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Fast transport of mixed-species ion chains within a Paul trap
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We investigate the dynamics of mixed-species ion crystals during transport between spatially distinct locations
in a linear Paul trap in the diabatic regime. In a general mixed-species crystal, all degrees of freedom along the
direction of transport are excited by an accelerating well, so unlike the case of same-species ions, where only the
center-of-mass mode is excited, several degrees of freedom have to be simultaneously controlled by the transport
protocol. We design protocols that lead to low final excitations in the diabatic regime using invariant-based inverse
engineering for two different-species ions and also show how to extend this approach to longer mixed-species
ion strings. Fast transport of mixed-species ion strings can significantly reduce the operation time in certain
architectures for scalable quantum-information processing with trapped ions.

DOI: 10.1103/PhysRevA.90.053408 PACS number(s): 37.10.Ty, 03.67.Lx

I. INTRODUCTION

One possible route to scale quantum-information process-
ing based on trapped ions [1] incorporates the transport of
small strings of ions between storing and processing sites
[2,3]. In a recent experimental demonstration of this approach
[4], transport and subsequent sympathetic recooling of ion
chains to near the ground state of motion have been among
the most time consuming building blocks. Excitations might
be avoided by adiabatically moving the ions, at the price of
large transport duration and higher susceptibility to ion heating
from ambient noise fields [5,6]. In principle, it is permissible
to excite the motion of the ions during transport, as long
as all excitations are removed at the end of the transport
[7]. As we show below, this general approach may lead to
transport durations that are much shorter than what would be
possible in an adiabatic approach. Previous work concentrated
on transport of one particle, cold neutral atom clouds, two
ions, or ion clouds [6–20]. Here, we study the transport of
mixed-species ion chains with initial and final excitations of
the motion close to the ground state. The use of two different
ion species allows for sympathetic cooling of the ion motion of
one species without disturbing the quantum information held
by the other species [4]. Another building block utilized in
[4,21] required transport of a four-ion crystal, where two ions
carry the qubit information and the other two are used to cool
the coupled motion of the crystal. We first study the transport of
two different-mass ions and design protocols to transport them
over a distance of 370 μm in durations significantly smaller
than 100 μs leaving them in a low-energy state of motion.
Our approach employs invariant-based inverse engineering
of shortcuts to adiabaticity [12,18]. We then extend these
techniques to longer ion chains, and specifically a four-ion
chain. We limit the study of two- and four-ion chains since they
are enough to perform one- and two-qubit gates and therefore
to build a universal set of gates while avoiding the problems
inherent in longer chains.

II. INVARIANT-BASED INVERSE ENGINEERING

The invariant-based inverse-engineering method has proved
useful for single-particle transport [12,13,15], and for several

equal-mass ions [18]. For one particle of mass m in one
dimension, the Hamiltonians that belong to the “Lewis-Leach
family” [22] may be written in terms of a potential U that
moves along α(t), and a force F as

H = p2

2m
− F (t)q + 1

2
mω2(t)q2 + 1

ρ2(t)
U

[
q − α(t)

ρ(t)

]
,

(1)

where p is the momentum, ρ is a scaling length parameter, and
ω an angular frequency. This H has the following dynamical
invariant:

I = 1

2
m[ρ(p − mα̇) − mρ̇(q − α)]2

+ 1

2
mω2

0

(
q − α

ρ

)2

+ U

(
q − α

ρ

)
, (2)

provided the functions ρ, α, F , and ω satisfy the auxiliary
equations

ρ̈ + ω2(t)ρ = ω2
0

ρ3
, (3)

α̈ + ω2(t)α = F (t)

m
. (4)

For the simple case in which the potential is purely harmonic
with constant angular frequency ω(t) = ω0 we have U = 0,
F (t) = mω2

0Q0(t), where Q0(t) is the trap trajectory; α(t)
becomes a classical trajectory satisfying Newton’s equation
for the moving trap, and the scaling length parameter is ρ =
1; therefore, the auxiliary equation (3) is trivially satisfied.
The inverse-engineering strategy imposes boundary conditions
for α at the boundary times tb = {0,tf }, where the transport
starts at t = 0 and ends at t = tf . With α(0) = α̇(tb) = 0 and
α(tf ) = d, the static asymptotic Hamiltonians [H (t � 0) and
H (t � tf )] and the invariant commute at the initial and final
times. In this manner, the eigenstates of the initial trap are
transported (mapped) via the dynamical modes of the invariant
up to the eigenstates of the final trap. In addition, α̈(tb) = 0 is
usually imposed to provide a continuous trap trajectory at the
boundary times. Then α(t) is interpolated and, by substituting
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α(t) into Eq. (4), we may solve for the trap trajectory Q0(t).
In general the evolution is diabatic, with transient excitations
but no final excitation by construction.

III. DYNAMICAL NORMAL-MODE COORDINATES

Our goal is to transport a chain of ions with different
mass between two sites separated by a distance d in a time
tf without final motional excitation. We assume tight radial
confinement so that the transport dynamics of each ion is
effectively one-dimensional, and also that the external trap
potential is harmonic. We label the ions as i = 1,2, . . . ,N .
They have position coordinates q1,q2, . . . ,qN and masses
m1,m2, . . . ,mN . With the position of the minimum of the
external potential Q0 = Q0(t), the Hamiltonian is

H =
N∑

i=1

p2
i

2mi

+
N∑

i=1

1

2
u0(qi − Q0)2 +

N−1∑
i=1

N∑
j=i+1

Cc

qi − qj

,

(5)

where u0 is the spring constant of the external trap, and
Cc = e2

4πε0
, with ε0 the vacuum permittivity. For later use

let us also define the potential V ≡ H − ∑N
i=1

p2
i

2mi
. We

assume that all ions have the same charge e, and that their
locations obey q1 > q2 > · · · > qN , with negligible overlap of
probability densities due to the strong Coulomb repulsion. For
equal masses [18], the dynamics for the center of mass and
relative motion are uncoupled. The motion of the trap only
affects the center of mass, whose dynamics is governed by a
Lewis-Leach Hamiltonian (1), so that transport without final
excitation may be designed as described for a single particle.
However, for ions with different masses, center of mass and
relative motions are coupled. To cope with this coupling we
apply a dynamical normal-mode approach that approximately
separates the Hamiltonian into a sum of independent harmonic
oscillators. The equilibrium positions {q(0)

i } are found by
solving the system {∂V/∂qi = 0} for all ions. For N = 2 the
equilibrium positions are

q
(0)
1 = Q0 + x0/2, q

(0)
2 = Q0 − x0/2, (6)

where

x0 = 2

(
Cc

4u0

)1/3

. (7)

Diagonalizing Vij = 1√
mimj

∂2V
∂qi∂qj

|{qi ,qj }={q(0)
i ,q

(0)
j }, we get the

eigenvalues

λ± = ω2
1

[
1 + 1

μ
±

√
1 − 1

μ
+ 1

μ2

]
, (8)

where ω1 = (u0/m1)1/2, and μ = m2/m1, with μ � 1. These
eigenvalues are related to the normal-mode angular frequen-
cies by

	± =
√

λ±. (9)

The eigenvectors are v± = (a±
b±), where

a+ =
⎛
⎝ 1

1 + (
1 − 1

μ
−

√
1 − 1

μ
+ 1

μ2

)2
μ

⎞
⎠

1/2

,

b+ =
(

1 − 1

μ
−

√
1 − 1

μ
+ 1

μ2

)
√

μa+,

(10)

a− =
⎛
⎝ 1

1 + (
1 − 1

μ
+

√
1 − 1

μ
+ 1

μ2

)2
μ

⎞
⎠

1/2

,

b− =
(

1 − 1

μ
+

√
1 − 1

μ
+ 1

μ2

)
√

μa−.

Thus, the mass-weighted, dynamical, normal-mode coordi-
nates are

q+ = a+
√

m1

(
q1 − Q0 − x0

2

)
+ b+

√
μm1

(
q2 − Q0 + x0

2

)
,

q− = a−
√

m1

(
q1 − Q0 − x0

2

)
+ b−

√
μm1

(
q2 − Q0 + x0

2

)
,

(11)

and the inverse transformations are

q1 = 1√
m1

(b−q+ − b+q−) + Q0 + x0

2
,

q2 = 1√
μm1

(−a−q+ + a+q−) + Q0 − x0

2
. (12)

Unlike the usual treatments for static traps [23], we have to
consider explicitly the time dependence of the parameter Q0(t)
when writing down the Hamiltonian in the new coordinates.
We apply the change-of-variables unitary operator

U =
∫

dq+dq−dq1dq2|q+,q−〉〈q+,q−|q1,q2〉〈q1,q2|, (13)

where the transformation matrix is

〈q+,q−|q1,q2〉 = δ[q1 − q1(q+,q−)]δ[q2 − q2(q+,q−)].

The Hamiltonian in the new frame is H ′ = UHU † −
i�U (∂tU

†), and the wave function |ψ ′〉 = U |ψ〉. For the part
UHU † we substitute the definitions (12) in the Hamiltonian
(5) for N = 2. For the noninertial term, −i�U (∂tU

†), we apply
the chain rule in Eqs. (12) and (11). Keeping only terms up to
the harmonic approximation,

UHU † = p2
+
2

+ 1

2
	2

+q2
+ + p2

−
2

+ 1

2
	2

−q2
−,

−i�U (∂tU
†) = −P0+p+ − P0−p−, (14)

where p± are momenta conjugate to q±, and

P0± = Q̇0(
√

m1a± + √
μm1b±). (15)

The linear-in-momentum terms are cumbersome for a numer-
ical or analytical treatment, so we apply a further transfor-
mation to the frame moving with the center of the trap and
remove them formally [24]. The wave function is transformed
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as |ψ ′′〉 = U |ψ ′〉, whereas the corresponding Hamiltonian
takes the form H ′′ = UH ′U† + i�(∂tU)U†. We choose U =
e−i(P0+q++P0−q−)/� to shift the momenta, so that each mode
Hamiltonian in

H ′′ = p2
+
2

+ 1

2
	2

+

(
q+ + Ṗ0+

	2+

)2

+ p2
−
2

+ 1

2
	2

−

(
q− + Ṗ0−

	2−

)2

(16)

belongs to the Lewis-Leach family.

IV. INVERSE ENGINEERING FOR TWO MODES

The invariants corresponding to the Hamiltonians in
Eq. (16) are known and the trajectory can be designed to avoid
excitations. We also impose Q̇0(tb)(0) = 0 so that |ψ ′′(0)〉 =
|ψ ′(0)〉 and |ψ ′′(tf )〉 = |ψ ′(tf )〉. Primed and double-primed
wave functions are related to each other by the unitary
transformation in such a way that their initial and final states
coincide. The auxiliary equations analogous to Eq. (4) for the
modes in Eq. (16) are

α̈± + 	2
±α± = −Ṗ0±, (17)

where the α± are the centers of invariant-mode wave functions
in the doubly -primed space [12]. Now, we can design these α±
functions to get unexcited modes after the transport, and from
them inverse engineer Ṗ0±. We set the boundary conditions

α±(tb) = α̇±(tb) = α̈±(tb) = 0. (18)

Substituting these conditions into Eq. (17), we find Q̈0(tb) = 0
for both modes. To satisfy all the conditions in Eq. (17),
we try a polynomial ansatz Q0(t ; {an}) = ∑9

n=0 ant
n. We fix

a0−5 as functions of a6−9 so that Q0(0) = 0, Q0(tf ) = d,
and Q̇0(tb) = Q̈0(tb) = 0. We then select the solutions α± in
Eq. (17) that satisfy α±(tb) = 0, which implies α̈±(tb) = 0,
since Ṗ0,±(tb) = 0 in Eq. (17). The four parameters a6−9 are
calculated numerically for each tf by solving the system of four
equations α̇±(tb) = 0. Figure 1 shows that, for the approximate
Hamiltonian with two uncoupled modes, the final excitation
vanishes (see the black symbols, horizontal line). However,
the higher-order terms in the actual Hamiltonian modify and
couple the modes, exciting the system at short transport times
(green dots in Fig. 1).

The approach we have just described requires a numerical
evaluation of the coefficients to find Q0(t ; {an(tf )}) for each tf .
Therefore, we considered a different approximation that yields
an analytical solution Q0(t) with Q0(0) = 0, Q0(tf ) = d, and
Q̇0(tb) = Q̈0(tb) = 0. The resulting Q0(t) leads to a similar
level of final excitation when inserted into the full Hamiltonian
as the more accurate approach. We first rewrite the Hamiltonian
(5) in the center-of mass, Q = (m1/M)q1 + (m2/M)q2, and
relative, r = q1 − q2, coordinates, with M = m1 + m2,

H = P 2

2M
+ 1

2
Mω2(Q − Q0)2 + p2

2mr

+1

2
mrω

2
r r

2 + Cc

r
+ m2 − m1

2
ω2(Q − Q0)r, (19)

FIG. 1. (Color online) Motional excitation quanta vs transport
duration tf for the two ions, transported over d = 370 μm using the
exact Hamiltonian. The external potential minimum moves according
to the nonic polynomial Q0(t ; {an}) set to satisfy Eq. (17) (green
dots); the polynomial ansatz trajectory Q0(t ; {bn}), Eq. (20), (solid
blue line); and the cosine ansatz trajectory Q0(t ; {cn}), Eq. (21),
(dashed red line). The excitation for the nonic polynomial trajectory
Q0(t ; {an}) using the uncoupled Hamiltonian (16) is also shown (black
symbols). The parameters used are ω1/(2π ) = 2 MHz, masses of
9Be+ for the first ion and 24Mg+ for the second. Both ions are initially
in the motional ground state.

where mr = m1m2/M , ω2 = 2u0/M , ω2
r = (m2

1 +
m2

2)/(2m1m2)ω2, and P is the total momentum. Neglecting
the coupling term in Eq. (19), we can construct trap
trajectories that leave the center of mass unexcited. Rewriting
α = Qc, we first design Qc and then obtain Q0 from
Eq. (4). The four boundary conditions Q̇0(tb) = Q̈0(tb) = 0
are consistent with Q(3)

c (tb) = Q(4)
c (tb) = 0 along with the

conditions Qc(0) = 0, Qc(tf ) = d, and Q̇c(tb) = Q̈c(tb) = 0.
We assume a polynomial ansatz Qc(t) = d

∑9
n=0 bns

n that
satisfies all conditions and obtain Q0(t) from Eq. (4),

Q0(t) = d

t2
f ω2

9∑
n=0

bnn(n − 1)sn−2 + d

9∑
n=0

bns
n, (20)

where s = t/tf and {b0, . . . ,b9} = {0,0,0,0,0,126,−420,

540,−315,70} for all values of tf . An alternative ansatz with
a sum of Fourier cosines also leads to analytical expressions:

Qc(t) = d

256

{
c0 +

3∑
n=1

cn cos

[
(2n − 1)πt

tf

]}
,

Q0(t) = dπ2

256ω2t2
f

3∑
i=1

−cn(2n − 1)2 cos

[
(2n − 1)πt

tf

]

+ d

256

{
c0 +

3∑
n=1

cn cos

[
(2n − 1)πt

tf

]}
, (21)

where {c0, . . . ,c3} = {128,−150,25,−3}. The resulting trap
trajectories (20), (21) are simple and explicit and lead to
small excitations in a similar range of parameters as the
approach based on normal modes. Some example trajectories
for different transport durations are shown in Fig. 2.
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FIG. 2. (Color online) Trap trajectories given by Q0(t ; {an})
(dashed black line), Eq. (20) (solid blue line), and Eq. (21) (dashed red
line) for different final times: (a) tf = 2π/ω1, (b) tf = 10 × 2π/ω1;
ω1/(2π ) = 2 MHz, masses of 9Be+ for the first ion and 24Mg+ for
the second, d = 370 μm.

V. FOUR AND N IONS

We extend now the normal-mode approach to N -ion chains,
with dynamical normal mode coordinates

qν =
N∑

j=1

aνj

√
mj

(
qj − δ

(0)
j − Q0

)
, (22)

and corresponding momenta pν , where the equilibrium points
with respect to the trap center, δ

(0)
j , are in general found

numerically. Generalizing Eq. (16) to N ions we find the
uncoupled normal-mode Hamiltonian

H ′′ =
N∑

ν=1

p2
ν

2
+

N∑
ν=1

1

2
	2

ν

(
qν + Ṗ0ν

	2
ν

)2

, (23)

where P0ν = Q̇0
∑

j aνjm
1/2
j , and 	ν is the angular frequency

of the νth normal mode. The auxiliary equations that have to
be satisfied for all ν simultaneously are

α̈ν + 	2
ναν = −Ṗ0ν . (24)

Further imposing, in analogy to Eq. (17), αν(tb) = α̇ν(tb) =
α̈ν(tb) = 0 implies Q̇0(tb) = Q̈0(tb) = 0, exactly as for N = 2.
Thus, we may construct approximate trap trajectories that are
in fact identical in form to the ones for N = 2 in Eqs. (20) or
(21), but with ω = √

Nu0/M . We find that the final excitations
for a four-ion Be-Mg-Mg-Be chain (see solid blue line in
Fig. 3) are very similar to those for Be-Mg shown in Fig. 1.

FIG. 3. (Color online) Final excitation energy for a Be-Mg-Mg-
Be chain transported over d = 370 μm using the external potential
minimum trajectory in Eq. (16) with ω = √

4u0/M (solid blue line)
and with ω = 0.983

√
4u0/M (dashed red line). The calculation is

based on classical equations of motion with the ions at rest in their
equilibrium positions at t = 0.

We can improve the results even further by treating ω as a
variational free parameter. The dashed red line in Fig. 3 shows
the final excitation for ω = 0.983

√
4u0/M . The calculations

for the four-ion chain are performed with classical trajectories
for the ions, initially at rest in their equilibrium positions.
The corresponding quantum calculation is very demanding,
but it is not expected to deviate significantly from the classical
result [18] in the nearly harmonic regime considered here.
For transporting longer ion chains longer final times will
be needed, as more nonharmonic terms and couplings terms
would be neglected in the normal-mode approximation.

VI. DISCUSSION

The approximate approaches we have implemented to
transport ions of different mass without final excitation may
be compared with other approaches: the “compensating force
approach” [12,14], the transport based on a linear-in-time
displacement of the trap, or a more refined error-function
trajectory [25].

Let us first discuss the compensating force approach
[12,14]. The idea behind it is that the acceleration of the
trap induces in the trap frame a noninertial Hamiltonian term
MQQ̈0(t), M being the total mass of the ion chain and Q the
center-of-mass coordinate, that may be exactly compensated
by applying a time-dependent term Hcom = −MQQ̈0(t). This
has been discussed for N equal masses [18,26,27] but the
result holds for an arbitrary collection of masses in an arbitrary
external potential under rigid transport by noticing that the total
potential must be of the form V (Q − Q0; {rj }), where {rj }
represents a set of relative coordinates. The decomposition of
Hcom into terms for each ion, Hcom = −∑

i miqiQ̈0, implies
that ions of different mass should be subjected to different
forces. However, the available technology in linear Paul traps
provides forces proportional to the charge (equal for all equally
charged ions), so the compensation is a formal result without
a feasible experimental counterpart.

As for the linear displacement of the trap, Q0(t) = td/tf
in [0,t], and at rest otherwise, we have performed numerical
calculations of the final excitation energy for different values
of tf and the two ions considered in Sec. III. The excitation
oscillates rapidly [see Fig. 4(a)], and the upper envelope
reaches 0.1 vibrational quanta of ion 1 for times as large
as 9.5 ms. The first excitation minimum with significant
excitation reduction is around 99 μs [see Fig. 4(a)]. Excitation
minima occur for each mode ν as zeros of the Fourier transform

FIG. 4. (Color online) Excitation energy vs final time for (a) a
linear-in-time transport of two ions, Q0(t) = td/tf , and (b) the trap
trajectory designed in Eq. (20) (solid blue line) and an “error function”
trap trajectory, Eq. (25) (dashed black line). We find optimal results
for σ = 1 × 10−6 s. Other parameters are as in Fig. 1.
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of Q̇0 at 	ν [9,16,25]. For a linear-in-time trap displacement
this occurs every mode period. At 99 μs is a time when the
transform of both modes vanishes. This excitation minimum,
however, is very unstable with respect to small timing errors. In
any case it is about twenty times larger than the times achieved
in Sec. III.

Finally, we compare the performance of our protocol in
Eq. (20) with an error-function trajectory [25]. Imposing a
Gaussian form on the velocity Q̇0 gives

Q0(t) = −d

2

erf
(−2t+tf

2
√

2σ

)
erf

( tf

2
√

2σ

) + d

2
, (25)

where σ is the width of the Gaussian. In Fig. 4(b) we optimize
σ and compare the excitation for this trajectory with the one in
Eq. (20). The error-function trajectory is clearly a good design,
but still, the protocol developed in this paper outperforms it by
a factor of 2.

In summary, we have described protocols for diabatic
transport of mixed-species chains of ions that displace the
minimum of a harmonic external potential along prescribed

trajectories. Our protocols should allow for diabatic transport
over distances and durations that are relevant for quantum-
information processing with minimal final excitation of the ion
crystals. In past experiments on scalable quantum-information
processing, adiabatic transport of mixed-species ion chains
has been one of the most time-consuming processes [4];
therefore, the approaches described might lead to considerable
practical improvements. Our work may be extended in several
directions, e.g., to include noise, parameter drifts [6,20], and
anharmonicities [8,13,18], or to optimize the trap trajectories
according to different criteria [13].
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