
Atom number in magneto-optic traps with
millimeter scale laser beams
Gregory W. Hoth, Elizabeth A. Donley,* and John Kitching

National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
*Corresponding author: elizabeth.donley@nist.gov

Received December 26, 2012; revised January 14, 2013; accepted January 14, 2013;
posted January 17, 2013 (Doc. ID 182318); published February 22, 2013

We measure the number of atoms N trapped in a conventional vapor-cell magneto-optic trap (MOT) using beams
that have a diameter d in the range 1–5 mm. We show that the N ∝ d3.6 scaling law observed for larger MOTs is a
robust approximation for optimized MOTs with beam diameters as small as 3 mm. For smaller beams, the descrip-
tion of the scaling depends on how d is defined. The most consistent picture of the scaling is obtained when d is
defined as the diameter where the intensity profile of the trapping beams decreases to the saturation intensity. Using
this definition, N scales as d6 for d < 2.3 mm but, at larger d, N still scales as d3.6.
OCIS codes: 020.3320, 020.7010, 130.3990.

Instruments based on laser cooled atoms have achieved
extraordinary results. For example, atomic clocks can
measure frequency to better than 1 part in 1015, and
atomic accelerometers can measure g, the local accelera-
tion due to gravity, to 1 part in 108 in 1 s [1]. Typically,
these instruments are table-top sized and require a care-
fully controlled laboratory environment to function. If
these constraints could be relaxed, it would enable new
applications of these precise measurements. For example,
GPS receivers could incorporate miniature cold-atom
clocks, and surveys of local variations in g could be done
with portable cold-atom accelerometers. These applica-
tions require compact cold-atom instruments.
A fundamental limit on the performance of these

devices is quantum projection noise or atom shot noise,
which scales as 1∕

�����
N

p
, where N is the number of atoms

interrogated [2]. To quantify how this limit will constrain
the performance of a compact cold-atom sensor, it
is important to estimate how N scales with the size
of the device. Typically, N is limited by the equilibrium
atom number of the magneto-optic trap (MOT) used to
cool and collect atoms at the start of the measure-
ment cycle.
Although many variations on the MOT have been stu-

died over the years, we limit our attention to the standard
vapor-cell MOT because it is a relatively simple and com-
pact setup that serves as a useful baseline. A vapor-cell
MOT consists of three pairs of mutually orthogonal,
counterpropagating laser beams that overlap at the cen-
ter of a magnetic quadrupole field inside a vacuum cham-
ber containing a low density atomic vapor [3]. Each beam
has a flat-top intensity profile with a diameter d. The
trap’s equilibrium atom number is given by

N ≈ 0.1
A

σ

�
vc

vt

�
4
; (1)

where vt is the average velocity of an atom in the back-
ground vapor, σ is the cross section for collisions that
eject cold atoms from the trap, A is the surface area
of the trapping volume, and vc is the trap’s capture velo-
city [4]. The beam diameter d influences the atom num-
ber through A, which scales as d2, and through vc, but the
relationship between vc and d is not obvious.

The capture velocity can be quantified by simulating
the trajectory of an atom through the trapping region.
Lindquist et al. studied two models for the slowing force
and found that, in an optimized MOT, N scaled as d3.6 as
long as d was not too small [4]. This scaling law has been
observed for MOTs with d ∼ 1 cm [5]. For compact cold
atom sensors, we are interested in the case where
d ∼ 1 mm. We have used the simple model of Lindquist
et al. to study the relationship between N and d in this
regime. This model considers a two-level atom interact-
ing with counterpropagating plane waves in 1D. The
slowing force depends on the saturation parameter, s �
I∕Isat (I is the intensity of each plane wave and Isat is the
saturation intensity), the optical detuning, δ, and
the atom’s Doppler shift, kv [4]. The capture velocity is
the velocity of an atom that is just stopped after traveling
a distance d. The model predicts that when d is small, N
scales as d6 and, at larger d, N approximately follows the
d3.6 scaling law.

It is difficult to specify the boundary between these
two regimes in all cases, but some simple estimates
can be made. The d6 scaling regime corresponds to a
slowing force that is proportional to the velocity of the
atom [6]. In the two-level model, the slowing force is well
approximated by F � −βvwhen jvj ≤ jδ∕kj (as long as s is
not too small). This gives an estimate for the capture
velocity at the transition between the scaling regimes
vc;t � δ∕k. The trap size at the transition is approximately
dt � mvc;t∕β wherem is the mass of the atom and β is the
friction coefficient. Reasonable values of δ and s lead to
an estimated transition size dt ≈ 1 − 2 mm. However,
Pollock et al. [6] have observed d6 scaling in MOTs made
in microfabricated pyramids with sides as large as 7 mm.
Given their results, it is not clear whether the two-level
model’s estimate of dt is a reasonable approximation for
ordinary vapor-cell MOTs. To determine dt experimen-
tally, we measured N as a function of d in a vapor-cell
MOT with d between 1 and 5 mm.

85Rb was trapped inside an uncoated, rectangular glass
cell with a 12.5 × 12.5 mm cross section. The pressure in-
side the cell was about 10−8 Torr. The light source for our
experiment was a 780 nm distributed Bragg reflector la-
ser diode, frequency locked by use of saturated absorp-
tion spectroscopy. The detuning was fine-tuned by use of
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an acousto-optic modulator. Repump light was produced
by directly modulating the laser at 2.926 GHz [7].
Typically, the repump sidebands each contained about
4% of the laser’s power. The quadrupole magnetic field
was produced by use of permanent magnets. The atom
number was estimated by measuring the maximum
fluorescence of the MOT with a calibrated photodiode.
Based on the atom density typically obtained in MOTs,
we estimate that the optical depth is smaller than unity
for all but the largest numbers of atoms measured
here. For those data, the fluorescence measurement
underestimates the number of atoms by, at most, a
factor of 2.
The trapping beams were produced by collimating the

outputs of a 1–3 fiber splitter to make Gaussian beams
with a 1∕e2 diameter 2w0 � 2.25 mm. The diameter could
be increased to 2w0 � 4.5 mm by use of beam expanding
telescopes. These three beams were retroreflected to
make the MOT. The size of the trapping beamswas varied
by use of irises placed after the fiber collimators. The
minimum diameter of the irises was 1 mm. Diffraction
effects significantly increase the width of an irised beam
after it propagates a distance r2iris∕λ ≈ 30 cm, which is
comparable to the path length for our MOT beams. To
account for the effects of diffraction, we measured the
profile of the beam as a function of both the iris size
and the distance from the iris by use of a CCD camera.
Since these diffracted beam profiles are quite far from an
ideal flat top beam, it is not obvious how to define the
beam diameter d.
We explored several methods to define d based on our

measurement of the diffracted beams. We defined a dia-
meter, dB, by calculating the size of the circle that con-
tained 86.3% of the total power. The 86.3% cutoff was
chosen so that dB would coincide with the usual 1∕e2
diameter when the beam was Gaussian. This definition
is well suited to characterize the beam size with respect
to its intensity distribution, but it does not fully take into
account the spatial variation of the saturation parameter
relevant for the slowing force. Therefore, we defined a
second diameter dP , by calculating the width of the beam
where the intensity fell to I � Isat.
This intensity-dependent definition of d implies that

the trap volume will increase with the power in the trap-
ping beams. To test this idea, we varied the power in each
beam from 1 to 4 mW while the beams were Gaussian
with 2w0 � 2.25 mm. This corresponds to varying the
average saturation parameter for each beam from 6 to
25 (Isat � 3.9 mW∕cm2). Despite these large saturation
parameters, we find that N increases steadily as shown
in Fig. 1. We also simulated our measurements of the
atom number as a function of beam power with the stop-
ping distance set to either dB or dP . Figure 1 shows that
the observed increase in N can be accounted for by
defining the trap size to be dP .
We measured the atom number as a function of trap

size at δ � 2γ and δ � 3γ (γ � 2π × 6.066 MHz is the
natural linewidth of the transition). For all the MOTs
we studied, the largest number of atoms was obtained
with δ � 2γ. In both cases, we find that N is well de-
scribed by a d6 scaling law at small d and by a d3.6 scaling
law at larger d as shown in Fig. 2. For the δ � 3γ data, it
appears that N might be falling off faster than d6, but we

attribute this to the difficulty of optimizing a MOT with a
small number of atoms. Based on the fits shown in Fig. 2,
the trap sizes at the transition between the scaling re-
gimes are dt � 2.3� 0.1 mm and dt � 2.9� 0.1 mm for
δ � 2γ and δ � 3γ, respectively. By use of Eq. (1) with
σ � �3� 0.5� × 10−13 cm2 [8], the transition capture velo-
cities were estimated to be vc;t � 14.1� 0.8 m∕s for δ �
2γ and vc;t � 13.9� 0.7 m∕s for δ � 3γ. For comparison,
the two-level model predicts dt � 1 mm, vc;t � 9.5 m∕s
for δ � 2γ and dt � 2.7 mm, vc;t � 14.2 m∕s for δ � 3γ.

Figure 3 illustrates the scaling of N with d for opti-
mized MOTs from 1 to 40 mm by combining our data
with results from other papers cited here. The d3.6 scaling
law appears valid for a wide range of d. Figure 3 also
shows how our δ � 2γ data appear when dB is used to
define the trap size. As long as d > 2 mm, both defini-
tions of d give similar descriptions of the scaling, but they
disagree at small d. Based on the evidence of Fig. 1, we
believe that dP provides a better description of the trap-
ping volume.

The implications of these results for compact cold-
atom instruments are best illustrated by an example.
For a clock based on Ramsey interrogation, the quantum
projection noise limit is given by σy � �1∕2π��1∕Tr�
�1∕ν0�

������������
Tc∕N

p
(at 1 s of averaging) where Tr is the

Ramsey period, ν0 is the resonance frequency, Tc is the
cycle period, and N is the number of atoms [2]. The sta-
bility target for the clocks in GPS-III is σy � 6 × 10−12

at 1 s [9]. If we assume ν0 � 6.8 GHz, Tr � 10 ms, and
Tc � 100 ms, about 2 × 104 atoms are needed to push
the shot noise limit below 6 × 10−12. This small Tc can
be achieved by recapturing the atoms in the MOT each
cycle [10]. Based on Fig. 3, we could obtain enough
atoms to achieve σy � 6 × 10−12 with d � 1.5 mm. This
suggests that cold-atom devices based on compact MOTs

Fig. 1. Trapped atom number as a function of beam power
compared to predictions of the two-level model for two defini-
tions of d. For the dashed curve, d � dB � 2.25 mm. In this
case, the atom number decreases at high P because power
broadening reduces the maximum slowing force. For the solid
curve, d � dP for a Gaussian beam with 2w0 � 2.25 mm. In
this case, the atom number rises with P because the size of the
stopping region increases. For the simulations, δ � 2γ (γ is the
natural linewidth) and s � P∕�πd2�∕Isat (the results are not
sensitive to this choice for s). The simulations have been nor-
malized to agree with the data at P � 2 mW. The data were
taken with δ � 2γ and dB∕dz ≈ 34 G∕cm.
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are a realistic possibility. However, in a truly miniatur-
ized device, the edges of the trap will be defined by
the cell walls rather than the lasers, and this confined
geometry may limit the number of atoms [6].
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Fig. 3. Scaling of atom number with trap size illustrated with
results from [4,5,10] and a subset of our δ � 2γ data correspond-
ing to the highest intensities we studied. For the MOTs of
[4,5,10], we define the beam size the same way as the original
authors. In our data, one can see the ratio dP∕dB is larger for
the smaller beams. This is because the smaller beams are more
intense.

Fig. 2. Atom number as a function of effective beam diameter dP (see text for definition) for (a) δ � 2γ and (b) δ � 3γ. For all these
measurements, dB∕dz ≈ 34 G∕cm. The magnetic gradient was optimized for MOTs with dp ≈ 3 mm and δ � 2γ, but, in practice,
we found that N was not very sensitive to dB∕dz. The maximum intensity and the intensity profile of the trapping beams
vary significantly, but these changes are mostly accounted for by dP . The scatter in the data is due to day to day variations in
the alignment of the MOT and some intensity dependence that is not accounted for by dP . The lines are fits to the data with
the scaling exponents fixed.
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