numerical simulations
of the protocols with realistic noise sources. These methods provide a route to reduce frequency ratio measurement

durations by more than an order of magnitude.
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I. INTRODUCTION

Optical clock measurements are the most stable measure-
ments of any kind [1-3], driven largely by recent progress
in ultrastable lasers [4—-6]. Still, laser frequency noise limits
the stability of frequency comparisons well short of the
limits imposed by atomic coherence [7] and has so far
prevented the use of Heisenberg-limited measurements that
realize a quantum enhancement in measurement stability
[8,9]. High-stability optical clock comparisons are critical
for the future redefinition of the Systeme International (SI)
second [10,11] and provide a key measurement tool for
the parameters of fundamental physical theories [12—-14], as
well as relativistic geodesy with high spatial and temporal
resolution [15-17]. While there has been a lot of recent
progress both towards improving the frequency stability of
clock lasers and developing measurement protocols aimed at
circumventing clock laser noise using multiple atomic ensem-
bles [18-21], it is likely that for the foreseeable future optical
clock stability will continue to be limited by local oscillator
noise.

It is important to recognize, however, that none of the
clock applications mentioned above require good absolute
(i.e., single) clock stability. For two clocks operating at the
same frequency, it is possible to have better clock comparison
stability than absolute clock stability. For example, clock
comparison instability due to the Dick effect [22-24] can
be circumvented by synchronous interrogation of two atomic
ensembles with a single local oscillator (LO), which has
been demonstrated for microwave [25-27] as well as optical
clocks [28,29]. A related technique uses a single clock laser
to simultaneously probe two clock atoms and derives an error
signal from correlations in the transition probabilities between
the two [7,30], allowing the probe time to extend beyond
the laser coherence time. Here, we expand these ideas to the
more general case of frequency comparisons between clocks
operating at different frequencies. We take advantage of the
fact that the relative phase between two local oscillators, even
if they are separated by optical frequencies, can, in general,
be stabilized more precisely than the absolute phase [31,32].
We show that, by using phase-locked LOs and synchronous
probing of multiple clocks, optical clock comparisons can
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operate near the limits imposed by atomic coherence and
achieve Heisenberg-limited performance even in the presence
of laser noise.

In what follows, we consider the use of this technique in
several relevant regimes of optical frequency measurements,
distinguished primarily by the number of atoms in each of the
two clocks. We compare the achievable stability in these mea-
surements to what can be achieved in a typical measurement
protocol with independent LOs and asynchronous probing
but otherwise identical clock parameters. First, we introduce
the analytic (Sec. II) and numerical (Sec. III) calculations,
focusing on the case when the projection noise of clock 1 is
much lower than that of clock 2. This is relevant, for example,
in a frequency comparison between an single-ion clock and an
optical lattice clock. In Sec. IV, we extend this discussion to
the case where a small number of trapped ions are prepared in
an entangled state. In Sec. V we further extend our protocol
to the case when both clocks have many atoms, as would
be true, for example, in a measurement between two optical
lattice clocks. In all cases we find a significant improvement in
the measurement stability in the presence of realistic LO noise
compared to the usual measurement protocol with independent
clocks.

II. ANALYTIC ESTIMATES OF CLOCK STABILITY

The standard quantum limit (SQL), also known as the
projection noise limit, for an atomic clock using Ram-
sey spectroscopy on N uncorrelated atoms can be written
as

Avy _ !
< v ) ~ (Qmv)’NT7’ 1)

where v is the atomic transition frequency, 7' is the Ramsey
probe duration, and 7 is the total measurement duration [33].
Local oscillator noise constrains clock stability by limiting
T to some fraction n of the LO coherence time [34], which
is often much shorter than the atomic coherence time. If the
LO noise is predominantly flicker with a fractional frequency
instability o7, we optimize the stability of the atomic clock by
choosing T' = n/(voyr).

In a typical frequency ratio measurement two LOs are
stabilized independently to two atomic ensembles, and their
frequency ratio is measured using a frequency comb. The clock
stability is optimized on clock j by maximizing the probe
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FIG. 1. Optical clock comparison with phase-locked LOs. (a) A
cavity-stabilized laser simultaneously probes clocks at two different
frequencies, which are phase locked via a frequency comb and active
path-length stabilization. (b) Timing diagram of a near-synchronous
Ramsey experiment. The phase ¢}* measured at clock 1 is used to
correct the laser phase before the final pulse of the second clock. (c)
Transition probabilities as a function of ¢, for clock 1 (red) and clock
2 before and after applying the feed-forward phase (blue dotted and
blue solid lines, respectively). The size of the projection noise for the
two clocks is denoted by the thicker lines, and the distribution of laser
phase noise is depicted as the gray region.

duration T; while ensuring that the relative phase between the
LO and the atoms, given by

T; _
;= 271/0 [v; — fi®Oldt =27 (v; — )T, ()

does not exceed the range [—m /2,7 /2], where f, is the
mean frequency of LO j during the probe duration. The
measurement variance in the frequency ratio is just the sum of
uncorrelated contributions from the two clocks as described
by Eq. (1).

Now consider the case that clock 1 and clock 2 are probed
simultaneously with phase-locked LOs (see Fig. 1), so that
their frequencies fi(¢) and f>(¢) are related exactly by a known
ratio B = f>(t)/f1(t), and the noise in the phase measurements
is correlated. The phase evolution of clock 2 during the probe
can be written as

v _
¢ = v—1¢1 + 27T fie, 3)

where € = v,/v; — B is the current error in the frequency ratio
measurement. The first term in Eq. (3) correlates the phase
measurements on the two clocks and will dominate ¢, when
the static ratio v, /v; is sufficiently well known. In the presence
of this correlated noise, information from the measurement
of clocks 1 and 2 can be combined to relax the restriction
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FIG. 2. Noise reduction for a frequency ratio measurement of
a many-atom clock with a single-atom clock. Precise laser phase
measurements on clock 1 allow the unambiguous determination
of the clock 2 phase for probe durations longer than the laser
coherence limit, giving a reduction of measurement noise compared
to the projection noise limit for asynchronous clock comparisons
with otherwise identical noise. Simulation results (points) reproduce
the analytical estimates (dash-dotted lines) up to the point that the
projection noise for the two clocks is comparable. Inset: Minimum
relative variance Rgmin plotted vs Nj, showing that higher atom
numbers support greater suppression of the noise.

|¢;| < m/2, such that one or both clocks can be operated
beyond their laser coherence time.

We illustrate this idea by considering a comparison between
a clock with N; atoms at frequency v; and a single-atom
clock (N, =1) at frequency v, > v;. This describes, for
example, the comparison between an optical lattice clock
and a single-ion clock. For a typical (asynchronous) clock
comparison, with Ny > v,/v; and no dead time in either
clock, the measurement noise is dominated by the projec-
tion noise of clock 2. This is limited by the condition
T, = n/(orv2), such that (A,B/,B)2 ~ O’L/(47T2771J2'L'). With
simultaneous probes and phase-locked LOs, the measured
value of ¢; can be used to unwrap the measured value of
¢» via Eq. (3) and extend the clock 2 probe duration to
T, =T, = n/(oLvy), with a corresponding reduction in the
measurement variance Rg = (AB'/AB)? =~ v;/vy. One way
to do this is illustrated in Fig. 1, where the atom-laser phase
difference ¢$™ is applied as a feed-forward correction to the
laser before the measurement on clock 2. This measurement
of ¢ — (v2/v1)¢$™ is then a differential phase measurement
between the two clocks, which is kept in the invertible range
2 — (v2/v)PP™| < /2.

The expected reduction of projection noise in this protocol
for different atom numbers N; has been plotted as the
dash-dotted lines in Fig. 2, where we have included the
projection noise contributions from both clocks. In addition
to the reduction of projection noise plotted, Dick effect noise
is absent for the differential measurement, even in the presence
of dead time. As shown, the available stability improvement
using this protocol scales with the frequency ratio, but it
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must be supported by a sufficiently precise measurement of
@1, requiring +/N; > v,/v;. Numerical simulation results, as
described below, are plotted along with the analytical estimates
in Fig 2.

III. NUMERICAL MODEL

The arguments outlined above give a conceptual picture of
the differential clock comparison protocols that we propose.
The purpose of these protocols is to make optical frequency
comparisons immune to the dominant sources of laser noise
that limit the comparison stability. To include, in detail,
laser noise with realistic noise spectra we develop here a
Monte Carlo simulation of the protocols that makes use
of experimentally demonstrated values for all noise con-
tributions, taken from the literature.! In what follows we
describe the basic numerical model and its application to
the lattice-ion measurement described in Sec. II. In Secs.
IV and V it is adapted to other frequency ratio measurement
scenarios.

The laser frequency noise in these simulations is designed
to reproduce noise spectra representative of state-of-the-art
clock lasers [4,36]. Similarly, differential noise between the
two probe lasers is modeled based on published results for
active path-length stabilization [31] and coherence transfer
through a femtosecond frequency comb [32]. During each
clock cycle, both correlated noise and differential noise in
the laser frequencies are generated by filtering pseudorandom
white noise in the Fourier domain [37]. The Dick effect in these
simulations arises naturally when we introduce dead time to
the clock. Specific values for the parameters of the model are
provided in the Appendix (Table I).

The laser frequency for each clock, labeled j, can be written
as

fi@®)=v;+n;@)+c;@), 4

where v; is the static atomic resonance frequency, n;(t) is the
laser noise term, and c;(#) is the frequency correction, which
is updated at the end of each clock cycle. Each clock cycle,
labeled below with &, consists of the clock probe duration
followed by dead time required for steps in the experimental
sequence such as detection, loading, laser cooling, and state
preparation. We have assumed for all of our simulations that
the durations of the Ramsey /2 pulses are short compared to
the Ramsey probe duration 7. The time-averaged frequency
of the clock j laser during cycle k, given by fjx =v; +
ijx + Cj,is used to model the atom-laser phase evolution via
Eq. (2).

'Our simulations do not include magnetic field noise, which we
expect can be shielded to a negligible level for the clock transitions
considered. Alternatively, for some elements, bosonic isotopes with
zero first-order magnetic field sensitivity might be used. We also
do not consider averaging of multiple transition frequencies with
different magnetic quantum numbers, as is often done to eliminate
first-order sensitivity to magnetic fields [35]. To the extent that the
atoms are well shielded from magnetic-field fluctuations and the
overall clock duty cycle is not affected by switching between magnetic
sublevels, this should not affect our results.
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Typically, the phase of the second Ramsey pulse is shifted
by —m /2 with respect to the first. If we include a finite excited-
state lifetime 7, the atomic transition probability is given by

R(¢) = (1 + e /®Vsing)/2, 5)
and its inverse is given by
R™'(p) = arcsin [¢"/*V(2p — 1], (6)
with R~!(p) € [—m/2,7m/2].> We estimate the phase of clock
i . . M«
J during probe k using the measurement result p; = =,

where N; is the total number of atoms and M ;, randomly
selected from a binomial distribution, is the number of atoms
measured to be in spin up. In some cases, an additional
measurement phase 6, ; is applied and must be accounted for
in the phase inversion. In this case,

¢ =R (pju) — O - )

For Fig. 2, for example, we have 6,; = —ﬂk¢ff,t( from the

feed-forward correction to the laser. By properly accounting
for the measurement phases, the phases ¢{* and ¢5% estimate
the real atom-laser phase evolution given in Eq. (2).

In our protocols, we take advantage of the fact that much of
the noise in these estimates is common mode, and we correct
the ratio using only the differential component of the atomic
phase measurements. For the kth probe, we set §; to be equal
to our current best knowledge of the actual atomic transition
frequency ratio, which is updated according to

Gg

27TT1’)] (d)g,glt( - IBk¢T,§/{<) ’ (8)

Bri+1 = Bx —
where Gy is the gain of the ratio servo. The scaling factor
P; should be close to the frequency of clock 1, but it only
modifies the gain of the ratio servo, so its accuracy is not
critical. Corrections are applied to the laser system itself via

Clik+1 = CLx + 27r_1T TS}( , 9
where G is the gain of the clock 1 frequency servo. Here,
we have used the fact that the projection noise of clock 1
is much better than that of clock 2, so that only the phase
measurements on clock 1 are relevant, but in principle, both
can be used together to feed back on the laser. In order to
achieve enough feedback gain to overcome the long-time laser
frequency drift, we often must include a second integrator for
the laser frequency corrections in the Monte Carlo model. This
is implemented by replacing Eq. (9) above with

Gi ..

ek = mﬁ'i ; (10a)
a1 =l tenk, (10b)
CLitl =Lk + e + Gicyy s (10c)

%In the Monte Carlo model, due to projection noise, it is possible
for |e”/@9(2p — 1)| > 1, in which case R~!(p) is taken to saturate
the bounds given.
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where G is the gain of the second integrator. A second
integrator is not needed for the frequency ratio feedback for
the noise we have considered.

IV. MEASUREMENTS WITH ENTANGLED
STATES OF ATOMS

The simulation results in Fig. 2 extend to frequency ratios
well beyond those available with the current generation of
optical clocks. However, a clock based on N atoms prepared in
a maximally entangled Greenberger-Horne-Zeilinger (GHZ)
state operates effectively at a frequency N times higher.
These states have been produced in the laboratory for small
numbers of trapped ions up to N = 14 [38]. Previously,
consideration of experimental noise sources including local
oscillator noise has made the application of these quantum
states for spectroscopy unrealistic for small numbers of
atoms [9]. Other quantum states and spectroscopy protocols
have been proposed that retain some quantum advantage
even in the presence of noise [34,39,40], but none reaches
the Heisenberg limit with realistic local oscillator noise.
Here, we show that frequency ratio measurements between
two clocks with phase-locked local oscillators can take full
advantage of the quantum enhancement at the Heisenberg
limit.

Consider the case where we replace the single-atom
clock in Fig. 2 with a clock based on N atoms pre-
pared in a GHZ state. Such a clock has been shown,
in principle, to provide Heisenberg-limited measurement
variance [8],

Av 2_ 1 1
(T) T QmvEN2TT (1D

For independent operation of a single clock, LO noise limits the
probe time to T = n/(Nvoy), returning the measurement to
the same projection noise limit as that for N unentangled atoms
[Eq. (1)] [9]. This has previously been confirmed numerically
with a realistic laser noise spectrum [34]. Note, however, that
in our clock comparison protocol, the duration of the probe is
limited not by laser noise but by the projection noise of clock
1, which may be orders of magnitude smaller. Since a clock
operating with atoms in a GHZ state evolves at an effective
frequency Nv, the performance of the comparison using
our protocol can be determined from Fig. 2 by substituting
V) — Ng V).

We illustrate this with a detailed Monte Carlo simulation
of a frequency comparison between a ytterbium optical lattice
clock and an aluminum ion clock with five ions in a GHZ
state. For this simulation, in addition to the laser phase
noise, we include differential phase noise due to path-length
fluctuations between the two clocks, and we take into account
the finite lifetime of the AlT 3 Po state, dead time in both
clocks, and the delay between the final m/2 pulses in the
near-synchronous Ramsey experiments. We assume that the
Al" ions have been prepared perfectly in a GHZ state at
the beginning of the Ramsey interval, and after the second
Ramsey pulse, the parity of the atomic state is measured with
unit fidelity [8]. In this case, during the Ramsey interval the
atom state evolves as [ (1)) = (] |)®N2 4 ¢~1:(0| 4)8N2) /2,
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FIG. 3. Simulated stability of a comparison between a ytterbium
optical lattice clock and an aluminum ion clock operating with five
ions in a GHZ state. The fractional clock 1 frequency stability
(blue points) and the fractional ratio measurement stability (black
points) are shown, along with the common-mode, unstabilized, laser
frequency noise (red points) and the differential laser frequency
noise (green points). Clock 1 reaches the Dick effect stability limit
(blue dashed line), while the ratio stability exceeds that, reaching the
calculated projection noise limit for the aluminum ion clock (black
dashed line).

where
Py(1) = / N227[vy — fo(t)]dt' = Nog(1). (12)
0

The increase by a factor of N, in phase sensitivity must be
reflected in the gain of the frequency ratio feedback such that
Eq. (8) becomes

G est
Brs1 = Bi — m‘j . (Niz" - ﬂkasf?z) : (13)

Since the GHZ state is also more sensitive to sponta-
neous decay, the lifetime of these states is modeled using
7; — 7;/N;. The simulated ratio comparison stability shown
in Fig. 3 is found to be consistent with the Heisenberg limit
for the Al clock [Eq. (11)], with a small offset due to
the finite lifetime of the * Py state (r = 20.6s [41]). This
indicates that the ratio stability is reaching the limit imposed
by the atomic coherence of AlT. The averaging period of
35 min to reach a statistical measurement uncertainty of
1 x 107'8 is reduced by a factor of 25 from an asynchronous
clock comparison with otherwise identical laser noise
parameters.

V. MAXIMUM-LIKELIHOOD PROTOCOL

So far, our discussion has focused on the use of one clock
with low projection noise to reduce the projection noise of a
second clock. However, in a comparison between two clocks
with low projection noise (e.g., two optical lattice clocks), it
is possible to combine information from the two simultaneous
phase measurements to extend the probe time of both. Again,
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FIG. 4. Illustration of the maximum-likelihood phase estimation
algorithm. (a) The transition probabilities of clock 1 (red line) and
clock 2 (blue line) are plotted as a function of the phase of clock 1 for
zero frequency ratio error. Example measurement outcomes for the
two clocks are indicated by the horizontal dashed lines, with thick line
segments indicating possible phase-inversion outcomes. The prior
distribution of laser phase values (gray) and clock 1 phase values
(red) and clock 2 phase values (blue) based on the measurements are
shown as shaded areas, with the product of the three shaded green.
(b) Simulated frequency ratio measurement stability of a strontium
optical lattice clock with a ytterbium optical lattice clock using the
maximum-likelihood protocol. The projection noise limit is shown
by dashed lines, and the simulation results are shown by solid lines.
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we consider a simultaneous Ramsey experiment on two clocks
operating at different frequencies, but in this case the Ramsey
probe duration T extends beyond the limits imposed by
LO noise for both clocks, and the phase estimate must be
modified to accommodate clock phases outside the range
[—m/2,7/2].

For a given set of measurement outcomes {pj,p>}
of the two clocks, there are multiple sets { ‘ff;,¢e“
of the two clock phases indexed by n and m, where

;S,[n =mm 4+ (—1)"R"(p) — 0;. Here, we have dropped the
measurement index k for convenience. Note that the additional
measurement phase for the second Ramsey m/2 pulse on
clock 1 is always 6; = 0, whereas, for clock 2, it is set to
a random value 6, for each probe in order to help avoid
ambiguous phase inversion. We calculate the statistical weight
W,..m of each possible phase pair via a maximum-likelihood
analysis such that

+00
Wom = N / A1 P Pom(@DPLG),  (14)
where -

1 i
PLp) = ——e ¥ 15
(1) ¢Lm€ (15)

is the calibrated prior probability distribution for laser phase
noise with standard deviation ¢; and

N; _Lrdy. —pest 2A7.
Pj,’l(d’l) =4/ ﬁe 3l0; =95, (O N; (16)

is the probability distribution centered at qb“t based on
the measurement result for clock j. Here, J\/ is a con-
stant independent of ¢{% and ¢S5 that can be de-
termined by the normalization equahty Donm Wam = 1.
These probability distributions are illustrated in Fig. 4(a). The

integral can be performed analytically, giving

Wi.m = Mexp |:

where M is a normalization constant. Here, for the purposes
of determining the proper feedback to both the laser and the
frequency ratio, the atomic projection noise has been modeled
as a Gaussian distribution of variance (A¢;)* = 1/N, in phase
for both clock 1 and clock 2. This model is supported by
the simulation, which uses them for calculating frequency
corrections in the presence of realistic noise from atomic state
projection and laser phase deviations.

The feedback corrections of the clock laser and the ratio are
applied for all possible phase-inversion outcomes, weighted by
their normalized relative probability:

Clit1 —c1k+—2 5 (18)

and

Bt = Pr — —Bet).  (19)

Gﬁ est
27TT1~)1 ;n: Wn (

+ (N} + N2v2)¢L]

2[\11

1)l(ﬁZ m(k)] ¢L:| (17)

(

The summations in the above equations should, in principle,
run over the range of all integers but in practice can be truncated
because W, , is negligibly small for large enough |n| or
|m|. The ranges n € {—ceil(m -3 ceil(6;rﬂ — %)} and
m e {—ceil(%L2 — 1) ce11(6¢' Lo ;)}, where ceil(+)
denotes the celhng function which rounds up to the next higher
integer, cover the actual atomic phases with 60 confidence and
are used in the Monte Carlo model.

The probe duration is limited by phase estimation errors
caused by the projection noise of the two clocks. Figure 4(b)
shows the asymptotic fractional ratio measurement stability
for a comparison of a strontium optical lattice clock with
a ytterbium optical lattice clock for different numbers of
atoms. With N; = N, = 10 atoms, the projection noise phase
uncertainty is too large to allow unique inversion for phases
outside the range [—m/2,7/2], and the probe duration is
limited to near the laser coherence limit at 1 s. As the number
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of atoms is increased, degenerate inversion outcomes are
less likely, and the probe time can be extended to longer
than the laser coherence time, up to 30 s, for example, for
N; = N, = 10*. The same clocks subject to identical laser
noise but run asynchronously with a standard feedback routine
give an asymptotic (t = 1 s) ratio stability of 4 x 10717, with
the probe times limited to 1 and 1.2 s for clocks 1 and
2, respectively. Thus, in this case, our protocol provides a
reduction in the averaging time by a factor of 2000, with
a factor of 100 improvement coming from the elimination
of Dick effect noise and the remainder due to extending the
Ramsey probe time.

VI. CONCLUSION

We have described protocols for frequency ratio measure-
ments of optical clocks that use phase-locked LOs to reduce the
projection noise by extending the probe time beyond the laser
coherence time and eliminate noise due to the Dick effect. We
emphasize here that most of these improvements can be real-
ized with laser systems at demonstrated levels of performance,
which addresses an immediate issue for the present generation
of optical clocks. For example, the suppression of differential
laser phase noise via active stabilization of optical paths (e.g.,
fiber noise cancellation) as well as laser stabilization via
femtosecond combs is a standard technique in many labs. One
experimental challenge in implementing such a measurement
is to integrate path-length stabilization seamlessly across the
entire path from one atomic ensemble to the other. In the case
of Fig. 3, comparing an aluminum ion clock to a Yb lattice
clock, relative phase stability must be maintained between the
two experiments, spanning several wavelengths that connect
the 578-nm Yb clock laser at the atomic ensemble to the
267-nm Al clock laser where it probes the trapped ions.
While all components of this phase-stabilized frequency chain
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have been demonstrated, the full implementation will require
careful consideration of the sources of differential noise in
the system. Similarly, while it remains challenging to produce
GHZ states of trapped ions, a number of techniques have been
demonstrated, with fidelities above 90% for up to six ions in
a linear chain [38]. In Fig. 4 we have ignored differential
laser phase noise to explore the limits of phase inversion
using a maximum-likelihood analysis. In order to realize a
comparison with an Allan deviation below 1 x 10~!7 at an
averaging time of 1 s, differential noise in the femtosecond
comb frequency transfer as well as path-length noise would
have to be reduced below this level. On the other hand, as
we envision moving optical clocks out of the laboratory for
applications such as relativistic geodesy, the ideas presented
here significantly relax the requirements on laser coherence,
enabling measurement stability at the current state of the art
with laser stability orders of magnitude worse, which might
be attained in a robust package.
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APPENDIX: PARAMETERS FOR NUMERICAL MODEL

Here, we tabulate (Table 1) parameters used for the Monte
Carlo simulations presented in Figs. 3 and 4 in the main text.
Where appropriate, experimental references for the sources of
these parameters are given.

TABLE 1. Parameters for numerical simulations.

Lattice-ion protocol (Fig. 3)

Maximum-likelihood protocol (Fig. 4)

Ny 5000 10to 10°

V1 518.296 THz 429.228 THz
N, 5 10to 10°

vy 1121.015 THz 518.296 THz
T 550 ms 1sto 100 s
Dead time 250 ms 250 ms
Clock 1 measurement

and feed-forward time 10 ms 0

Clock 1 excited-

state lifetime 22.7 s [42] 00

Clock 2 excited-

state lifetime 20.6 s [41] 00
Common-mode

laser frequency noise oy (r) = (2 x 10710 [(23%) + 1+ (5011 [4] oy (r) = (1 x 1071O)[(218) + 1+ (5-)71"* [36]
Differential "

laser frequency noise oy(t) = (1.4 x 10_]9)[(%) + 1] [31,32] 0

Number of time steps

simulated 4 x10° 10° (per point)
G, 1 0.1

G 0.1 0.01

Gp 0.03 0.05
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