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A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of
tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized
coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an
entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions
or Rydberg atoms.
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The robust generation of entangled states is a cornerstone
in quantum technological applications. Multipartite entan-
glement, in fact, plays a crucial role in various tasks of
quantum information and communication [1–4], and can
enable one to achieve unprecedented levels of precision in
sensor systems [5] and metrology [6]. High-fidelity gen-
eration of multipartite entangled states has been demon-
strated with protocols based on deterministic operations
[7]. These protocols realize dynamics which couple an
initial state to the target state with a sequence of unitary
operations. Their performance becomes more challenging
as the number of componentsN increases. In fact, this often
implies a larger number of high-fidelity operations, which
makes the protocol more sensitive to parameter fluctuations
and to disorder, and requires longer time scales, over which
the detrimental effects of intrinsic noise and decoherence
become more relevant. This situation has motivated the
search for alternative strategies.
One promising approach is based on engineering noise

[8] and dissipation [9–12] in order to drive a many-body
system towards the desired nonclassical target state.
Protocols based on this idea are often denoted by quantum
reservoir engineering (QRE), and their hallmark is the
robustness against parameter fluctuations, which results
from the nonunitary nature of the processes that pump the
system into the target state. When based on dissipation,
they can be considered a many-body generalization of
optical pumping, originally proposed by Kastler for creat-
ing spin polarized atomic ensembles by means of sponta-
neous decay [13]. As in optical pumping, the target state is
stable, effectively decoupled from the mechanism which
pumps out all other states involved in the dynamics, but fed
by the dissipative processes [14,15]. Under these premises
the population of the target state will increase asymptoti-
cally towards unity.
The formal procedure for implementing QRE is usually

based on constructing a Liouvillian L for the density
matrix ρ of the system, for which the target state ϱT is

the unique stationary state, i.e., LϱT ¼ 0 [12,16]. When
ϱT ¼ jψTihψT j, then the condition can often be cast in
terms of rate equations, which couple the population of the
target state, PT ¼ TrfϱTρðtÞg, with the populations Pn of
the states jψni, forming together with jψTi a complete and
orthogonal basis in the state space. Denoting by Γn→m > 0
the rate coefficients for the transitions jψni → jψmi, the
equation for PT reads

_PT ¼ −ΓTPT þ
X

n≠T
Γn→TPn; ð1Þ

and the loss rate of state jψni is Γn ¼
P

mΓn→m.
The objective is to achieve PT → 1 as t → ∞. From
considerations based on detailed balance, it can be
verified that a necessary condition for the efficient
production of ϱT is Γn ≫ ΓT for n ≠ T. It is sufficient
when minn≠T;mðΓn→mÞ ≫ ΓT , which can be reached by
exploiting symmetries of the dynamics [17]. This idea is at
the basis of several proposals for dissipatively pumping
spin or harmonic-oscillator systems into bipartite and into
specific multipartite entangled states; examples are found
in Refs. [14,15,18–26]. Experimental demonstrations
include realizations with trapped ions [27–29], atomic
ensembles [30], and superconducting qubits [31]. The
identification of the procedure, however, becomes more
complex for arbitrary multipartite entangled target states.
This calls for the development of viable protocols for
the dissipative preparation of a generic entangled state
of a many-body system.
Here we discuss such a procedure. Our idea is to tailor the

excitation spectrum of the many-body system, such that the
target state is an eigenstate and all transitions between pairs
of states can ideally be individually addressed. Engineered
dissipation allows one to perform irreversible population
transfer, in order to construct dynamics as in Eq. (1).
Transitions from the target state are far off resonance from
all pumping processes, so that the outcoupling rate ΓT is
sufficiently small. By repeatedly applying a sequence of
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pulses that empty all other states, the system is pumped into
the target state, with an asymptotic fidelity that depends
on the ability to tailor the transition rates. This procedure
generalizes a method for quantum-state preparation of
molecules [32] to many-body systems. It provides a com-
plementary approach to the one proposed in Ref. [33]. In
addition, in order to counteract noise and decoherence,
which become more and more important as the number of
components increases, measurements followed by feedback
operations are built into the pulse sequence which restore
the effectiveness of the procedure for long evolution times.
We illustrate the procedure by discussing the preparation

of a spin chain in the entangled antiferromagnetic state,

jψTi ¼ ðj↑↓↑↓…i þ j↓↑↓↑…iÞ=
ffiffiffi
2

p
; ð2Þ

where j↑i and j↓i are the two energy eigenstates of a
(pseudo) spin 1=2, separated by ℏω0. For N ¼ 2 ions, jψTi
is a triplet (Dicke) state, which can be perfectly decoupled
from collective spin excitations via quantum interference
processes [34]. One can thus construct dynamics for which
jψTi (or the corresponding singlet state) is stationary;
examples are in Refs. [21,23,35,36]. For N > 2, however,
this procedure cannot be directly applied, since jψTi is no
longer a Dicke state.
In order to realize nonunitary dynamics of which jψTi is

the stationary state, one could construct a harmonic
Hamiltonian of which jψTi is the ground state. Dissipative
preparation into the target state would then proceed by means
of a generalization of sideband cooling [37]. Implementing
these dynamics with spins would in general require one to
work with an equidistant energy spectrum whose excitations
are collective spin states, thus in general Dicke states. It has
the drawback that, as N grows, the number of undesired
“dark states” that are decoupled via quantum interference
increases and that disorder and inhomogeneities may render
the spectrum anharmonic.
Instead, we choose a Hamiltonian whose spectrum is

purposely tailored to be anharmonic and of which jψTi
is an eigenstate, but not necessarily the ground state.
The interaction Hamiltonian

HðNÞ
int ¼

XN−1

j¼1

Jjσ
z
jσ

z
jþ1 ð3Þ

serves this purpose, with Jj > 0 and σzj the Pauli operator for
spin j. Hamiltonian (3) identifies the states ψn (including
jψTi) that enter the rate equations and whose coefficients
Γn→m shall be engineered. The transitions jψni → jψmi are
driven resonantly by laser pulses, whereby the detunings Δ
from the spin transitions vary from pulse to pulse. The
corresponding spin Hamiltonian in the rotating frame reads

H0ðΔÞ ¼ −ℏΔ
X

j

σzj=2; ð4Þ

of which jψTi is an eigenstate for N even [38]. The resonant
transitions for N ¼ 4 are shown in Fig. 1.
The desired asymmetry in the coefficients Γn→m and

Γm→n is achieved by means of engineered dissipation,
along the lines of Ref. [21]. It is realized by first entangling
a single spin with an ancilla, in our example a harmonic
oscillator, followed by dissipation on the ancilla [see
Figs. 1(a) and 1(c)]. Denoting by j0i and j1i the oscillator’s
ground and first excited state, irreversible population
transfer from jψni to jψmi is performed by first coherently
driving the transition jψnij0i → jψmij1i, and then damping
the mode by an external reservoir that induces the tran-
sition jψmij1i → jψmij0i.
These dynamics can be realized for chains of Rydberg

atoms [39] or of trapped ions [40–42]. The ancilla may be a
lossy cavity mode coupling with the spins [21], or a
collective vibrational mode of an ion chain, sympathetically
cooled to the ground state as in Ref. [28]. For ions,
Hamiltonian (3) is implemented by tailoring the coupling
between the internal and the external degrees of freedom of
the chain [40]. The coupling coefficients Jj depend on the
interparticle distances. Figure 1(a) shows the specific case
of N ¼ 4 ions in a Paul trap. Moreover, coupling to next
neighbors must be included in Eq. (3). This modifies the
spectrum and thus the choice of the pulse frequencies, but is
not relevant for the purpose of the discussion below.
The coherent laser-driven dynamics which entangle

spins and ancilla are described by the Hamiltonian

HðΔÞ ¼ HðNÞ
int þH0ðΔÞ þ ℏ

X

j

gjσxjðaþ a†Þ þ ℏωta†a:

ð5Þ

Here, gj is the Rabi frequency, whose value is sufficiently
small in order to drive only resonant transitions, and a is
the annihilation operator of the harmonic oscillator at
frequency ωt. The oscillator is cooled at rate γ to a
steady-state excitation number n̄ ≪ 1; the nonunitary cool-
ing dynamics are described by the superoperator [43]

Lγρ ¼ γðn̄þ 1ÞD½a�ρþ γn̄D½a†�ρ; ð6Þ

where D½X� is a functional of the operator X such that
D½X�ρ ¼ XρX† − ðX†Xρþ ρX†XÞ=2, and ρ is the density
matrix of spins and ancilla. Pumping into the target state is
realized by sequences of pulses, whose components cor-
respond to the map T ðΔ; tÞ ¼ eLγtγeLcohðΔÞt, which alter-
nates Liouvillian LcohðΔÞρ ¼ ½HðΔÞ; ρ�=ðiℏÞ for time t
with engineered dissipation as in Eq. (6) for time tγ . The
protocol iterates the concatenated map

T ¼ T ðΔj; tjÞT ðΔj−1; tj−1Þ…T ðΔ1; t1Þ; ð7Þ

where the sequence, the detunings, and the durations tj are
optimized to drive the system into the desired asymptotic

PRL 115, 200502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 NOVEMBER 2015

200502-2



state with close-to-unit fidelity. Over the time scale of a
sequence, the dynamics can be cast in terms of a rate
equation as in Eq. (1) and the choice of the detunings results
in tailoring the effective coefficients. The idea might
be regarded as a dissipative extension of the Law-Eberly
protocol [44], originally developed for arbitrary quantum
state preparation by means of coherent dynamics, and based
on identifying the individual steps which deterministically
connect an initial and a final state. Indeed, with our
procedure, we achieve ϱT ¼ liml→∞TranfT lρð0Þg for a
certain set of initial states ρð0Þ, where Tran denotes the trace
over the ancilla’s degrees of freedom. Nevertheless, we
find that the pumping efficiency considerably drops if the
initial state is an equal statistical mixture and/or if the
Rabi frequencies gj vary significantly. In fact, in these
cases pumping happens into both jψTi and the degenerate
antisymmetric superposition ðj↑↓↑↓…i − j↓↑↓↑…iÞ= ffiffiffi

2
p

.
One remedy could be to alternate Hamiltonian HðΔÞ with
another pumping Hamiltonian, assuming one can engineer
the spatial gradient of the pulse phase, but this approach is
not robust against decoherence and fluctuations in the values
of the couplings gj.
Our solution that enables pumping from arbitrary initial

states into the target state is to include in the sequence a
parity-correcting operation based on the protocol of
Refs. [45,46]. It performs a parity measurement, described
by the operator

Π ¼ σx1…σxN; ð8Þ

followed by a conditional operation on the system which
corrects the parity in the case that it is not the desired one.
The corresponding dynamics can be realized by means of
an ancilla, whose relevant states are denoted by jAi and jBi:
given the state of the system is jψi and the ancilla is
prepared in jAi, first the unitary map

jψijAi → ð1þ ΠÞffiffiffi
2

p jψijAi þ ð1 − ΠÞffiffiffi
2

p jψijBi

is applied; this map is the identity if the state possesses even
parity, while if the state has no definite parity it becomes
entangled with the ancilla. If in a subsequent measurement
the ancilla is found in jBi, conditional dynamics are
performed that invert the parity of the system’s state; in
our simulations, a σz operation is applied to one of the
spins. Another option could be to reinitialize the spins to
j↑…↑i. Denoting by P the corresponding map, the
complete sequence of pulses is T 0 ¼ PT . This protocol
is efficient for arbitrary initial states and has constant depth
[47]. It is conceptually an extension of methods for cooling
the motion of ions based on measurements [48–50] (see
also Ref. [26] for an application to QRE). Its realization
requires that the coupling between spins and ancilla is
homogeneous to a good degree.

(a)

(b)

(c) (d)

FIG. 1 (color online). Procedure for preparing the spins of a
four-ion chain in the entangled state ðj↑↓↑↓i þ j↓↑↓↑iÞ= ffiffiffi

2
p

via
nonunitary dynamics. (a) The spins interact with one another (Jj)
and with an ancilla, here a harmonic oscillator of frequency
ωt. (b) The energy spectrum of the spin chain is tailored by
controlling the couplings Jj (here, J2 > J1 and only the jn ¼ 0i
manifold of the ancilla is shown). Arrows indicate the pulses
which resonantly pump the spins into the target state; each arrow
represents two operations, as illustrated in (c): one coherent pulse
(solid) that entangles spins and ancilla, and one dissipative pulse
(dashed) that makes the transfer from state to state irreversible.
In (d) the pulse frequencies corresponding to the arrows in (b) are
displayed, using the same color code. Δ denotes the detuning
from ω0. The dashed arrows in (b) indicate transitions driven by
the “blue” and “green” pulses that resonantly pump the spins into
a state that is not the target. This state is depopulated by the
“gray” pulse.
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We now come to the specific features of an implemen-
tation based on Hamiltonian (3), for the example of the
target state of Eq. (2) with N ¼ 2, 4 ions in a linear Paul
trap. We first identify the frequencies, i.e., the detunings Δj
of the pulses, for all transitions which couple the target state
to any other state. For 2 ions, these are Δ1 ¼ −ωt þ 2J1
and Δ2 ¼ −Δ1, which pump j↑↑ij0i → jψTij1i and
j↓↓ij0i → jψTij1i, respectively; afterwards the ancilla is
damped, making the transfer irreversible. The Rabi
frequencies of the pulses are set to spectrally resolve the
individual resonances; residual off-resonant coupling,
which would depopulate the target state, is minimized
by choosing pulse durations for which this coupling
produces an integer number of Rabi oscillations. For this
choice, we pump N ¼ 2 ions into the target state with
fidelity F > 1–10−6 under ideal conditions, i.e., for n̄ ¼ 0
and in the absence of other sources of noise. ForN ¼ 4 ions
we identify a sequence of 5 pulses, shown in Fig. 1(b) and
detailed in the caption of Fig. 2, which leads to an
asymptotic fidelity F > 0.9995 under ideal conditions.
The infidelity as a function of time is displayed in Fig. 2.
The procedure is robust against parameter fluctuations: the
infidelity doubles when the pulse areas change by about
30%. In comparison, preparing the 2-ion target state
through unitary gates [46] with equally fluctuating pulses
decreases the fidelity down to F ∼ 0.82.
We now analyze how the fidelity is affected by the ability

to engineer the desired dissipation. We first consider
varying the temperature of the reservoir and thus n̄.
Figure 3(a) displays the asymptotic fidelity for different
values of n̄ and for N ¼ 2, 4 ions, and shows that the
control on engineered dissipation becomes more stringent

as the number of spins is increased. Figure 3(b) shows
the fidelity in the presence of noise and decoherence, which
we consider here to be due to spin flips at rate γflip and
dephasing with γdeph. The corresponding Liouvillians are
γflip

P
jðD½σj� þD½σ†j �Þ and γdeph

P
jD½σzj�, and are added

to LcohðΔÞ. The parity operation P counteracts the
decoherence and keeps the fidelity above 0.9 (0.98 for
2 ions) for values of γflip, γdeph for which in absence ofP we
observe a drop to 0.5. The curves of Fig. 3 show that also
for QRE the effect of noise becomes more detrimental as N
grows, which is expected as the protocol becomes slower
because of the spectral crowding around the target state.
This could be counteracted by increasing the energy
splittings in the spectrum, here given by ωt and Jj. It is
important to note that the strength of the coupling,
determining the speed of each pulse, scales differently
with N depending on the physical system. For instance,
when the dissipative channel is the collective motion of an
ion chain, the coupling between spins and motion decreases
as N grows, due to the increasing inertia of the crystal.

FIG. 2 (color online). Residual infidelity for preparing N ¼ 4
spins in the target state of Eq. (2) for n̄ ¼ 0 and in the absence of
decoherence. The sequence T 0 contains pulses at the detunings
Δ1 ¼ −ωt þ 2ðJ1 þ J2Þ [red arrows in Fig. 1(b)], Δ2 ¼ −ωt þ
2J1 (blue), Δ3 ¼ −ωt − 2ðJ1 − J2Þ (gray), Δ4 ¼ −Δ1 (green),
and Δ5 ¼ −Δ2 (purple). The other parameters are J1 ¼
J3 ¼ 0.05ωt, J2 ¼

ffiffiffi
2

p
J1, gj ¼ g ¼ 5 × 10−3ωt, γtγ ¼ 20. The

pulse durations are such that J1tj > 1 (J1tj ∼ 10), the pulse areas
are optimized to minimize the loss rate ΓT [51].

(a)

(b)

FIG. 3 (color online). Fidelity for preparing N ¼ 2 (blue
squares) and N ¼ 4 (red circles) spins in the target state as a
function of (a) n̄ (in the absence of decoherence of the internal
state) and (b) the rate of incoherent processes 2γflip in units of g
(for n̄ ¼ 0 and assuming γflip ¼ γdeph). The fidelity corresponds
to the asymptotic value of a sequence of pulses with the map T 0.
The fidelity is independent of the initial state, provided the parity
correction is included in the sequence. The parameters are given
in the caption of Fig. 2.
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If instead it is a cavity mode, the coupling can increase withffiffiffiffi
N

p
owing to superradiant emission.

In conclusion, we have described a procedure for
preparing a spin chain in an entangled state. The procotol
uses engineered dissipation, which makes it robust against
moderate fluctuations in the parameters, and includes a
parity-error correction procedure, which makes it robust
against detrimental noise and decoherence. The basic
requirement is that the target state is spectrally resolved,
which is achieved by constructing a suitable spin-spin
interaction. Efficient preparation of N-spin entangled states
is warranted as long as the required spectral resolution is
larger than the typical rate of noise and decoherence. For
arbitrary initial states, the protocol time scale is expected to
increase exponentially with N, as it requires the capability
to sweep over all state space. It can be notably reduced
if the initial state is, e.g., a polarized chain such as
j↑;↑;…;↑i, which is typically easy to produce with optical
pumping. Its duration can be further shortened by optimiz-
ing the time duration of the coherent pulses, e.g., by using
time-dependent values of Δ and g in Eq. (5) identified by
means of optimal-control theory [52].

G. M. and J. E. acknowledge the hospitality of the Ion
Storage Group at NIST (Boulder) and support by the
German DFG and BMBF (Q.Com). Y. L., D. L., and
D.W. acknowledge support by IARPA, ONR, and the
NIST Quantum Information Program.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[2] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59,
1829 (1999).

[3] R. Jozsa and N. Linden, Proc. R. Soc. London Sect. A 459,
2011 (2003).

[4] D. Bruss and C. Macchiavello, Phys. Rev. A 83, 052313
(2011).

[5] M. I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999); L. A.
Lugiato, A. Gatti, and E. Brambilla, J. Opt. B 4, S176
(2002).

[6] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.
96, 010401(2006); Nat. Photonics 5, 222 (2011).

[7] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C.
Monroe, and J. L. O’Brien, Nature (London) 464, 45
(2010).

[8] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman,
Nat. Phys. 6, 806 (2010).

[9] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77,
4728 (1996).

[10] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler,
and P. Zoller, Nat. Phys. 4, 878 (2008).

[11] F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633
(2009).

[12] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli,
and P. Zoller, Phys. Rev. A 78, 042307 (2008).

[13] A. Kastler, J. Phys. Radium 11, 255 (1950).

[14] L. Aolita, F. de Melo, and L. Davidovich, Rep. Prog. Phys.
78, 042001 (2015).

[15] J. Cho, S. Bose, and M. S. Kim, Phys. Rev. Lett. 106,
020504 (2011).

[16] F. Ticozzi and L. Viola, Quantum Inf. Comput. 14, 0265
(2014).

[17] D. A. Lidar, D. Bacon, and K. B. Whaley, Phys. Rev. Lett.
82, 4556 (1999).

[18] S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, Phys.
Rev. Lett. 98, 240401 (2007).

[19] A. R. R. Carvalho, P. Milman, R. L. de Matos Filho, and
L. Davidovich, Phys. Rev. Lett. 86, 4988 (2001).

[20] M. B. Plenio and S. F. Huelga, Phys. Rev. Lett. 88, 197901
(2002).

[21] M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Phys. Rev.
Lett. 106, 090502 (2011).

[22] D. D. Bhaktavatsala Rao and K. Mølmer, Phys. Rev. Lett.
111, 033606 (2013).

[23] A.W. Carr and M. Saffman, Phys. Rev. Lett. 111, 033607
(2013).

[24] C. Cormick, A. Bermudez, S. F Huelga, and M. B Plenio,
New J. Phys. 15, 073027 (2013).

[25] D. D. Bhaktavatsala Rao and K. Mølmer, Phys. Rev. A 90,
062319 (2014).

[26] C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J.
Hope, Phys. Rev. Lett. 113, 040501 (2014).

[27] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
Nature (London) 470, 486 (2011).

[28] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler,
A. S. Sørensen, D. Leibfried, and D. J. Wineland, Nature
(London) 504, 415 (2013).

[29] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Leupold,
F. Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P.
Home, Science 347, 53 (2015).

[30] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M.
Petersen, J. I. Cirac, and E. S. Polzik, Phys. Rev. Lett. 107,
080503 (2011).

[31] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla,
U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Nature (London) 504, 419 (2013).

[32] G. Morigi, P. W. H. Pinkse, M. Kowalewski, and R. de
Vivie-Riedle, Phys. Rev. Lett. 99, 073001 (2007).

[33] F. Reiter, D. Reeb, and A. S. Sørensen, arXiv:1501.06611.
[34] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[35] A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Phys.

Rev. Lett. 85, 1762 (2000).
[36] A. Bermudez, T. Schaetz, and M. B. Plenio, Phys. Rev. Lett.

110, 110502 (2013).
[37] D. J. Wineland and Wayne M. Itano, Phys. Rev. A 20, 1521

(1979).
[38] State jψTi is eigenstate of H0ðΔÞ only for N even. For N

odd, these conditions can be reached by tailoring the
transition frequency of the individual spins, for example,
by means of a spatial gradient of an external magnetic field
as in F. Mintert and C. Wunderlich, Phys. Rev. Lett. 87,
257904 (2001).

[39] N. Malossi, M. M. Valado, S. Scotto, P. Huillery, P. Pillet, D.
Ciampini, E. Arimondo, and O. Morsch, Phys. Rev. Lett.
113, 023006 (2014).

PRL 115, 200502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 NOVEMBER 2015

200502-5

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1103/PhysRevA.83.052313
http://dx.doi.org/10.1103/PhysRevA.83.052313
http://dx.doi.org/10.1103/RevModPhys.71.1539
http://dx.doi.org/10.1088/1464-4266/4/3/372
http://dx.doi.org/10.1088/1464-4266/4/3/372
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nphys1754
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1051/jphysrad:01950001106025500
http://dx.doi.org/10.1088/0034-4885/78/4/042001
http://dx.doi.org/10.1088/0034-4885/78/4/042001
http://dx.doi.org/10.1103/PhysRevLett.106.020504
http://dx.doi.org/10.1103/PhysRevLett.106.020504
http://dx.doi.org/10.1103/PhysRevLett.82.4556
http://dx.doi.org/10.1103/PhysRevLett.82.4556
http://dx.doi.org/10.1103/PhysRevLett.98.240401
http://dx.doi.org/10.1103/PhysRevLett.98.240401
http://dx.doi.org/10.1103/PhysRevLett.86.4988
http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.88.197901
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.111.033606
http://dx.doi.org/10.1103/PhysRevLett.111.033606
http://dx.doi.org/10.1103/PhysRevLett.111.033607
http://dx.doi.org/10.1103/PhysRevLett.111.033607
http://dx.doi.org/10.1088/1367-2630/15/7/073027
http://dx.doi.org/10.1103/PhysRevA.90.062319
http://dx.doi.org/10.1103/PhysRevA.90.062319
http://dx.doi.org/10.1103/PhysRevLett.113.040501
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1126/science.1261033
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1038/nature12802
http://dx.doi.org/10.1103/PhysRevLett.99.073001
http://arXiv.org/abs/1501.06611
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.110.110502
http://dx.doi.org/10.1103/PhysRevLett.110.110502
http://dx.doi.org/10.1103/PhysRevA.20.1521
http://dx.doi.org/10.1103/PhysRevA.20.1521
http://dx.doi.org/10.1103/PhysRevLett.87.257904
http://dx.doi.org/10.1103/PhysRevLett.87.257904
http://dx.doi.org/10.1103/PhysRevLett.113.023006
http://dx.doi.org/10.1103/PhysRevLett.113.023006


[40] X.-L. Deng, D. Porras, and J. I. Cirac, Phys. Rev. A 72,
063407 (2005).

[41] A. Friedenauer, H. Schmitz, J. Glueckert, D. Porras, and T.
Schaetz, Nat. Phys. 4, 757 (2008).

[42] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H.
Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang,
J. K. Freericks, and C.Monroe, Nat. Commun. 2, 377 (2011).

[43] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-
Verlag, Berlin, 2004).

[44] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 76, 1055 (1996).
[45] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J.

Chiaverini, W.M. Itano, J. D. Jost, C. Langer, and D. J.
Wineland, Science 304, 1476 (2004).

[46] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).

[47] D. Leibfried (unpublished).
[48] J. Eschner, B. Appasamy, and P. E. Toschek, Phys. Rev.

Lett. 74, 2435 (1995).
[49] B. Appasamy, Y. Stalgies, and P. E. Toschek, Phys. Rev.

Lett. 80, 2805 (1998).
[50] D. Leibfried, New J. Phys. 14, 023029 (2012).
[51] M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther,

Phys. Rev. Lett. 82, 3795 (1999).
[52] D. M. Reich and C. P. Koch, New J. Phys. 15, 125028

(2013).

PRL 115, 200502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 NOVEMBER 2015

200502-6

http://dx.doi.org/10.1103/PhysRevA.72.063407
http://dx.doi.org/10.1103/PhysRevA.72.063407
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/ncomms1374
http://dx.doi.org/10.1103/PhysRevLett.76.1055
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.74.2435
http://dx.doi.org/10.1103/PhysRevLett.74.2435
http://dx.doi.org/10.1103/PhysRevLett.80.2805
http://dx.doi.org/10.1103/PhysRevLett.80.2805
http://dx.doi.org/10.1088/1367-2630/14/2/023029
http://dx.doi.org/10.1103/PhysRevLett.82.3795
http://dx.doi.org/10.1088/1367-2630/15/12/125028
http://dx.doi.org/10.1088/1367-2630/15/12/125028

