CHAPTER 2

Advances in Coherent Population Trapping for Atomic Clocks

Vishal Shaha and John Kitchingb

aSymmetricom Technology Realization Center, 34 Tozer Road, Beverly, MA 01915, USA
bTime and Frequency Division, NIST, 325 Broadway, Boulder, CO 80305, USA

Contents

1. Coherent Population Trapping
 1.1 Introduction
 1.2 Basic Principles

2. Atomic Clocks
 2.1 Introduction
 2.2 Vapor Cell Atomic Clocks
 2.3 Coherent Population Trapping in Atomic Clocks
 2.4 Stability of Vapor Cell Atomic Clocks
 2.5 Light Shifts

3. Advanced CPT Techniques
 3.1 Contrast Limitations due to Excited-State Hyperfine Structure
 3.2 Contrast Limitations due to Zeeman Substructure
 3.3 High-Contrast Resonances Using Four-Wave Mixing
 3.4 Push–Pull Laser Atomic Oscillator
 3.5 The CPT Maser
 3.6 N-Resonance
 3.7 Raman–Ramsey Pulsed CPT
 3.8 CPT in Optical Clocks

4. Additional Considerations
 4.1 Light-Shift Suppression
 4.2 Laser Noise Cancellation
 4.3 Light Sources for Coherent Population Trapping

Advances in Atomic, Molecular, and Optical Physics, Volume 59 © 2010 Elsevier Inc.
ISSN 1875-290X, DOI: 10.1016/S1875-290X(10)5002-3 All rights reserved.
4.4 Dark Resonances in Thin Cells
4.5 The Lineshape of CPT Resonances: Narrowing Effects
5. Conclusions and Outlook
Acknowledgments
References

Abstract
We review advances in the field of coherent population trapping (CPT) over the last decade with respect to the application of this physical phenomenon to atomic frequency references. We provide an overview of both the basic phenomenon of CPT and how it has traditionally been used in atomic clocks. We then describe a number of advances made with the goal of improving the resonance contrast, decreasing its line width, and reducing light shifts that affect the long-term stability. We conclude with a discussion of how these new approaches can impact future generations of laboratory and commercial instruments.

1. COHERENT POPULATION TRAPPING
1.1 Introduction
Coherent population trapping (CPT) (Arimondo, 1996) refers to the preparation of atoms in coherent superposition states by use of multimode optical fields. This phenomenon, as investigated using hyperfine (Alzetta et al., 1976; Arimondo & Orriols, 1976) and optical (Whitley & Stroud, 1976) transitions in 1976, has led to significant advances in a variety of areas of optical and atomic physics including laser cooling (Aspect et al., 1988), nonlinear optics (Hemmer et al., 1995), precision spectroscopy (Wynands & Nagel, 1999), slow light (Schmidt et al., 1996), atomic clocks (Kitching et al., 2000; Thomas et al., 1981, 1982; Vanier et al., 1998; Zanon et al., 2005; Zanon-Willette et al., 2006), and other precision spectroscopic instrumentation (Nagel et al., 1998; Schwindt et al., 2004). The central principle that underlies the value of CPT in this diverse set of applications is the idea that certain coherent superposition states do not absorb light from the excitation field. This reduced absorption leads both to a spectroscopic signal on the light field and to a modified atom–light interaction.

The use of CPT in atomic clocks is a particularly important application that has sustained interest over three decades. Early work to use microwave CPT (Arimondo & Orriols, 1976; Orriols, 1979) in atomic beam clocks (Thomas et al., 1981, 1982) has been adapted for application to vapor cell clocks (Cyr et al., 1993; Laurat et al., 2005) to microfabricated atomic clocks (Ballance et al., 2005). Possible future applications may be in controlled environments (Hong et al., 2005; Santra et al., 2005). The performance of the clock then relies on the CPT resonance, and most importantly, the frequency stability.

This chapter reviews research that extends the phenomenon of CPT to realize atomic frequency standards. Special emphasis is placed on detection schemes, and other remarkable features such as the ability to improve the resonance contrast, reduce its line width, and reduce light shifts that affect the long-term stability. We conclude with a discussion of how these new approaches can impact future generations of laboratory and commercial instruments.

1.2 Basic Principles
A two-level atom illuminated by a light field is perhaps the simplest spectroscopic system in which atomic levels are selectively excited and detected. Radiation is scattered from each excited level, causing fluorescence, and a phase shift in the transmitted radiation, which is often combined with a measurement of the frequency, often gives highly precise information about the electronic and atomic structure of the atom. In atom–light interaction experiments, a variety of more complex phenomena occur, which is the subject of this chapter. The interaction of two or more resonant light fields can lead to a variety of interesting phenomena, such as the generation of new frequencies, the enhancement of existing frequencies, and the suppression of unwanted frequencies. These phenomena are the subject of this chapter.
Advances in the field of coherent population trapping (CPT) over the last decade with respect to the utilization of this physical phenomenon to atomic frequency standards. We provide an overview of both the history and future of CPT and how it has traditionally been used in atomic clocks. We then describe a number of new developments with the goal of improving the resonance lineshape, reducing line width, and improving long-term stability. We conclude with a discussion of how these new approaches can impact future laboratory and commercial instruments.

ON TRAPPING

CPT (Arimondo, 1996) refers to the preparation of a superposition state by use of multimode laser cooling (Alzetta, 1976) and optical excitation (Whitley & Stroud, 1981). CPT has led to significant advances in a variety of fields including laser cooling (Aspect et al., 1981), precision spectroscopy (Schmidt et al., 1981), atomic clocks (Vanier et al., 1982; Zanon et al., 1998; Schwindt et al., 2004). The central role of CPT in this diverse set of applications is its ability to manipulate the atomic population. This reduced absorption leads both to a decrease in the light field and to a modified atom-light interaction.

This is particularly important application over the last three decades. Early work to use microwave (Orriols, 1976; Orriols, 1979) in atomic beam (Vanier, 1982) has been adapted for application to vapor cell clocks (Cyr et al., 1993; Vanier et al., 1998) and led most recently to microfabricated atomic clocks (Knapp et al., 2004). A previous review of atomic microwave clocks based on CPT is given in the work of Vanier (2005). Possible future applications to optical clocks has also been considered (Hong et al., 2005; Santra et al., 2005). In these clock designs, the CPT resonance is used to directly measure the atomic transition frequency. The performance of the clock therefore depends intimately on the quality of the CPT resonance, and most specifically on its line width and contrast.

This chapter reviews research over the last decade to understand and extend the phenomenon of CPT with respect to its application to atomic frequency standards. Special emphasis is placed on novel excitation and detection schemes, and other new phenomena that improve the resonance contrast, reduce its line width, or minimize the effect of the light field on the resonance frequency. In Section 1.2, we review the basic phenomenon of CPT and describe how CPT resonances have traditionally been excited and detected. In Section 2, we provide an introduction to atomic clocks and discuss the differences between conventional atomic clocks and those based on CPT. In Section 3, we consider the limitations of the simplest CPT excitation schemes and describe several schemes that have been recently developed to enhance the quality of the CPT resonance for use in atomic clocks. In Section 4, we address a number of outstanding issues including light shifts, light sources for CPT, and unique experimental environments in which CPT is observed. Finally in Section 5, we offer some conclusions and discuss how the new ideas connected with CPT may ultimately impact the development of future atomic frequency references.

1.2 Basic Principles

A two-level atom illuminated by a monochromatic electromagnetic field is perhaps the simplest spectroscopic system. When the frequency of the illumination field is tuned into resonance with the transition between the atomic levels, radiation is scattered by the atom via spontaneous emission, causing fluorescence, and a corresponding change in the intensity and phase of the transmitted radiation (see Figure 1a). The fluorescence signal, combined with a measurement of the radiation wavelength or frequency, often gives highly precise information about the internal structure of the atom. In atoms with more than two energy levels, a variety of more complex phenomena can occur. One example of this is optical pumping, in which light resonant with one optical transition causes atomic population to accumulate in a state not excited by the light field (see Figure 1b). Once pumped into this third state, the atoms stop scattering light to the extent that the third state is stable and not resonant with the light field. Such a state is referred to as a dark state.
CPT is a phenomenon that occurs in atoms with more than two energy levels excited by coherent, multimode optical fields. Under the right conditions, atoms are optically pumped into a superposition of two of the levels that does not scatter light from the multimode field (see Figure 1c). This coherent dark state has an electromagnetic moment that oscillates at one of the beat frequencies of the multimode field. Its excitation can be thought of as a nonlinear process: a nonlinear resonator (the atom) is driven with a force with two spectral components (the light), and through the nonlinearity, an oscillation at the sum or difference of the two driving frequencies is established. The phase of this oscillation, with respect to the phase of the driving fields, is such that no energy is absorbed.

CPT between hyperfine atomic levels was first observed experimentally in a seminal paper by Alizetta et al. (1976), in which a light field from a multi-longitudinal-mode dye laser was sent into a vapor cell containing saturated Na and a buffer gas. The laser mode spacing had a harmonic near the frequency of the ground-state hyperfine splitting of Na. A longitudinal magnetic field gradient was applied to the cell, and the fluorescence from the cell was measured as a function of longitudinal position. Dark lines were observed in the fluorescence at locations where the magnetic field had shifted magnetically sensitive hyperfine levels into resonance with a mode spacing harmonic. Data from Alizetta et al. (1976) are shown in Figure 2.

The observations were explained theoretically by use of a density matrix analysis, in which the excited-state population, and hence the fluorescence rate, in the three-level system was calculated as a function of the relative detuning of a pair of resonant optical fields (Arimondo & Orriols, 1976; Gray et al., 1978; Whitley & Stroud, 1976). The dark line in the fluorescence was identified as resulting from (destructive) interference of absorption pathways in the coherently excited atomic system.
levels in atoms with more than two energy states is possible when a multimode optical field is applied. Under the right conditions, the field might excite a superposition of two or more energy levels, which could be observed as light from the multimode field (see Figure 2). This phenomenon is due to the interaction of the atoms with the light, and it depends on the properties of the optical field. In some cases, the excited state can be metastable, leading to long-lived hyperfine splitting in Na. A long-lived excited state is essential for experiments involving these processes. The phase of the oscillating light, when it is applied to the cell, is such that no energy is transferred to the cell. When a similar phenomenon on the Zeeman rather than hyperfine coherences was reported earlier by Bell and Bloom (1961), and a review of CPT is given by Arimondo (1996). A key aspect of this phenomenon is that coherences in atoms at microwave frequencies can be excited even with no microwave fields being present at the location of the atoms. The hyperfine coherences are excited entirely by two-photon processes involving only optical fields and have a line width determined by the hyperfine relaxation rate. In addition, the presence of the coherence can be detected easily by monitoring the fluorescence (or absorption) by the atomic sample.

CPT can also be understood as a combination of quantum interference and optical pumping. In the three-level model, a bichromatic optical field couples two long-lived states (denoted |1> and |2> in the Figure 1c) to a single upper level (denoted |3>). The energy of the ith level is denoted E_i and the optical field is denoted

$$E(t) = \epsilon_1 e^{-i(\omega t + \phi_1)} + \epsilon_2 e^{-i(\omega t + \phi_2)},$$

where ϵ_1, ϵ_2, ω_t, and ϕ_i are the (complex) amplitude, frequency, and phase of the ith field component, respectively. We may write orthogonal superpositions of states |1> and |2> that interact with the optical field in distinct ways:

$$|NC\rangle = c_2|1\rangle - c_1|2\rangle$$

$$|C\rangle = c_1|1\rangle + c_2|2\rangle.$$

Here

$$c_i = \frac{\mu_i \epsilon_i}{\sqrt{|\mu_1 \epsilon_1|^2 + |\mu_2 \epsilon_2|^2}} e^{i(E_i/h)t + \phi_i},$$

where μ_i are the magnetic transition moments. Figure 2 shows data for the fluorescence from a Na vapor cell under illumination by a multimode optical field. A magnetic field is applied with a gradient along the axis of the light propagation. Three dark lines are observed in the fluorescence spectrum. Reprinted figure with permission from Alzetta et al. (1978); © 1976 of the Società Italiana de Fisica.
and \(\mu_i \) is the electric dipole moment between state \(|i> \) and state \(|3> \).
It can be shown that when the two-photon resonance condition, \(\omega_1 - \omega_2 = (E_1 - E_2)/h \), is fulfilled, the transition amplitude from the state \(|NC> \) to the excited state \(|3> \) is zero. The \(|NC> \) state is therefore a dark (or “non-coupled”) state, because no light is scattered when the resonance condition is fulfilled. The suppression of the transition amplitude can be interpreted as a result of quantum interference between transitions from states \(|1> \) and \(|2> \) to state \(|3> \) under the influence of the exciting optical field (Alzetta et al., 1976; Arimondo, 1996; Lounis & Cohen-Tannoudji, 1992).

An atomic sample initially in a thermal state will develop coherences when illuminated with a bichromatic field satisfying the resonance condition. This can be thought of as an optical pumping effect: atoms in the “bright” (or “coupled”) state \(|C> \) will be excited to level \(|3> \) and will eventually fall into the dark state, where they no longer interact with the optical field. Population therefore builds up in the dark state and the absorption of the optical field (and fluorescence from the atomic sample) is reduced. As a function of two-photon detuning, we therefore observe a resonance in the absorption/fluorescence signal.

In the data shown in Figure 2, CPT resonances are observed in the fluorescence spectrum of a cell subjected to a magnetic field gradient. CPT resonances are also frequently observed in the transmission spectrum of light passing through an atomic sample in the presence of a uniform magnetic field, as shown in Figure 3. In this case the frequency difference between the two excitation fields is scanned over the hyperfine transition frequency and a spectrum containing a number of absorption resonances can be observed as a function of difference frequency, corresponding to transitions between different pairs of Zeeman-split hyperfine levels. In the case of circularly polarized light and a longitudinal magnetic field, only transitions between Zeeman levels with \(\Delta m_F = 0 \) are observed, resulting in a spectrum consisting of 2I lines for an atom with nuclear spin \(I \). For atoms with half-integer nuclear spin, the central line (corresponding to \(m_F = 0 \rightarrow m_F = 0 \)) occurs at a frequency close to the zero-field hyperfine splitting of the excited state.

where \(\gamma \) is the gyromagnetic ratio, \(\Delta m_\gamma \) is the change in the nuclear spin have more Zeeman levels, and \(\Delta m_F \) is the change in the transverse component, the CPT transition is defined by the condition \(\Delta m_F = 0 \) or \(\Delta m_F = 2 \) for two-level systems.

Transitions with \(\Delta m_F = \pm 2 \) can be observed in a single transition by CPT, where the CPT spectrum consists of more than two frequencies, making it difficult to control. The use of complicated locking electronics allows a high degree of freedom and a high degree of precision in the measurement of these frequencies.

2. ATOMIC CLOCKS

2.1 Introduction

Most atomic clocks are based on transitions that have a single valence electron, which are relatively simple, and long-lived, narrow transition lines with high stability. In addition to charge, both the alkali atoms have spin angular moment. Microwave frequencies between atomic states in alkali nuclear and electron magnetic fields of the order of 1-10 GHz, with tunable lines by Planck’s constant \(h \).

With some notable exceptions (Landau & Lifshitz, 2005b), microwave atomic clocks are usually insensitive to magnetic fields. Clocks based on states with careful simultaneous measurement measure variations in this parameter, allowing for precise measurements of atomic clocks.

![Figure 3](image-url) Coherent population trapping resonance spectrum observed in the transmitted light through a vapor cell subject to a uniform magnetic field.
The transition between state $|i\rangle$ and state $|3\rangle$, known as photon resonance condition, $\omega_1 - \omega_2 = \Delta \omega$, with $\Delta \omega = 0$, means that the state is therefore a dark (or "non-scattered") state. The resonance condition is a key factor in the interference between transitions, leading to the phenomenon of optical pumping. In the presence of the electric field and other factors, this state can be excited to level $|3\rangle$ and will undergo a process of resonant excitation. Under the influence of the exciting field, the dark state evolves, and the CPT resonance is observed after a time delay.

CPT resonances are observed in the transmitted light field. They are caused by the interference of two light waves with slightly different frequencies. If the two frequencies differ by the CPT frequency, $\Delta \omega$, the interference pattern changes, and the light wave can be transmitted or blocked. This effect is often used in experiments to detect small changes in the magnetic field, as depicted in the diagram.

![Resonance spectrum observed in the presence of a uniform magnetic field](image)

2. ATOMIC CLOCKS

2.1 Introduction

Most atomic clocks are based on alkali atoms (in particular, H, Rb, Cs), which have a single valence electron. In these atoms, the energy spectrum is relatively simple, and long-lived ground states result in slow relaxation, narrow transition line widths, and correspondingly high precision. In addition to charge, both the atomic nucleus and the valence electron of all alkali atoms have spin angular momentum, and therefore a magnetic moment. Microwave frequency references are based on hyperfine transitions between atomic states that differ in the relative orientation of the nuclear and electron magnetic moments. This difference in energies is on the order of 1-10 GHz, when translated into frequency units by dividing by Planck's constant \hbar.

With some notable exceptions (Post et al., 2003; Taichenachev et al., 2005b), microwave atomic clocks are based on transitions between the magnetically insensitive $m_J = 0$ substates of different hyperfine manifolds. Clocks based on states for which $m_J \neq 0$ (but $\Delta m_J = 0$) require a careful simultaneous measurement of the local magnetic field in order to prevent variations in this parameter from resulting in variations of the clock frequency. While this latter approach is not altogether prohibitve,
adds significant complications to the operation of the device and has not found widespread popularity. On the other hand, optical clocks based on fermionic alkaline earth atoms have a small linear Zeeman shift that is effectively and routinely removed with appropriate interrogation techniques (Akatsuka et al., 2008).

The measurement of transitions between these atomic states can be accomplished in several ways. Perhaps the simplest measurement method is the passive excitation method, where an oscillating magnetic field is applied to the atoms at a frequency corresponding to the energy difference. When the frequency of the applied field is close to the frequency of the atomic transition, an oscillating moment (coherence) is excited in the atom. Most frequently, magnetic dipole moments are excited. This coherence allows energy to be transferred from the field (atom) to the atom (field), and changes the internal state of the atom.

Because this energy transfer is a resonant effect, the internal state of the atom can be monitored to determine when the frequency of the applied field corresponds to the energy splitting of the atomic states being coupled. A typical atomic frequency reference can be thought of as a series of steps. The atoms are first prepared in one specific atomic state (by magnetic state selection, optical pumping, or some other means). The oscillating magnetic field, generated by a “local oscillator” (LO), is then applied, causing some fraction of the atoms to change their state; this fraction depends on whether the frequency of the oscillating field is on-resonance with the atoms. Finally the number of atoms in the final state (or the initial state) is detected, again by optical or magnetic means. Because of the resonant nature of the interaction, the number of atoms in the final state depends on the difference between the frequencies of the oscillating field and the atomic transition, and a measurement of this quantity can therefore be used in a feedback loop to lock the frequency of the oscillating field to the atomic transition frequency. The output of the clock is simply the frequency of the locked LO. The operation of a basic passive atomic frequency reference is shown in Figure 4.

Atomic clocks based on alkali atoms can be divided into four main categories. Fountain clocks (Clairon et al., 1991; Kasevich et al., 1989; Zacharias, 1953), the most accurate atomic clocks at present, are large devices that often take up the better part of an entire room and require several hundred watts of power. There exist perhaps 10 such instruments worldwide and each typically takes several person-years to construct and evaluate. Hydrogen masers (Gordon et al., 1954), highly stable over long time periods, are about the size of a large filing cabinet. Cs beam clocks (Essen & Parry, 1955; Ramsey, 1950), based on beams of alkali atoms in a vacuum, are also highly accurate and are manufactured in rack-mounted enclosures. Vapor cell atomic clocks are based on atoms confined in a cell with a buffer gas (Arditi, 1958; Carver, 1957; Dicke, 1953) or wall coating (Goldenberg et al., 1961; Robins, 1961). Vapor cell clocks are manufactured and compact; these clocks are typically stable and are intrinsically accurate (with the current state of the art) vapor cell atomic clocks, in the atomic standard industry, can be held to a frequency uncertainty of about 10^{-11}.

2.2 Vapor Cell Atomic Clocks

A schematic of a traditional Rb cell (Audoin, 1992) is shown in Figure 5. A vapor cell atomic clock typically consists of a cell containing the Rb vapor, placed in a microwave cavity into which a microwave power is applied. The cavity is typically a resonator that is tuned to a specific frequency, and the frequency of the cell is monitored by observing the phase of the microwave field in the cavity.
the operation of the device and has not yet been developed. On the other hand, optical clocks based on the presence of a small linear Zeeman shift that is stable with appropriate interrogation techniques are coming to market.

Transitions between these atomic states can be measured using a passive atomic frequency reference, the simplest method, where an oscillating magnetic field at an oscillating frequency corresponding to the energy difference of the applied field is close to the frequency of an oscillating moment (coherence) is excited. Consequently, magnetic dipole moments are induced by energy to be transferred from the field and change the internal state of the atom.

Upon absorption of resonant light, the internal state of the atom changes at a rate insufficient to change the frequency of the field. The change in frequency is then measured by a "local oscillator" (LO), is then used to detect the frequency of the atoms to change their state; the number of atoms in one specific state is determined again by optical or magnetic means. The interaction, the number of atoms difference between the frequencies of the lower, and a measurement of this difference determines the correcting feedback loop to lock the frequency of the transition frequency. The output of the locked LO is 10−11.

2.2 Vapor Cell Atomic Clocks

A schematic of a traditional Rb vapor cell frequency reference (Vanier & Audoin, 1992) is shown in Figure 5. The heart of the frequency reference is a vapor cell that contains the Rb vapor, along with an appropriate density of buffer gas. The vapor cell is contained within a microwave cavity into which a microwave field is injected. The microwave field is

![Figure 4](image-url) (a) The operation of a passive atomic frequency reference typically proceeds in three steps. First, the atom is prepared in one specific atomic state. The frequency from the local oscillator is then applied, causing transitions to another state with energy. The number of atoms in one state is detected. (b) With this method, the frequency of the local oscillator can be determined with respect to the atomic transition.

![Figure 5](image-url) Schematic of the major components of a traditional vapor cell frequency reference.
generated by a LO, which is usually based on an electromechanical resonator (such as a quartz crystal resonator). Because the LO is an electromechanical device, it is typically rather unstable over long periods; the atoms therefore provide a stable reference frequency to which the LO can be locked. The atoms in the cell are illuminated by light generated by a Rb lamp. The Rb lamp is a second glass cell, containing Rb, through which an RF discharge is excited.

Light from the lamp, with appropriate filtering, serves to prepare the atoms in the reference cell in one of the two hyperfine ground states via optical pumping. Because of this optical pumping, the atoms in the reference cell become less absorbing than they would in a thermal distribution. As the frequency of the RF field is tuned near the atomic resonance, the population distribution in the reference cell changes again as the hyperfine populations are returned closer to their thermal distribution. This in turn increases the atomic absorption, and the increased absorption can be detected by monitoring the optical power transmitted through the cell with a photodiode. The transmitted optical power, as a function of microwave frequency, therefore becomes the "signal" to which the LO is locked.

2.3 Coherent Population Trapping in Atomic Clocks

CPT was first used in atomic clocks in the early 1980s (Ezekiel et al., 1983; Hemmer et al., 1983a, 1984; Thomas et al., 1981, 1982). In these experiments, modulated dye lasers were used to excite microwave transitions in a Na beam atomic clock. In effect, CPT zones replaced the microwave cavities employed in a conventional beam clock based on Ramsey's method of separated oscillatory fields: in the first CPT zone the atomic coherence was created, and in the second, its phase was compared to that of the drive signal. Although initial investigations focused on the hyperfine transition in Na at 1.77 GHz, the use of optical fields to excite the coherence opened the door to the possibility of exciting atomic coherences in frequency bands far beyond the gigahertz range. A Ramsey zone separation of 15 cm led to a resonance line width of 2.6 kHz (see Figure 6), and a corresponding frequency instability of 8×10^{-10} at 1 second was measured, as shown in Figure 7. A subsequent experiment using a Cs atomic beam, excited by a modulated diode laser, demonstrated resonance widths of 1 kHz and a projected instability of 6×10^{-11} at 1 second (Hemmer et al., 1993). The signal-to-noise ratio was about 10 times worse than that predicted by photon shot noise and was limited by frequency noise on the diode laser being translated into intensity noise on the measured atomic fluorescence. The conversion of FM to AM noise continues to be an important source of instability in the current generation of laser-pumped atomic clocks (Camparo & Coffer, 1999; Kitching et al., 2000).

Figure 6 (a) and (b) Rabi fringes for a laser. (c) Raman–Ramsey fringes with permission from Thomas et al. (1982).

Figure 7 Allan deviation of a frequency of CPT resonances in a Na atomic beam. Hemmer et al. (1983b); © 1983 of the American Physical Society.

These early experiments not only demonstrated the potential for CPT in atomic frequency references, but also that both the short-term frequency instability due to photon shot noise, and instability arising from sources of frequency insta...
...ually based on an electromechanical resonator. Because the LO is an intrinsically unstable over long periods; the reference frequency to which the LO is tuned is illuminated by light generated by an end glass cell, containing Rb, through appropriate filtering, serves to prepare the superposition of the two hyperfine ground states via optical pumping, the atoms in the gas ring than they would in a thermal distribution. An external RF field is tuned near the atomic resonance in the reference cell changes again turned closer to their thermal distribution, atomic absorption, and the increased intensity of the optical power transmitted indicate the transmitted optical power, as a result, therefore becomes the “signal” to a...

Rabi Fringing in Atomic Clocks

In the early 1980s (Ezekiel et al., 1983; Aspnes et al., 1981, 1982). In these experiments, Rabi fringes were excited microwave transitions in Cs and Na, CPT zones replaced the microwave section of a sodium beam clock based on Ramsey's technique: in the first CPT zone the atomic beam, and its phase was compared to that in the second, investigations focused on the hyperfine transition of optical fields to excite the coherence function of exciting atomic coherences in frequency range. A Ramsey zone separation of 2.6 kHz (see Figure 6), and a time of 8 × 10−10 at 1 second was measured, experiment using a Cs atomic beam, however, demonstrated resonance widths of about 6 × 10−11 at 1 second (Hemmer et al., 1989) was about 10 times worse than that predicted by frequency noise on the intensity noise on the measured atomic frequency noise continues to be an issue in the current generation of laser-pumped atomic clocks (Kitching et al., 2000).

![Figure 6](image-url) (a) and (b) Rabi fringes from a Na atomic beam excited by a modulated dye laser. (c) Raman–Ramsey fringes with a width of 2.6 kHz. Reprinted figure with permission from Thomas et al. (1982); © 1982 of the American Physical Society

![Figure 7](image-url) Allan deviation of a frequency reference based on Raman–Ramsey excitation of CPT resonances in a Na atomic beam. Reprinted figure with permission from Hemmer et al. (1983b); © 1983 of the Optical Society of America

These early experiments not only demonstrated the viability of the use of CPT in atomic frequency references but also identified the major limitations to both the short-term frequency stability and the accuracy. Sources of frequency instability common to many types of CPT frequency references include the FM–AM noise conversion mentioned above, atomic and photon shot noise, and instability arising from the light shift (Hemmer et al., 1989). Sources of frequency instability associated specifically with the...
Raman-Ramsey scheme include misalignment of the beams from a copropagating configuration, birefringence, and polarization differences between the beams and changes in the optical path length (Hemmer et al., 1986).

As mentioned above, semiconductor lasers have been used for CPT excitation in atomic beam clocks (Hemmer et al., 1993). The advantages of semiconductor lasers over dye lasers in this type of experiment are clear: smaller size and simpler operation. In addition, it is possible to modulate the optical field output of the laser by directly modulating the injection current. Resonances of width 1 kHz were obtained in a 133Cs beam by use of an edge-emitting AlGaAs diode laser modulated at 4.6 GHz. The two coherent first-order sidebands created the 9.2-GHz frequency difference needed to excite the Raman-Ramsey fringes.

In 1993, Cyr, Tetu, and Breton described a method for exciting and detecting CPT resonances in an alkali vapor cell by use of a single diode laser (Cyr et al., 1993). The details of the experiment are shown in Figure 8. The injection current of the laser was modulated near the sixth subharmonic (1.139 GHz) of the 87Rb hyperfine frequency (6.835 GHz), creating sidebands on the optical carrier, several of which are separated by approximately the atomic resonance frequency. When one of these sideband pairs was tuned to be in optical resonance with the atomic transitions, and their difference frequency (determined equal to the microwave transition of the atoms. This coherence was achieved by rotation of a probe beam derived from the laser.

This idea is particularly nice for use with cell frequency references, because it requires no external or internal stabilization. The use of a vapor cell leads to previous CPT experiments based on small cell sizes can be used to advantage due to the presence of the buffer gas. The ease of using a single laser beam could lead to simplification of the experiment.

Since then, there has been significant progress in cell frequency references. The first CPT-based clocks have been demonstrated (Kitson et al., 2002), and 15 at least as expected. H. Chu et al., 2002; Merinaa et al., 2002) have been compared both theoretically and experimentally (Luiten and Schecter, 2002) to commercial cesium clocks with the conclusion that CPT-based instruments should be the clocks of choice. A review of atomic clock frequency references was published by Vanier (2005).

In 2001, a compact physics package was demonstrated by Kitching et al., which is about 14 cm3, and the short-term stability is 7. A photograph of the device is shown in Figure 8. Similar work was being done by Chou (2001; Vanier, 2001a), connected to the compact, commercial CPT clocks. In early efforts to use CPT to make compact clocks, use glass-blown vapor cells were made or more. The cells were assembled in a vacuum, optics, and photodetector to form the compact CPT package.

Complete miniaturized CPT clocks with a low-power consumption have also been demonstrated (Kitching et al., 2004, 2005). This work demonstrates the use of CPT to led to some significant advances in atomic clock technology.
The development of the beams from a copropagational polarization differences between beam paths (Hemmer et al., 1986).

Laser beams have been used for CPT experiments (Ter Haar et al., 1993). The advantages of this type of experiment are clear: In addition, it is possible to modulate directly the injection of the 133Cs beam by use of a laser modulated at 4.6 GHz. The two 9.2-GHz frequency difference lines are a method for exciting and using a single diode experiment are shown in Figure 8, modulated near the sixth subharmonic frequency (6.835 GHz), creating which are separated by approximately 2 GHz. When one of these sideband pairs with the atomic transitions, and their difference frequency (determined by the modulation frequency) made equal to the microwave transition, a microwave coherence was excited in the atoms. This coherence was detected by monitoring the polarization rotation of a probe laser beam derived from the same laser (Figure 8c).

This idea is particularly noteworthy in the context of miniaturized frequency references, because all components used in the experiment are small. The use of a vapor cell lends itself well to miniaturization compared to previous CPT experiments based on atomic beams because much smaller cell sizes can be used to achieve a given short-term frequency stability, due to the presence of the buffer gas. Some time later it was demonstrated that a single laser beam could also be used, allowing for even further simplification of the experimental setup (Levi et al., 1997).

Since then, there has been considerable study of CPT-excited vapor cell frequency references. The noise processes in these instruments have been identified (Kitching et al., 2000) and short-term instabilities as low as $1.3 \times 10^{-12} / \sqrt{f}$ have been demonstrated in large-scale systems (Zhu & Cutler, 2000). Vapor cell CPT atomic clocks have been investigated in detail in some of the earlier experiments (Vanier et al., 1998, 2003a,c,d) and experimentally (Godone et al., 2002d; Knapp et al., 2001, 2002; Levi et al., 2000; Merima & Luiten, 2003; Stahler et al., 2002). They have also been compared both theoretically (Vanier, 2001b) and experimentally (Lutwak et al., 2002) to conventional optically pumped vapor cell references with the conclusion that the short-term frequency stability of CPT-based instruments should be comparable to or better than conventional ones. A review of atomic clocks based on CPT is given in the work of Vanier (2005).

In 2001, a compact physics package for CPT frequency reference was demonstrated by Kitching et al. (2001a,b). This device had a volume of about 14 cm³, and the short-term stability of this device was $1.3 \times 10^{-10} / \sqrt{\tau}$. A photograph of the device is shown in Figure 9a, and the CPT resonance and Allan deviation are shown in Figure 9b and c, respectively. Similar work was being explored simultaneously (Delany et al., 2001; Vanier, 2001a), connected with the ultimate development of compact, commercial CPT clocks (Deng, 2008; Vanier et al., 2005). These early efforts to use CPT to miniaturize atomic frequency standards used glass-blown vapor cells with a diameter of several millimeters or more. The cells were assembled as discrete components with a laser, optics, and photodetector to form the functioning physics package.

Complete miniaturized CPT frequency references for use in a commercial setting have also been demonstrated (Deng, 2008; Vanier et al., 2004, 2005). This work demonstrated integration of a compact CPT physics package with a low-power LO and compact control electronics. The opportunities for atomic clock miniaturization afforded by the use of CPT led to some significant developments related to use of...
micromachining processes in atomic clocks. A preliminary analysis suggested that CPT clocks based on millimeter-scale vapor cells could achieve short-term frequency instabilities of a few parts in 10^{11} at 1 second of integration (Kitching et al., 2002). While the stability was expected to be worse than that of their larger counterparts, it was recognized that these micromachined or "chip-scale" atomic clocks could serve an important role in providing precise timing for portable, battery-operated instruments. Because of the small size, the power required to maintain the cell at its operating temperature could be drastically reduced. When combined with similar improvements in power resulting from the use of a laser, rather than a lamp, as the light source, operation with small batteries could be envisioned. A review of chip-scale atomic frequency references can be found in the work of Knappe (2007).

Because CPT played an important role in many of these new micromachined clock designs, considerable research was carried out to improve and optimize CPT techniques specifically for this new development.

2.4 Stability of Vapor Cells

The stability of an atomic frequency reference is often characterized by the Allan deviation. The Allan deviation is defined as a statistical measure of the frequency stability and is obtained by measuring the Allan deviation of its frequency fluctuations for different integration times. For passive atomic clocks, the Allan deviation is given by

$$\sigma_\alpha(\tau) = \frac{Q}{\sqrt{\tau}}$$

where Q is the Q-factor of the atomic transition, τ is the integration time, and $\sigma_\alpha(\tau)$ is the Allan deviation. The frequency stability is defined as the Allan deviation for a given integration time.

In a conventional optical frequency reference, the optical field is tuned away from resonance by repumping the atoms. The transition is then detected by measuring the change in signal strength.

The CPT resonance, shown in Figure 9, is a resonance observed when the frequency difference between the two atomic transitions increases on resonance. The CPT resonance can be characterized by the parameter γ, which is given by

$$\gamma = \frac{\omega}{\sqrt{\omega^2 - 4\Omega^2}}$$

where ω is the angular frequency of the light field and Ω is the Rabi frequency. The CPT resonance is a sharp resonance that is characteristic of a single atom.
2.4 Stability of Vapor Cell Atomic Clocks

The stability of an atomic clock is most often characterized by its Allan deviation. The Allan deviation (Allan, 1966; Barnes et al., 1971), developed to quantify the fluctuations of nonstationary random variables, is a measure of the frequency instability of the clock obtained after integrating a measurement of its frequency for a period τ and is denoted $\sigma_\nu(\tau)$. For passive atomic clocks, in which white frequency noise is the dominant noise source, the Allan deviation is given by

$$\sigma_\nu(\tau) = \frac{\xi}{Q(S/N)\sqrt{\tau}},$$

where Q is the Q-factor of the atomic resonator, τ is the integration period, S/N is the measurement signal-to-noise ratio (in units of $\sqrt{\text{Hz}}$), and ξ is a constant of order unity related to how the resonance is measured. The frequency instability is hence proportional to the resonance line width, or relaxation rate, of the atoms and inversely proportional to the signal strength.

In a conventional optical-microwave double-resonance (OMDR) frequency reference, the optical transmission is high when the microwave field is tuned away from resonance and decreases on resonance as the atoms are repumped into an equilibrium state by the microwave field (see Figure 10a). The OMDR resonance is characterized by its width W and its transmission contrast A/B, according to Figure 10a.

The CPT resonance, shown in Figure 10b, has low transmission when the frequency difference between the optical fields is off resonance; the transmission increases on resonance when the dark state is populated. The resonance can be characterized by its width and its absorption contrast, denoted by W and $C_A = A/B$ in Figure 10b in the limit that the quantity $B << 1$. This last condition occurs when the cell temperature and length are such that the cell is optically thin for a weak optical field tuned to the center of the optical resonance. It implies that the quantity C_A is a characteristic of a single atom and the way it is excited and does not

![Figure 10](image-url)
depend on the atom density, the longitudinal location within the cell, or the effects of propagation of light through the (possibly optically thick) atomic sample.

The width of the resonance, \(W \), is determined by relaxation processes associated with the hyperfine coherence. There are many such processes, but the ones that dominate in vapor cell atomic clocks are collisions of alkali atoms with the cell walls, collisions with buffer gas atoms, collisions with other alkali atoms, optical power broadening due to the presence of the optical field, and the relative phase stability of the excitation optical fields. This width can be minimized through the correct choice of buffer gas pressure and optical intensity. An analysis of these effects under some assumptions can be found in the work of Kitching et al. (2002).

Considering still optically thin vapor cells, we may associate the signal \(S \) in Equation (4) with the change in optical power as the modulation frequency is moved from off the CPT resonance to on resonance. The fractional (off-resonance) absorption \(B \) can be written as

\[
B = (1 - e^{-n \sigma_0 L}) = n \sigma_0 L, \tag{5}
\]

where \(n \) is the density of atoms, \(\sigma_0 \) is the (unpolarized) optical absorption cross section, and \(L \) is the length of the cell. The signal \(S \) can therefore be written

\[
S = A P_{\text{in}} = C_A n \sigma_0 LP_{\text{in}}, \tag{6}
\]

where \(P_{\text{in}} \) is the optical power incident on the cell. We therefore see that the signal is proportional to the column density of atoms, the incident optical power, and the absorption contrast. The typical absorption contrast for a CPT resonance is in the range of 0.1–10%; the physical effects that limit this contrast are discussed below.

As the cell temperature is increased and the optically thick regime is approached, the assumption \(B \ll 1 \) above breaks down. In this regime, propagation effects must be considered, and propagation-induced narrowing of the resonance and modification of the contrast occurs (Godone et al., 2002d). Experimentally, it has been found that for centimeter-scale cells, the optimal cell temperature is that for which the optical absorption (away from the CPT resonance) is approximately 0.5 (Knappe et al., 2002). At lower atomic densities, the signal is reduced due to the dependence described in Equation (6) (because very few atoms contribute toward the signal), while at higher densities, the strong optical absorption by the atomic sample attenuates the signal. While a more complete treatment of propagation effects may uncover ways to improve the clock performance at high optical densities, these remain unclear at present. Ultimately, increasing the atomic density will lead to increased hyperfine relaxation due to alkali–alkali spin-exchange or spin-destruction collisions, and any improvements gained by collision-induced broadening.

The noise on the signal due to shot noise and atom shot noise, converted to an additional noise, is given by (Camparo & Coffer, 1999).

\[
S_{\text{AP}} \equiv N^2 = \frac{4k_B T}{\hbar} P_{\text{in}} L
\]

with the last approximation valid for low noise, converted to an additional noise, is given by (Camparo & Coffer, 1999).

Often it is possible to reduce the noise close to the photon shot noise limit by using an intrinsically low-noise laser.

The signal-to-noise ratio of the resonance parameters above can be written

\[
\frac{S}{N} = \sqrt{\frac{C_A n \sigma_0 L}{\frac{4k_B T}{\hbar}}}
\]

Expressed in this way, the absorption contrast and the output power are the same. To simplify this expression, the absorption contrast is expressed instead as the ratio of two powers and the output power \(P_{\text{out}} \).

In this expression, all of the factors are within the parameters and can be taken as in a direct manner. We can then characterize the CPT resonance in terms of the density-independent measure of the CPT resonance and the simple evaluation of the noise measures of the CPT resonance, depending on the context.

We therefore find that the short-term stability of the resonance width, increasing the resonance stability, can be achieved by increasing the optical power incident on the cell.
improvements gained by the higher atom number may be offset by collision-induced broadening of the resonance line width.

The noise on the signal comes from a number of sources. Of these, photon shot noise and atom shot noise (spin projection noise) are the most fundamental. In most cases the photon shot noise is larger than the atom shot noise for measurements of hyperfine resonances; the power spectral density function of this (optical power) noise is given by (Yariv, 1997)

$$S_{\Delta P} \equiv N^2 = 2h\nu(1 - B)P_{in} = 2h\nu(1 - n\sigma_0 L)P_{in},$$

(7)

with the last approximation again relying on the assumption that $B << 1$. Additional noise sources include (a) AM noise on the laser, (b) FM laser noise, converted to AM noise by the atomic absorption profile (Camparo & Coifer, 1999), and (c) noise in the detection electronics. Often it is possible to reduce these additional sources of noise to a level close to the photon shot noise through the use of feedback techniques or intrinsically low-noise lasers.

The signal-to-noise ratio can be expressed in terms of the CPT resonance parameters above as

$$\frac{S}{N} = C_T \frac{n\sigma_0 L}{2h\nu} \sqrt{\frac{(1 - n\sigma_0 L)}{P_{in}}}.$$

(8)

Expressed in this way, the signal-to-noise ratio is proportional to the absorption contrast and the square root of the input power, but has a somewhat complicated dependence on the alkali atom number and cell length. To simplify this problem, the signal-to-noise ratio can be expressed instead in terms of the transmission contrast $C_T = A/(1 - B)$ and the output power $P_{out} = (1 - B)P_{in}$:

$$\frac{S}{N} = C_T \sqrt{\frac{P_{out}}{2h\nu}}.$$

(9)

In this expression, all of the effects of the alkali density are contained within the parameters P_{out} and C_T, which can be measured experimentally in a direct manner. We therefore see that the characterization of the CPT resonance in terms of the absorption contrast C_A allows for a density-independent measure of the CPT resonance parameters, while the characterization in terms of the transmission contrast C_T allows for a simple evaluation of the signal-to-noise ratio and clock stability. Both measures of the CPT resonance contrast are used in the literature, depending on the context of the discussion.

We therefore find that there are three major routes to improving the short-term stability of the atomic clock: narrowing the resonance line width, increasing the resonance contrast, and reducing the noise. In the sections below, we describe a number of improvements and
modifications to the conventional CPT excitation scheme that result in some combination of reduced line width and increased signal contrast. These methods have been developed mostly within the last 10 years and represent a significant enhancement of the understanding of CPT, as applied to atomic frequency references.

2.5 Light Shifts

Shifts in the atomic energy levels due to the presence of optical fields, known as AC Stark shifts or light shifts, are a major source of long-term instability for atomic clocks (Arditi & Carver, 1961; Kastler, 1963; Vanier & Audoin, 1992). The use of CPT provides some additional complications, but also opportunities with respect to the light shift, compared to conventional clocks based on OMDR.

The light shift of a two-level atom illuminated by a monochromatic optical field is (Cohen-Tannoudji et al., 1992)

\[\delta L = \frac{1}{4} \frac{\Omega^2 \Delta}{(\Gamma/2)^2 + \Delta^2}, \]

where \(\Omega\) is the Rabi frequency of the optical field-atom interaction, \(\Delta\) is the detuning of the optical field from the atomic resonance, and \(\Gamma\) is the radiative decay rate of the atom. The shift is therefore proportional to the intensity of the optical field and traces a dispersive profile as a function of detuning from the atomic resonance. For the light intensities typically used in conventional OMDR clocks, the magnitude of the shift is on the order of a few parts in \(10^9\) (Arditi & Carver, 1961), making it a significant contribution to the instability of this type of clock at the level of \(10^{-11}\) for 1% changes in the light intensity.

In a system exhibiting CPT, the interplay between the coherence of the atoms and the bichromatic nature of the light field leads to changes in the properties of the light shift. The most dramatic of these changes is the complete elimination of the light shift on Raman resonance for a perfect three-level system illuminated by a light field in which the two spectral components of the CPT field have equal Rabi frequencies. This elimination is a consequence of the fact that a perfect coherent dark state does not interact dissipatively with the light field and hence does not experience a Stark shift. For unequal intensities, the Stark shift has been calculated to be equal to (Arimondo, 1996; Kelley et al., 1994; Vanier et al., 1998)

\[\delta L = \frac{1}{4} \frac{\Delta}{(\Gamma/2)^2 + \Delta^2} \left(\Omega_1^2 - \Omega_2^2\right),\]

where \(\Omega_1\) and \(\Omega_2\) are the Rabi frequencies associated with the two spectral components. The fact that the light shift can in principle be eliminated is of high interest to the application of CPT as a source of long-term instability. As we will see below, the control of level splittings, Doppler broadening, and relaxation in systems limit the extent to which light shifts can be accomplished in practice.

Measurements of the light shift of a Cs atom by Nagel et al. (1999) and Zibrov et al. (2001) have shown roughly optimal buffer gas pressures, obtained in conventional clocks, to be roughly linear in the CPT buffer gas pressures.

3. ADVANCED CPT TECHNIQUES

In its simplest form, CPT changes the levels by use of a single pump beam. With these assumptions, and with the sample optically pumped into a coherent state, the signal rate is 100%. Optically pumping a system into a coherent state even under saturated conditions where a coherent state dark state even under saturated conditions where a coherent state with no light, the CPT signal rate is exactly equal to the ground-state signal rate, but for an equal number of atoms, the CPT signal rate is about 50% of the atoms at resonance.

Laboratory CPT experiments are performed on large numbers of atoms, especially those that are not in a coherent state. The presence of additional noise in the system, such as fluctuations in the light source or collisions with the atomic sample, can reduce the contrast of the CPT signal. Reduced contrast results in an increased sensitivity to variations in the energy levels. For example, the linewidth of the atomic transition can be reduced to about 0.1 Hz, which is orders of magnitude smaller than the natural linewidth of the transition.

In practice, the most common way to reduce the light shift is to use a two-photon transition, which is much less sensitive to the light shift than a one-photon transition. The two-photon transition occurs when the light field is detuned from the atomic resonance by an amount \(\Delta\), and the light shift is proportional to \(\Delta^2\). For a two-photon transition, the light shift is proportional to \(\Delta^2\), and the light shift is proportional to \(\Delta^2\). For a two-photon transition, the light shift is proportional to \(\Delta^2\), and the light shift is proportional to \(\Delta^2\). For a two-photon transition, the light shift is proportional to \(\Delta^2\), and the light shift is proportional to \(\Delta^2\). For a two-photon transition, the light shift is proportional to \(\Delta^2\), and the light shift is proportional to \(\Delta^2\). For a two-photon transition, the light shift is proportional to \(\Delta^2\), and the light shift is proportional to \(\Delta^2\).
CPT excitation scheme that result in width and increased signal contrast. And mostly within the last 10 years and of the understanding of CPT, as carriers.

Due to the presence of optical fields, shifts, are a major source of long-term use (Carver, 1961; Kastler, 1963; Vanier et al. provide some additional complications, to the light shift, compared to color illuminated by a monochromatic

\[
\frac{\Omega^2 \Delta}{\Gamma^2 + \Delta^2},
\]

(10)

de optical field-atom interaction. \(\Delta \) is in the atomic resonance, and \(\Gamma \) is the shift is therefore proportional to the is a dispersive profile as a function of the. For the light intensities typically magnitude of the shift is on the Carver, 1961), making it a significant type of clock at the level of \(10^{-11} \) for interplay between the coherence of the light field leads to changes in some of the most dramatic of these changes is footprint on Raman resonance for a given by a light field in which the two fields have equal Rabi frequencies. This fact that a perfect coherent dark state of the light field and hence does not optical intensities, the Stark shift has (Kondo, 1996; Kelley et al., 1994; Vanier

\[
\frac{\omega}{\Delta} (\Omega^2 - \Omega_0^2),
\]

(11)

frequencies associated with the two spectral shifts can in principle be eliminated is of high interest to the application of CPT to atomic clocks, as this major source of long-term instability can potentially be eliminated. However, as we will see below, the complications associated with the multiplicity of levels, Doppler broadening, and other effects present in real atomic systems limit the extent to which the cancellation of the light shift can be accomplished in practice.

Measurements of the light shift in CPT systems were described by Nagel et al. (1999) and Zhu and Cutler (2000), and a magnitude of the light shift of approximately \(10^{-17} \) (mW/cm²) was obtained for cells with a roughly optimal buffer gas pressure. This shift is comparable to that obtained in conventional OMDR systems. The shift was found to be roughly linear in the CPT intensity and was smaller for higher buffer gas pressures.

3. ADVANCED CPT TECHNIQUES

In its simplest form, CPT can be excited in atoms with only three energy levels by use of a single pair of coherent light fields. In principle, under these assumptions, and with sufficient light intensity, atoms can be optically pumped into a coherent dark state with an efficiency of nearly 100%. Optically pumping a very large fraction of the atoms into a coherent dark state even under ideal conditions requires the optical pumping rate to be much greater than the ground-state relaxation rate. This results in significant power broadening and is not ideal for clock operation, as it reduces the resonance Q-factor. Typically, the optical intensity for normal clock operation is chosen such that the power broadening rate is roughly equal to the ground-state relaxation rate; under these circumstances, about 50% of the atoms are optically pumped into the coherent state.

Laboratory CPT experiments are usually carried out with alkali atoms, especially when the application is microwave atomic clocks. The presence of additional energy levels in these atoms can interfere with the efficient excitation of the coherent \(\chi_{1,1} \) states and thereby reduce the contrast of CPT resonances. As discussed above, the reduced contrast results in higher instability for the clock. In addition, unwanted energy levels introduce asymmetries in the CPT resonance lineshape (Post, 2003) and produce AC Stark shifts, both of which adversely affect the atomic clock performance by producing time-dependent frequency shifts of the clock output. Some of these effects are further amplified if a light field with more than two modes is used for CPT excitation. Over the last several years, a number of advanced interrogation techniques have been developed with the goal of mitigating some of these effects and thereby improving various aspects of the atomic clock performance.
The following section is not an exhaustive review of the literature but seeks instead to provide an overview and the general direction of many of the approaches.

3.1 Contrast Limitations due to Excited-State Hyperfine Structure

The existence of a magnetic moment in the nucleus of all stable alkali atoms creates hyperfine structure not only in the ground 5S1/2 state but also in the P states to which the S state is coupled by the optical fields. The frequency separation of these excited-state hyperfine states (~500 MHz) is often smaller than the homogeneous broadening of the optical transition resulting from the buffer gas (2 GHz for a buffer gas pressure of 10 kPa). As a result, the optical fields used to excite the CPT resonance typically couple to several excited-state hyperfine levels simultaneously. While some of the transitions help optically prepare atoms in the coherent dark state, other transitions can simultaneously depopulate the dark state through incoherent optical pumping of atoms out of the dark state. For example, in 87Rb, the \(F' = 0 \) and \(F' = 3 \) excited-state hyperfine levels in the \(^3P_{3/2} \) state are coupled to only one of the two ground states, due to single-photon selection rules. As a result, a coherence between the two ground states cannot be generated by these levels via CPT, but single-photon transitions out of the CPT state to these levels are allowed (Nagel et al., 2000).

In addition to incoherent optical pumping out of the dark state, another important destructive mechanism occurs when multiple Lambda systems are formed between a common pair of ground states and different excited states. As described in the Equation (2), the phase of the dark state is governed by the complex optical Rabi frequencies that depend on both the phase of the optical fields and the coupling coefficients between the light and atomic energy levels. When multiple Lambda systems are excited between a common pair of ground states, the existence of an overall dark state in the system is not guaranteed and depends on the relative phase between the dark states of the individual Lambda systems. If the individual dark states are out of phase, then the strength of the overall CPT resonance can be reduced or even eliminated completely in the case of perfect destructive interference (Nagel et al., 2000; Stahler et al., 2002).

Consider, for example, transitions that are excited on the D1 and the D2 line of \(^{87}\)Rb between \(m_F = 0 \) ground states and the excited states by use of circularly polarized light fields exciting \(\sigma^+ \) transitions (see level diagram in Figure 11a). In addition, we assume that the buffer gas pressure in the cell is high enough that the broadening of the optical transitions is larger than the excited hyperfine splitting. On the D1 line, there are two Lambda systems and no single-photon transitions. The two Lambda systems are

\[
|F = 1, m_F = 0 > \rightarrow |F' = 1, m_F = 1 > \quad \text{and} \quad |F = 1, m_F = 0 > \rightarrow |F' = 1, m_F = -1 >
\]

The transition amplitudes are in phase and therefore add constructively. On the D2 transition, the situation is different. However, due to the different phase factors for the two dark states, the destructive interference of the CPT resonance is reduced. The dark state for \(F = 1 \rightarrow F' = 2 \rightarrow F' = 1 \rightarrow F = 2 \) Lambdas is not as strong as the Lambdas on the D1 line, the dark state is reduced, and the D2 transition is enhanced. In addition, on the D2 line, the D1 line depopulates the dark state.

The combined influence of the dark state for the D2 line is much weaker than for the D1 line.
exhaustive review of the literature but clear and the general direction of many

excited-State Hyperfine Structure

in the nucleus of all stable alkali atoms and in the ground \(S_{1/2} \) state but also in states coupled by the optical fields. The \(\Delta F = 1 \) state hyperfine states (~500 MHz) is the broadening of the optical transition for a buffer gas pressure of 10 kPa. As the CPT resonance typically couples to both levels simultaneously. While some of the atoms in the coherent dark state, either populate the dark state through incoherent state. For example, in \(^{87}\)Rb, the \(\Delta F = 1 \) and \(\Delta F = 2 \) levels in the \(^{2}P_{3/2} \) state are coupled simultaneously due to single-photon selection rules.

Two ground states cannot be generated as photon transitions out of the CPT state to \(^{2}S_{1/2} \) (2000).

pumping out of the dark state, another occurs when multiple Lambda systems of ground states and different excited states. In (2), the phase of the dark state is determined by the frequencies that depend on both the coupling coefficients between the multiple Lambda systems are excited states. The existence of an overall dark state depends on the relative phase of the two ground states. If the individual Lambdas are in phase the overall CPT resonance occurs completely in the case of perfect destruction (Stahler et al., 2002).

Multiple Lambda transitions that are excited on the D1 and the D2 states and the excited states by use of pumping \(\sigma^{+} \) transitions (see level diagram). Assume that the buffer gas pressure in the cavity of the optical transitions is larger than the transmission.

On the D1 line, there are two Lambda transitions. The two Lambda systems are

\[|F = 1, m_{F} = 0 \rangle \rightarrow |F' = 2, m_{F} = 1 \rangle \rightarrow |F = 2, m_{F} = 0 \rangle \]

The transition amplitudes are such that the individual dark states are in phase and therefore add constructively (Stahler et al., 2002).

On the D2 transition, the same two Lambda systems are again excited. However, due to the different Clebsch-Gordon coefficients, the phases of the two dark states are quite misaligned, which results in a partial destruction of the CPT resonance. For example, apart from a constant phase factor on the D2 \(^{87}\)Rb line on the \(m_{F} = 0 \) ground states, the dark state for \(F = 1 \rightarrow F' = 2 \rightarrow F = 2 \) is \(|NC\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |2\rangle) \). For the \(F = 1 \rightarrow F' = 1 \rightarrow F = 2 \) Lambda system, \(|NC\rangle = \frac{1}{\sqrt{2}} (5|1\rangle + |2\rangle) \). For the other hand, on the D1 line, the dark state is given by \(|NC\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |2\rangle) \) for both Lambda systems.

In addition, on the D2 line there is one single-photon transition that depopulates the dark state:

\[|F = 2, m_{F} = 0 \rangle \rightarrow |F' = 3, m_{F} = 1 \rangle \]

The combined influence of these two effects is that the strength of the CPT resonance on the D2 transition is significantly smaller than that on the D1 transition.
The influence of additional energy levels on CPT resonances becomes clearly evident when CPT resonances using D1 and D2 transitions are compared by use of the atomic vapor cell (Zhu, 2002). It is found experimentally that CPT resonances excited by use of the D1 transition are almost an order of magnitude stronger than those seen by use of the D2 transition (Lutwak et al., 2003; Stahler et al., 2002). A comparison of CPT resonances obtained using D1 and D2 excitation, but otherwise under similar conditions, is shown in Figure 12. The discrepancy between the strengths of the CPT resonances on the D1 and D2 transitions is in contrast with microwave resonances seen in conventional optically pumped clocks, in which efficient optical pumping can be achieved by use of both D1 and D2 transitions. The reason CPT resonances are so sensitive to excitation pathways is that CPT resonances rely equally on both optical pumping and quantum interference. This is contrasted with conventional microwave resonances that rely only on optical pumping.

3.2 Contrast Limitations due to Zeeman Substructure

The multiplicity of Zeeman levels present in the ground states of alkali atoms is another primary limitation to the signal strength. In the presence of a small magnetic field, the ground-state hyperfine levels are Zeeman split into \((2F + 1)\) magnetic ground states. In atomic clocks, a small magnetic field is typically applied to separate the various ground states so that the magnetic sublevels can be uniquely interrogated with sensitive transitions. However, the adjacent, equally spaced \(m_F \neq 0\) states also interact. In thermal equilibrium, at the base of the optical clock, the magnetic sublevels with roughly equal populations. In atomic clocks, the optical pumping is generally weak enough to redistribute the atomic population among the levels. The usable CPT resonances are then generated by atoms that are in a single ground state with \(m_F \neq 0\) contributing equally (as in Figure 10b). The ratio of the number of ground states, usually, is weak enough that it does not change the population.

Another issue that is frequently noted is the “trap state” (Renzoni &...
states so that the magnetically insensitive $m_F = 0$ ground states can be uniquely interrogated without interference from the magnetically sensitive transitions. However, the presence of the unwanted but closely spaced $m_F \neq 0$ states also influences the strength of the CPT resonance. In thermal equilibrium, atoms populate all of the ground-state magnetic sublevels with roughly equal probability, as shown in Figure 13a. In atomic clocks, the optimized light intensity used for CPT excitation is generally weak enough that it causes some, but not significant, redistribution of atomic population between the various magnetic sublevels. The useable CPT resonance signal (quantity A in Figure 10b) is generated by atoms that are in the $m_F = 0$ states, but many atoms in states with $m_F \neq 0$ contribute to absorption of the incident light (quantity B in Figure 10b). The absorption contrast is therefore reduced by roughly the ratio of the number of $m_F = 0$ ground states to the total number of ground states, under the assumption that the light intensity is weak enough that it does not significantly redistribute the level populations.

Another issue that is frequently discussed is optical pumping loss to the “trap state” (Renzoni & Arimondo, 1998; Vanier et al., 2003b). When

Figure 13 (a) Reduction of the CPT resonance contrast due to the presence of ground-state Zeeman structure. An even distribution of atoms among the Zeeman ground-state sublevels implies that only a small fraction of atoms contribute to the magnetically-insensitive $m_F = 0 \to m_F = 0$ transition. (b) Effects of the “trap” state (population indicated by the dark bar), which does not form a CPT resonance and into which atoms are pumped by the optical fields.
circularly polarized light resonant with the D1 transition is used to excite CPT resonance, for example, a significant fraction of the population can be pumped to the magnetic end states \((F = I + 1/2, m_F = \pm F)\). As seen in Figure 13b, the magnetic end state is an incoherent state, which is dark due to selection rules which prohibit excitation by circularly polarized light fields (\(\sigma^+\) transitions in this case). Atoms can therefore be "trapped" in this end state (or even in other states, depending on the laser polarization) and stop interacting with the light fields. Because the optical configuration described above is used in current generation of microwave CPT clocks, the problem of the trap state has received significant attention from the research community. This configuration in which a Lambda system is excited in the presence of an incoherent dark state is often referred to as an open Lambda system.

The atoms that are trapped or lost to the end state contribute neither to the CPT resonance signal nor to the optical absorption. They are simply invisible to the incident light fields. To compensate for this loss of atomic population, alkali density can be increased, but this also increases relaxation through alkali density dependent decoherence mechanisms such as spin exchange (Happer, 1972), which increases the line width of the CPT resonance. There have been a number of solutions that have been proposed to depopulate the end state. Some of the approaches are outlined below.

3.2.1 Depopulation Pumping Using \(\pi\)-Polarized Light

This idea involves use of an additional linearly polarized laser light resonant with the \(F = I + 1/2\) ground state and the \(F' = I + 1/2\) excited state (Kazakov et al., 2005b). The linearly-polarized light travels in a direction perpendicular to the applied magnetic field such that it excites \(\pi\)-transitions (\(\Delta m_F = 0\)). This secondary light field is used to depopulate the end state but does not depopulate the atomic population in the \(F = I + 1/2, m_F = 0\) ground because of selection rules that prohibit such a transition.

While this technique works well in theory, there are several difficulties associated with using it in a practical device. Besides the technical difficulties arising from the use of separate laser beams traveling in perpendicular directions, this technique requires selective excitation of the \(F = I + 1/2\) ground state by use of the \(F' = I + 1/2\) excited state. This limits the amount of buffer gas that can be used in the vapor cell to approximately below 1 kPa in Rb and Cs such that the levels in the excited state can be clearly resolved. This technique therefore presents difficulties for use with smaller cells, which typically use higher buffer gas pressures to avoid broadening of the hyperfine transition due to wall collisions. In addition, the low buffer gas pressure requires laser drift and laser frequency stabilization.

3.2.2 Excitation with Optical Pumping

Another approach that excites population in the unused states of the CPT resonance by use of a combination of light fields. This technique addresses excitation of dark states and the population in the excited states by using a combination of light fields. The simplest example of \(\sigma^+\) and \(\sigma^-\) light excited by a combination of light fields is shown in Figure 14. The \(\sigma^+\) and \(\sigma^-\) light fields are directed at the systems on the \(m_F = 0\) state, but there are no end states that are dark. Therefore, simply using linearly polarized light to excite \(m_F = 0\) levels does not depopulate the individual dark states except...
with the D1 transition is used to excite a significant fraction of the population can states \((F = I + 1/2, m_F = \pm F) \). As seen in figure 13, this is an incoherent state, which is dark (no exciton by circularly polarized light). Atoms can therefore be “trapped” in states, depending on the laser polarizing light fields. Because the optical transitions are in current generation of microwave to state has received significant attention in potential configurations in which a Lambda type of an incoherent dark state is often used. Atoms in the end state contribute neither to the optical absorption. They are simply present. To compensate for this loss of atomic population, this also increases relaxation and dephasing mechanisms such as which increases the line width of the CPT resonance can be used in conjunction with the magnetic field. Some of the approaches are outlined using \(\sigma \)-Polarized Light

Additional linearly polarized laser light can be used to excite the F* = I + 1/2 excited state. The linearly-polarized light travels in a secondary magnetic field such that it is not depopulating the atomic population because of selection rules that prohibit it. In theory, there are several difficulties with this technical device. Besides the difficulties with separate laser beams traveling in perpendicular polarization, a laser requires selective excitation of the upper of the F* = I + 1/2 excited state. This can be used in the vapor cell to trap and Cs such that the levels in the are excited. This technique therefore presents several cells, which typically use higher buffer can widths and the hyperfine transition due to wall collisions. In addition, the narrow optical line width resulting from the low buffer gas pressure requires tighter restrictions on the amount of laser drift and laser frequency noise that can be tolerated.

3.2.2 Excitation with Orthogonal \(\sigma \)-Polarized Light Fields

Another approach that has been proposed to reduce the atomic population in the unused Zeeman levels is simultaneous excitation of the CPT resonance by use of a combination of \(\sigma^+ \) and \(\sigma^- \) light fields. This technique addresses both the thermal population in all Zeeman levels and the population build-up in the trap state due to optical pumping. A linear light field traveling along the magnetic field is the simplest example of \(\sigma^+ \) and \(\sigma^- \) light fields. The transitions that are excited by a combination of \(\sigma^+ \) and \(\sigma^- \) light fields are shown in Figure 14. The \(\sigma^+ \) and \(\sigma^- \) light fields independently excite Lambda systems on the \(m_F = 0 \) states. As can be seen from the figure, there are no end states that are dark in this optical configuration. Unfortunately, simply using linearly polarized light to excite a closed Lambda system between \(m_F = 0 \) levels does not work. The reason for this is that the individual dark states excited by the \(\sigma^+ \) and the \(\sigma^- \) light are out of phase.
phase. In other words, the atoms that appear dark to the $\sigma+$ polarization appear bright to the $\sigma-$ polarization, and vice versa. The result of this destructive interference is that the overall CPT resonance is not observed.

One solution to this problem is to introduce time delay between $\sigma+$ and the $\sigma-$ light fields such that the individual dark states constructively add together in phase. This principle has been successfully demonstrated in two ways. Jau et al. (2004a), Taichenachev et al. (2004b), and Kargapoltshev et al. (2004) have proposed splitting the light fields into two parts with orthogonal polarization and recombining the fields after introducing a relative path delay between the $\sigma+$ and $\sigma-$ components. The relative path difference of half a microwave wavelength (ground-state hyperfine splitting) shifts the phase of the dark state such that the resonances constructively interfere. This path length difference can be introduced by use of polarization filtering in a copropagating geometry or by reflecting the light back through the cell. A significant gain in the CPT contrast was reported by Jau et al. (2004a).

The difficulty in using additional optics in splitting and recombining the light field after introducing the path delay led to development of another similar approach (Shah et al., 2006b). In this approach two separate lasers were used to avoid the difficulty in splitting and recombining the light fields. Each of the two independent lasers had opposite circular polarizations, and they independently excited CPT resonance on the $m_F=0$ ground states. The lasers were modulated by use of the same microwave source, and an electronic microwave phase shifter was inserted into the RF path to one laser to shift the relative phase of the microwave modulation on the two lasers by π. This technique works well and can also be implemented in a miniature package; however, the use of two separate lasers adds some complexity to the overall implementation and to the control system in particular. Another strategy is to generate a coherence on the $m_F=0 \rightarrow m_F=0$ transition using one polarization and measure the resonant change in birefringence with a weak optical field with an orthogonal polarization (Zhu, 2003).

3.2.3 CPT Excitation on $\Delta m_F=2$ Transitions

A third approach that has been proposed involves the direct use of linearly polarized light and excitation of CPT resonance between $m_F=+1$ and $m_F=-1$ (Taichenachev et al., 2005b). This scheme, often referred to as "lin // lin" since two optical fields with parallel linear polarization are used, is by far the simplest way of exciting a closed Lambda transition by use of a combination of $\sigma+$ and $\sigma-$ light fields. The transitions that are excited are shown in Figure 15. The relative phase between the dark states excited between $m_F=+1 \rightarrow m_F=-1$ and $m_F=-1 \rightarrow m_F=+1$ is no longer of concern, because the two magnetic sublevels have independent sets of ground state magnetic sublevels.

In this scheme, the transition involves a magnetic field. Because of this, each of the two hyperfine levels has a different field sensitivity for each of the two $m_F=1$ hyperfine transitions. In ^{87}Rb for example, the transition $|F=1, m_F=1\rangle \rightarrow |F=2, m_F=1\rangle$ occurs over 300 kHz in 50 μT magnet field, whereas the $|F=1, m_F=-1\rangle \rightarrow |F=2, m_F=-1\rangle$ transition occurs over a few hundred hertz because of the field dependence. In addition, the transition is positive for one transition (the $|F=1, m_F=1\rangle \rightarrow |F=2, m_F=1\rangle$ transition) and negative for the other ($|F=1, m_F=-1\rangle \rightarrow |F=2, m_F=-1\rangle$ transition) when the resonance is excited simultaneously, the linear dependence of the resonances vanishes. The $\Delta m_F=2$ CPT effect produces only a broadening of the transition and is not shifted. Kargapoltshev et al. (2005a) have proposed using this effect to produce enhanced resonance by applying a magnetic field to the individual pairs of ground state magnetic sublevels.

The main perceived drawback of this scheme is that it is not expected to be effective only in ^{87}Rb ($J=1$, $m_J=3/2$) atoms but not in ^{133}Cs...
that appear dark to the $\sigma+$ polarization, and vice versa. The result of superposing the individual dark states constructively leads to introduce time delay between $\sigma+$ and $\sigma-$ components. The overlap of the light fields into two parts recombining the fields after introducing the $\sigma+$ and $\sigma-$ components. The microwave wavelength (ground-state path length difference can be introduced in a copropagating geometry or by the cell. A significant gain in the CPT effect was obtained in splitting and recombining the path delay led to development of two independent lasers had opposite independently excited CPT resonance on levels were modulated by use of the same microwave phase shifter was laser to shift the relative phase of the two lasers by π. This technique works well in miniature package; however, the use of complexity to the overall implementation is no longer of concern, because the dark states are excited between two independent sets of ground states.

In this scheme, the transitions have an interesting dependence on magnetic field. Because of the slightly different g-factors for states in each of the two hyperfine levels, there is a small first-order magnetic field sensitivity for each of the $m_F = +1 \rightarrow m_F = -1$ and $m_F = -1 \rightarrow m_F = +1$ transitions. In 87Rb for example, individual $m_F = \pm 1$ states are shifted by over 300 kHz in 50 μT magnetic field. However, the difference frequency between the states $|F = 2, m_F = +1\rangle$ and $|F = 2, m_F = -1\rangle$ shifts by only a few hundred hertz because of their much smaller linear magnetic field dependence. In addition, the sign of this residual linear sensitivity is positive for one transition ($|F = 2, m_F = +1\rangle \leftrightarrow |F = 2, m_F = -1\rangle$) and negative for the other ($|F = 2, m_F = -1\rangle \leftrightarrow |F = 2, m_F = +1\rangle$). As a result, when the resonance is excited using both pairs of ground states simultaneously, the linear dependence on magnetic field of the center point of the resonance vanishes. The presence of a small magnetic field therefore produces only a broadening of the overall resonance. Kazakov et al. (2005a) have proposed using this mechanism to produce a pseudoresonance by applying a magnetic field large enough that the resonances on the individual pairs of ground states are shifted such that there is a dip in the center to which an LO can be stabilized.

The main perceived drawback of this technique is that it was predicted to be effective only in 87Rb (or other atoms that have a nuclear spin of 3/2) atoms but not in 133Cs (which has nuclear spin 7/2). Atoms with
larger nuclear spin have a greater number of levels in the excited state, which cause additional Lambda systems to be excited that destroy the CPT resonance through destructive interference. This is due to the fact that it requires selective excitation of the Lambda system by use of the $F' = 1$ excited state. This requires the use of very low buffer gas pressures, possibly in combination with a wall coating to reduce the wall-induced relaxation. Interestingly, high-contrast resonances have been observed using a similar scheme in a cell containing 133Cs and a low buffer gas pressure (Watabe et al., 2009). This experimental result suggests that the excitation of multiple Lambda systems affects the resonance contrast only modestly.

3.2.4 The Use of End Resonances

The diluted atomic population participating in the clock transition can be improved by use of optical pumping, for example, with π-polarized light, as mentioned in Section 3.2.1 above. Ideally, the population accumulates in the $m_f = 0$ states, which are first-order magnetically insensitive. However, population can also be pumped into the “end” $m_f = F$ states, which can then be used to measure the hyperfine frequency. Because transitions between end states are first-order sensitive to magnetic fields, the local magnetic field must be measured simultaneously in a precise manner in order to reduce the field dependence of the clock output frequency. This can be done by measuring the Zeeman resonance frequency simultaneously with the hyperfine end-resonance frequency.

An additional advantage gained by the use of end resonances is the suppression of spin-exchange broadening. At high alkali atom densities, spin-exchange collisions can be the dominant source of hyperfine relaxation (Walter & Happer, 2002). An atomic sample perfectly polarized in the end state does not undergo spin-exchange relaxation because all atoms are oriented in the same direction, and therefore no angular momentum can be exchanged between any two colliding atoms. However, a small population in other states creates some relaxation, and hence only a partial suppression of the spin-exchange relaxation can be achieved in real atomic systems.

A final advantage of this scheme is that atoms can be optically pumped even at very high buffer gas pressures where the optical transitions from the ground-state hyperfine levels are broadened far beyond the state frequency splitting. The traditional OMDR configuration has considerably degraded performance in the presence of high buffer gas pressure, because the hyperfine optical pumping is very inefficient.

This proposal and accompanying experiments in 87Rb are described by Jau et al. (2004b) and shown schematically in Figure 16. Microwave excitation of the hyperfine transitions was used in the experiment, as opposed to CPT transitions, although the enhanced contrast and narrow line width should be equal to, or possibly greater than, the CPT case, if the line width can be suppressed by a factor of about two, or even less. The enhanced signal contrast (Poletto et al. 2005) and a magnetically sensitive precession frequency by use of a pump field is required.

3.2.5 Amplitude-Modulated Excitation Sources

CPT resonances are often excited on the order of 1 cm. In order to maintain the coherence due to wall collisions, the buffer gas species can be modulated at a rate that is roughly as the inverse of the CPT line width or the buffer gas-induced relaxation width.
number of levels in the excited state, it seems to be excited that destroy the interference. This is due to the fact of the Lambda system by use of the use of very low buffer gas pressures, a coating to reduce the wall-induced contrast resonances have been observed containing 133Cs and a lower buffer gas experimental result suggests that the systems affects the resonance contrast.

Figure 16 “End-resonance” method for increasing the absorption contrast and decreasing the line width of CPT resonances. (a) Atoms are optically pumped into the “end” state with maximal angular momentum, resulting in high transmission of the pumping light through the cell. A microwave field ω_{mw} and RF field ω_{RF} are applied simultaneously and the pump light transmission monitored as a function of (b) ω_{mw} and (c) ω_{RF}, providing a simultaneous measurement of ω_L and $\Delta_{abs} = 3 \omega_L$ (for 87Rb).

The line width should be equally present in CPT resonances. Line width suppression by a factor of about three was measured, as was considerably enhanced signal contrast (Post et al., 2003). Simultaneous measurement of a magnetically sensitive hyperfine transition frequency and Larmor precession frequency by use of a “tilted 0-0 state” was demonstrated by Jau and Happer (2005). When the system was operated as an atomic clock, a short-term instability of $6 \times 10^{-11}/\sqrt{t}$ was obtained in a compact physics package (Braun et al., 2007).

3.2.5 Amplitude-Modulated Versus Frequency-Modulated CPT Excitation Sources

CPT resonances are often excited in alkali vapor cells with dimensions on the order of 1 cm. In order to prevent rapid relaxation of the hyperfine coherence due to wall collisions, a buffer gas is usually added to the cell. The buffer gas species can be chosen so that its effect on the hyperfine relaxation rate is rather small. The optimal buffer gas pressure varies roughly as the inverse of the smallest cell dimension and balances collision-induced relaxation with relaxation caused by residual diffusion.
through the buffer gas to the walls of the cell (Kitching et al., 2002; Knappe, 2007).

The buffer gas also significantly broadens the optical transitions involved in the CPT resonance. As the buffer gas pressure is increased, the optical transitions from the ground-state hyperfine levels can go from being completely resolved to being completely unresolved. When a single modulated laser is used to excite the resonances, the number of modulation sidebands that interact with the atoms can vary from two to many. In Figure 17a, the spectrum from the optical transitions is plotted in these two limits and compared with the one-half the hyperfine splitting.

When the transitions are resolved, the light can interact with the atoms (Trace A) or be absorbed by the atom (Trace B). The absorption contrast can be calculated by subtracting the areas under the curves and plotting the result as a function of the pump frequency (Figure 17b). The dark states are the phase of each pair of sidebands at which no light is transmitted. The light source is amplitude modulated. Two sidebands has the same phase and the absorption contrast is the sum of the absorption contrasts of the two separate sidebands. The bright states add destructively. For the small vapor cells, therefore, the bright states are critically important. A careful analysis of the results by Post et al. (2005) largely supports this.

3.3 High-Contrast Resonances

One of the issues associated with the CPT resonances is the transmission contrast of the CPT resonance (usually a few percent) when the atom is in a single state. The contrast is not resolved, as the optical transitions from each hyperfine level are well resolved, while Trace B is for a higher buffer gas pressure, for which the transitions are not resolved. For the case of Trace A, only two of the frequencies in the optical spectrum interact with the atoms, while for the case of Trace B, almost all do.

(b) Experimental data comparing the strength of the CPT resonance (identifying the saturation parameter S) as a function of buffer gas pressure for FM- and AM-modulated light fields. Reprinted figure with permission from Post et al. (2005); © 2005 of the American Physical Society.
walls of the cell (Kitching et al., 2002; two limits and compared with the spectrum of a light field modulated at one-half the hyperfine splitting.

When the transitions are resolved and only two optical field frequencies interact with the atoms (Trace A in Figure 17a), a dark state is created with a phase defined by the relative phase of the two relevant optical fields, and the absorption contrast can be quite large. However, when the transitions are not resolved, many optical frequencies interact with the atoms (Trace B in Figure 17), and the dark state tries to adjust its phase to correspond to the phase of each pair of sidebands separated by the hyperfine splitting. If the light source is amplitude modulated, the beatnote between each pair of sidebands has the same phase and the dark states created by each pair independently add constructively to form a single dark state with high contrast. If, on the other hand, the light source is frequency modulated, some pairs of sidebands are out of phase with the other pairs, and the dark states add destructively. For the high buffer gas pressures required for small vapor cells, therefore, the modulation properties of the light source are critically important. A careful study of this phenomenon is presented by Post et al. (2005), largely supporting the intuitive reasoning presented here. Data from Post et al. (2005) are shown in Figure 17b.

3.3 High-Contrast Resonances Using Four-Wave Mixing

One of the issues associated with microwave CPT atomic clocks is that the transmission contrast of the CPT resonance is typically small (in the range of a few percent) when the atomic clock is fully optimized. This is due to several reasons, including the presence of modes generated by microwave laser modulation that do not participate in the formation of CPT resonances. A very large fraction of the laser noise that affects the CPT clock performance can be eliminated by removing the background light. Shah et al. (2007) demonstrated a novel technique based on four-wave mixing in a double-Lambda system, shown in Figure 18a, to eliminate most of the background light falling on the photodetector.

The experimental setup from Shah et al. (2007) is shown in Figure 18b. In this experiment, the \(\sigma^+ \) light is used to create a dark state (coherence) in atoms by use of conventional CPT laser modulation. By use of a second single-frequency laser with opposite circular polarization, the coherence generated in the atoms is gently probed to stimulate emission of a conjugate light field whose frequency is separated from that of the original probe beam by the ground-state splitting. Through a combination of spectral and polarization filtering, the power in all of the incident light fields other than the conjugate field is then largely eliminated. When the pump beams satisfy the two-photon resonance condition, there is brightness observed on the photodetector from the incident conjugate field. When the two-photon condition is not satisfied, the conjugate field
Figure 18 (a) Level diagram showing the polarizations and tunings of the optical fields for CPT resonance contrast enhancement using four-wave mixing and a filter cell. (b) Experimental setup and contrast measurement. From Shah et al. (2007); reproduced with permission from the Optical Society of America.

is not generated, and therefore there is no light incident on the photodetector. Experimentally, the transmission contrast seen in this way approaches 95% and is limited only by the efficiency of the optical filtering in the setup.

3.4 Push-Pull Laser Atomic Oscillator

Jau and Happner (2007) have demonstrated a novel technique in which they show a “mode-locking” type behavior in a laser cavity in the presence of alkali atoms. In this self-oscillating system, the frequency separation of the spontaneously generated state \(m_F = 0 \) transition from \(m_F = 0 \) is always generated in a dark state between the atoms in the dark state precesses at the cavity and have a constant phase relation. Lambda system are thus referred to as the "all-optical"

Because of the fixed phase relation, cavity operation is analogous to that of a frequency comb (see Figure 19).

![Figure 19](attachment:figure19.png)
Figure 19 (a) Operation of the “push-pull” laser-atomic oscillator. (b) The comb of output frequencies spaced by the hyperfine frequency of the alkali atoms in the cavity. Reprinted figure with permission from Jau and Happer (2007); © 2007 of the American Physical Society

The polarizations and tunings of the optical fields are significant using four-wave mixing and a filter cell. A measurement from Shah et al. (2007) reproduces the efficiency of the optical filter.

The absence of light incident on the photodetector ensures that no light incident on the photodetector is seen this way only by the efficiency of the optical filter.

Oscillator

It demonstrated a novel technique in which we behavior in a laser cavity in the presence of a self-oscillating system, the frequency separation of the spontaneously generated modes is given by the ground state $m_F = 0 \rightarrow m_F = 0$ transition frequency, introducing the prospects of operating the system as an atomic clock. The schematic of their experimental setup is shown in Figure 19a.

The basic idea is the following: imagine that all the atoms are initially prepared in a dark state between the $m_F = 0$ hyperfine ground states. The atoms in the dark state precess at the hyperfine frequency and appear continuously transparent only to light fields that excite a Lambda system. Two or more optical modes that are separated by the hyperfine frequency and have a constant phase relation between them suitable for exciting a Lambda system are thus the “allowed” cavity modes in the system. Because of the fixed phase relationship between the optical modes, the cavity operation is analogous to that in a mode-locked laser. The result is that the light coupled out of the cavity has a frequency spectrum similar to that of a frequency comb (see Figure 19b).
Through the use of two $\lambda/4$ wave plates, the optical arrangement in the cavity was such that the light excites $\sigma+$ transitions traveling along one direction and $\sigma-$ transitions when traveling in the opposite direction. The purpose of this was to prepare atoms in a pure superposition of $m_F = 0$ states without the usual fraction in the end state. The length of the cavity was chosen to be an odd integral multiple of half the hyperfine wavelength, such that the dark state due to oppositely traveling light fields remained in phase. This system has the important feature that no LO is needed to excite the resonance; the system here is an active system and oscillates at the hyperfine frequency.

A related experiment was described by Akushin and Ohtsu (1994), in which an alkali cell was placed in an external cavity providing optical feedback to a distributed feedback (DFB) laser. A second laser beam, separated in frequency by approximately the alkali ground-state hyperfine frequency, was sent through the cell parallel to the first laser beam. It was found that the laser with feedback optically locked to the second laser with a frequency difference exactly equal to the ground-state hyperfine splitting. CPT-induced polarization rotation has also been used in a similar context (Liu et al., 1996).

A number of other self-oscillating systems based on CPT have been developed (Strekalov et al., 2003, 2004; Vukicevic et al., 2000), in which RF rather than optical feedback was used to sustain the oscillation.

3.5 The CPT Maser

A CPT maser (Godone et al., 1999; Vukicevic et al., 2000) is an active frequency standard in which a coherent microwave signal is directly recovered from the atoms instead of an indirect signal in the form of change in optical transmission. This approach can also eliminate the need for an external microwave oscillator for laser modulation. Once the microwave oscillation is started, it can be sustained indefinitely by use of the microwaves obtained directly from the atoms in a feedback configuration.

In a CPT maser, atoms are enclosed in a microwave cavity whose frequency is tuned close to the difference frequency between the $m_F = 0$ hyperfine ground states (see Figure 20). The coherence generated in the atoms through dark-state excitation couples with one of the cavity modes to stimulate emission of microwaves by the atoms at the hyperfine frequency. The microwaves emitted by the atoms can, in turn, be used to modulate the laser to sustain the maser operation.

A complete CPT maser prototype was demonstrated and evaluated and an instability of $3 \times 10^{-12}/\sqrt{\tau}$ was measured, integrating down to below 10^{-13} at 1 hour, once the linear drift had been removed (Levi et al., 2004). A variety of noise contributions were also measured, with thermal noise being the most important.

Considerable theoretical work was also done for the operation of the CPT maser in cold atoms (Zibrov et al., 2002), as well as a number of experimental developments to its operation and underlying physics.

3.6 N-Resonance

A novel alternative to CPT, the N resonance, was discovered by Wineland and coworkers in 1985 (Levi et al., 2005) and studied subsequently (Wineland et al., 2002), which has its origins in earlier work in atomic physics (Zibrov et al., 2002). The N resonance, or conventional ODMR technique, uses two linearly polarized light fields to excite the atoms, one of which is tuned to the hyperfine frequency of the cesium atom.

In a conventional ODMR experiment, one light field is resonant with the transition and is amplified by the atom, while the other is off frequency and acts as a probe. The transmitted light intensity is then monitored as the detuning of the resonant light field is scanned.

The N resonance is a transition that is resonant with a transition in a second level of the atom, which is not resonant with the first level. The N resonance is a two-level system, and the transition is a Raman transition, which is a two-photon transition.

The N resonance is a transition that is resonant with a transition in a second level of the atom, which is not resonant with the first level. The N resonance is a two-level system, and the transition is a Raman transition, which is a two-photon transition.

The N resonance is a transition that is resonant with a transition in a second level of the atom, which is not resonant with the first level. The N resonance is a two-level system, and the transition is a Raman transition, which is a two-photon transition.
noise being the most important at short integration times and temperature-related effects dominating at long integration times. Considerable theoretical work was also carried out to understand the operation of the CPT maser in detail (Godone et al., 2000; Vanier et al., 1998), as well as a number of interesting independent phenomena related to its operation and underlying physics (Godone et al., 2002a,b,c,d).

3.6 N-Resonance

A novel alternative to CPT, the N-resonance, was proposed (Zibrov et al., 2005) and studied subsequently (Novikova et al., 2006a,b). This scheme, which has its origins in earlier work on multiphoton resonances in alkali atoms (Zibrov et al., 2002), can be thought of as a modification of the conventional OMDR technique. Just as in the OMDR technique, atoms are optically pumped into one hyperfine level with an optical "probe" field resonant with a transition from the other hyperfine level.

However, instead of exciting the microwave transition by use of a microwave field, a bichromatic optical field is used, close to Raman resonance with the microwave transition, but detuned from the optical transition. When the Raman resonance condition is achieved, atoms are optically pumped back into the depleted hyperfine level, leading to increased optical absorption of the pump field. This absorptive resonance is in contrast with the conventional CPT resonance, in which reduced absorption is seen when the two-photon condition is satisfied.

Among the advantages of the N-resonance scheme is that unlike CPT resonance, this scheme produces signals of high contrast (as high as 30% transmission contrast) on both the D1 and the D2 transitions. Clock stabilities of $1.5 \times 10^{-10} / \sqrt{\tau}$ have been obtained in 87Rb confined in a cell
of diameter 2.5 cm. It has also been shown that despite the inherently off-resonant operation of N-resonance-based atomic clocks, the light shifts can be canceled to first order by appropriately choosing the intensity in the pump and the probe beams, allowing the possibility of building an atomic clock with good long-term stability based on N-resonances. This scheme still requires that the excited-state hyperfine resonances be resolved, and hence has the same limitations with respect to buffer gas pressure as some of the techniques discussed above.

Although in its most general form requiring optical fields at three unique frequencies, this scheme can be implemented by use of only two optical fields by allowing a single field to do double duty, both as the probe field and as one of the legs of the Raman field. An energy-level diagram of the N-resonance excitation mechanism is shown in Figure 21a, and the experimental implementation using a single modulated diode laser is shown in Figure 21b. One of the weak sidebands generated by the modulator serves as the probe and one of the Raman fields, while the strong optical carrier provides the second Raman field. An etalon is placed after the cell to attenuate the strong Raman field and therefore increase the resonance contrast.

3.7 Raman-Ramsey Pulsed CPT

As described above, light shifts play a major role in determining the long-term stability of vapor cell atomic clocks. In CPT clocks, the presence of the off-resonant optical modes and an imbalance between the intensities in the two arms of the Lambda system can cause significant light shifts. A commonly used technique to avoid light shifts is to pulse the light fields and allow the atoms to evolve in the dark. An additional advantage of pulsing the light fields is that atoms can be prepared in a coherent superposition state with higher efficiency by use of strong light fields while avoiding power broadening to a large extent. A pulsed technique for CPT clocks has also been recently proposed (Zanon et al., 2004b, 2005) and demonstrated (Guerandel et al., 2007), and it has shown excellent both stability (Boudot et al., 2009) and a high degree of insensitivity to light shifts (Castagna et al., 2009).

In this technique, the light fields are switched on and off at regular intervals. The operation of the clock can be understood as follows: during the first pulse, CPT light fields prepare atoms in a coherent dark state. After the state preparation is nearly complete, the light fields are turned off for a period roughly equal to the ground-state relaxation time. During this period, the atoms freely evolve at the ground-state hyperfine frequency without being perturbed by the light fields.

When the second light pulse is turned on, the hyperfine frequency of the atoms in the dark is inferred from the initial absorption signal of the light by the atoms. If the frequency of the microwave oscillator used to modulate the light fields is the same as that of the atomic hyperfine frequency (in the dark), then the atoms appear transparent and continue to appear transparent to the atomic evolution in the dark. When the light fields were turned off, the pulse repumps the fraction of the that when the light fields were turned off, the pulse repumps the fraction of the

![Figure 21](image-url)
shown that despite the inherently offset-cavity-based atomic clocks, the light shifts can be appropriately choosing the intensity in allowing the possibility of building an atomic stability based on N-resonances. This excited-state hyperfine resonances be limitations with respect to buffer gas discussed above.

A form requiring optical fields at three can be implemented by use of only two probe field to do double duty, both as the opportunities of the Raman field. An energy-level excitations mechanism is shown in implementation using a single modulator figure 21b. One of the weak sidebands serves as the probe and one of the Raman carrier provides the second Raman field. To attenuate the strong Raman field and contrast.

Figure 21 (a) Atomic level diagram for the N-resonance. (b) Experimental implementation. Reprinted figure with permission from Zibrov et al. (2005); © 2005 of the American Physical Society

dark), then the atoms appear transparent to the light fields the instant they are turned on. This is because the microwave modulation on the laser and the atomic evolution in the dark remain in phase; as a result, the atoms continue to appear transparent to the light fields. The later part of the second pulse repumps the fraction of the atoms that relaxed during the period when the light fields were turned off. The pulsed excitation scheme and atomic energy level diagram are shown in Figure 22a. Figure 22b shows experimentally observed Ramsey fringes when the CPT clock is operated in
short-term instability were amplified by noise in the photodetection system.

Recently, "pulsed" vapor cell atomic clocks in which the optical pulses are applied at different times, have been studied (Godone et al., 2004, 2006a,b). In a recent study, pulsed CPT excitation of the buffer gas shifts present in vapor cell atomic clocks was used to improve the hyperfine coherence and feedback locking has also been investigated (Guo et al., 2005).

3.8 CPT in Optical Clocks

So far we have focused on the use of CPT in optical clocks. In recent years, CPT-based clocks in the terahertz regime have become more widely used (Yoon, 2007). Optical clocks that use a microwave cavity to isolate the transition of the resonances, are orders of magnitude narrower than the narrow line widths, forbidden transitions in alkali earth atoms such as the $^1S_0 \rightarrow ^3P_0$ line at 698 nm. The laser frequency can be locked to the CPT transition with high accuracy, making it possible to observe the ground state splitting of the CPT transition.

Figure 22 Raman–Ramsey excitation of hyperfine clock transitions. (a) Pulsed excitation scheme and atomic energy spectrum. (b) Raman–Ramsey pulses. Reprinted figure with permission from Zanon et al. (2005); © 2005 of the American Physical Society.

The pulsed CPT interrogation scheme has been operated as an atomic frequency reference and studied in some detail. It was shown that both the short-term frequency stability and the light shift could be improved considerably compared to continuous interrogation in the pulsed configuration (Castagna et al., 2007). A short-term instability of $7 \times 10^{-15}/\sqrt{\tau}$ was obtained, integrating down to 2×10^{-14} at 1000 seconds when the linear frequency drift was removed. Dominant contributions to the instability were estimated to be

Figure 23 CPT excitation of intercomb states. (a) Atomic level structure and optical field scheme. Reprinted figure with permission from Zanon-Wiels; © 2005 of the American Physical Society.
short-term instability were amplitude noise on the laser and electronic noise in the photodetection system.

Recently, "pulsed" vapor cell atomic clocks, conventional OMDR clocks in which the optical pumping field and microwave field are applied at different times, have also been the subject of some research (Godone et al., 2004, 2006a,b). In addition, there has been some consideration of pulsed CPT excitation of cold atom systems in order to eliminate the buffer gas shifts present in vapor cell clocks (Farkas et al., 2009; Zanon et al., 2003, 2004a). A novel system based on transient excitation of a hyperfine coherence and feedforward to correct the LO frequency has also been investigated (Guo et al., 2009).

3.8 CPT in Optical Clocks

So far we have focused on the role of CPT resonances in microwave clocks. In recent years, CPT-based atomic clocks operating in the optical or the terahertz regime have been proposed (Hong et al., 2005; Santra et al., 2005; Yoon, 2007). Optical clocks have the great advantage over microwave clocks that the transition frequencies, and hence the Q-factors of the resonances, are orders of magnitude higher. In order to obtain narrow line widths, forbidden transitions such as the intercombination lines in alkaline earth atoms are often used. Some of these transitions, such as the \(^{1}S_0\rightarrow^{3}P_0\) line at 698 nm in bosonic \(^{188}Sr\), are forbidden to any order and cannot be accessed by use of single-photon excitation. It is, however, possible to observe the transition indirectly by use of two-photon (CPT) excitation as shown in Figure 23. The line width of the

![Figure 23](image-url)
transition can be conveniently tuned from megahertz to below 1 Hz by controlling the power broadening of this transition. It has been predicted that the accuracy of such a clock can be better than 10^{-17}. To eliminate light shifts, a pulsed CPT scheme similar to the scheme proposed for microwave clocks (see pulsed CPT section above) has been proposed and demonstrated (Zanon-Willette et al., 2006).

4. ADDITIONAL CONSIDERATIONS

4.1 Light-Shift Suppression

Several interesting techniques have been developed to reduce the effects of light shift on the long-term instability of vapor cell atomic clocks. One such scheme involves the use of the multiplicity of sidebands created when the injection current of a diode laser is modulated (Zhu & Cutler, 2000). Current modulation of a diode laser results in both AM and FM modulation of the output optical field. As the modulation index is increased, a comb of optical frequencies is therefore produced, separated from the carrier by multiples of the modulation frequency. Each of these optical frequencies produces a light shift for each of the ground-state hyperfine frequencies, and each shift can be either positive or negative, depending on the detuning of the specific frequency from the relevant transition. By adjusting the modulation index, it is therefore possible to modify the light shift and reduce it to near zero. A calculation from Zhu and Cutler (2000) is shown in Figure 24a, indicating that for two different operating conditions, the first-order light shift is reduced to zero at a modulation index of about 2.5. Measurements shown in Figure 24b confirm the effect. A frequency instability of about 10^{-13} was obtained at an integration period of 1000 seconds by use of this technique (Zhu & Cutler, 2000). It should be noted that, in principle, this same technique can be used to reduce or eliminate the light shift in OMDR clocks (Affolderbach et al., 2003). However, the required modulation of the laser injection current would have to be added to this configuration, while this is present quite naturally in the CPT configuration.

The technique above allows for the modulation index to be set such that small changes in the light intensity do not (to first order) affect the clock frequency. Such changes in light intensity can occur, for example, if the laser generating the optical fields ages in some way. However, this aging can also result in a change in the electrical impedance of the laser. If the laser impedance changes, the coupling of the RF modulation field to modulation on the optical field in general changes. As shown in Figure 24b, a change in the coupled RF power by 1 dB can result in a frequency shift on the order of 10^{-10}.

In order to address the effect of aging modification of the RF modulator (2006a). After adjusting the RF power of the light field is monitored) by use of a variable RF power will cause a corresponding change in the zero-light-shift condition is a frequency is more stable than frequency, the modulated frequency comparison of synthesizer frequency power can then be corrected to the schematic of the optical/electronic system. Under exaggerated conditions, output frequency to RF impedance (temperature) by a factor of 10 is

4.2 Laser Noise Cancellation

One of the problems frequently encountered in laser interferometry is the conversion of laser detector output by the optical path, which otherwise cannot be seen. If the atoms act as a sharp disc in the vicinity of the optical resonant
tered from megahertz to below 1 Hz by this transition. It has been predicted to be better than 10^{-17}. To eliminate a similar to the scheme proposed for section above) has been proposed and (2006).

4.2 Laser Noise Cancellation

One of the problems frequently encountered in laser-based atomic interrogation is the conversion of laser frequency noise to current noise in the detector output by the optical resonance. The laser frequency noise, which otherwise cannot be seen by the photodetector, appears because the atomic act as a sharp discriminator of the optical frequency in the vicinity of the optical resonance. The amount of noise that appears on
the photodetector signal depends on the amount of frequency noise present on the light (the laser line width), the width of the optical resonance, and the tuning of the laser frequency.

There are several solutions with varying complexity that can be used to reduce this excess laser frequency to photodetector current noise. Among the simplest is to choose a laser with a narrow line width. However, this is not always feasible for commercial or other technical reasons. Another simple alternative is to broaden the optical resonance using higher buffer gas pressure which reduces the slope of frequency discrimination by the optical resonance. Here again, there are limitations since buffer gas pressure cannot be arbitrarily increased without affecting the clock performance. For example, in the regime in which most CPT/OMDR clocks operate, one of the immediate consequences of using higher buffer gas pressure is that the optical depth of the atomic medium at a given temperature is correspondingly reduced. To compensate for the loss in the optical depth, the atomic vapor pressure can be increased by increasing the cell temperature. But this increases the width of the ground-state resonance by increasing alkali-alkali spin-exchange contribution to the ground-state relaxation.

Another alternative to reducing the laser noise is to use external means such as real-time laser noise cancellation using differential detection. This was accomplished, for example, by Gerginov et al. (2008). Here, a split wave plate was used such that light in one half of the vapor cell was circularly polarized and light in the other half was linearly polarized (see Figure 26). The circular and the linear components of the light beam were collected on two spatially separated photodetectors. While the CPT resonance is excited in only the right half of the cell by PD1, the laser noise appears in the form of signals from the two photodetectors, and the difference signal affecting the CPT resonance seen in the differential frequency shift has been developed for OMDR clocks (Rosenbluh et al., 2006).

Yet another technique for laser noise suppression demonstrated by Rosenbluh et al. for CPT clocks was to separate the light by a polarizing beam splitter and detect it using separate photodetectors. Due to the opposite polarization components of the light, the phase of the coherent dark signal is always canceled. The use of two photodetectors, each with opposite signs for the two components, has the advantage of converting the CPT resonance line into an otherwise Lorentzian profile. By adding the signals from both photodetectors, the resulting lineshape is similar to a Lorentzian profile. Because different CPT lines have different laser noise contributions, the common mode laser noise contribution is suppressed, thus increasing the overall strength of the CPT signal. By subtracting the signals, the oscilloscope traces of the CPT difference signal have lower noise compared to Figure 27b, which is why the laser noise cancellation technique is not employed.

Figure 25 Schematic of a technique to maintain the RF power at the zero-light-shift point as the laser impedance ages. Reprinted figure with permission from Shah et al. (2006a); © 2006 of the Optical Society of America.

Figure 26 Experimental setup used for laser noise suppression: LD, laser diode; B, beam splitter; ND, neutral density filter; RF, radio frequency; photodiode. Reprinted with permission from Rosenbluh et al. (2006).
resonance is excited in only the first part of the vapor cell and thus seen only by PD1, the laser noise appears in both the channels. Subtracting the signals from the two photodetectors thus removes the laser noise without affecting the CPT resonance seen using PD1. Similar techniques have also been developed for OMDR clocks (Deng, 2001; Mileti et al., 1998; Rosenbluh et al., 2006).

Yet another technique for laser noise cancellation was proposed and demonstrated by Rosenbluh et al. (2006). In this technique, the noise originating with the laser was reduced and the effects of optical pumping to the dark end state were simultaneously eliminated. A CPT resonance was excited using a combination of copropagating left and right circularly polarized light obtained from a common laser. A relative path delay, equal to one quarter of the microwave wavelength, was introduced between the right and the left circular components of the light beam. After propagating the light through the vapor cell, the two components were separated using an arrangement of a quarter-wave plate ($\lambda/4$) and a polarizing beam splitter; each of the components was separately monitored using photodetectors. Due to the $\lambda/4$ path delay between the two polarization components of the light beam that excite the CPT resonance, the phase of the coherent dark state that is excited by the two beams combined is partially shifted in phase with respect to the individual polarization components of the beam. This phase shift, which has equal but opposite signs for the two light components, introduces an asymmetry into the CPT resonance lineshape by adding a dispersive component to an otherwise Lorentzian profile. While the CPT resonance seen by adding the signals from both photodetectors still has a purely Lorentzian lineshape (Figure 27a), the difference signal is purely dispersive (Figure 27b). Because differential detection is employed in the latter case, the common mode laser noise is removed, without any effect on the overall strength of the CPT resonance signal. It can be seen even from the oscilloscope traces of the CPT resonances that the trace in Figure 27b has lower noise compared to Figure 27a, in which differential detection is not employed.

Figure 26 Experimental setup used to reduce the laser noise. VCSEL: L, lens; P, polarizer; ND, neutral density filter; $\lambda/4$, quarter-wave plate; G, glass plate σ; PD, photodiode. Reprinted figure with permission from Gerginov et al. (2008); © 2008 of IEEE
4.3 Light Sources for Coherent Population Trapping

A number of types of light sources have been used to generate the bichromatic optical field needed to excite hyperfine CPT resonances. Although the coherence requirements of the light source are not nearly as stringent as in optical spectroscopy, the lamps currently used in conventional atomic clocks appear to be too incoherent to generate CPT resonances of any reasonable contrast. The requirement on the coherence is nominally that the line width of the light source be smaller than the buffer gas broadened optical transitions in the alkali atoms, typically ranging from a few hundred megahertz to several tens of gigahertz. Most lasers satisfy this requirement, which allows great latitude in laser choice to optimize the system with respect to other criteria.

The earliest experiments on CPT were carried out using multimode dye lasers (Alzetta et al., 1976). Since then, a variety of more sophisticated light sources have been used, including acousto-optically modulated dye lasers (Thomas et al., 1982); injection-current-modulated edge-emitting diode lasers (Hemer et al., 1993; Levi et al., 1997); phase-locked external cavity diode lasers (ECDLs) (Brandt et al., 1997; Zanon et al., 2005) or edge-emitting lasers (Zhu & Cutler, 2000); injection-current-modulated vertical-cavity surface-emitting lasers (VCSELs) (Afofferbach et al., 2000; Braun et al., 2007; DeNatale et al., 2008; Kitching et al., 2000; Lutjew et al., 2003; Serkland et al., 2007; Youngner et al., 2007); and acousto-optically modulated ECDLs (Jau et al., 2004a). Each of these light sources has relative merits and detriments. For example, VCSELs have very low threshold currents, making them ideal for low-power instruments based on CPT, but suffer from inflexibility with respect to the modulation sideband spectrum. The spectrum of phase-locked ECDLs can be controlled very precisely, but the locking is not very robust.

Acousto- and electro-optically modulated lasers are not without problems. Amplitude modulation with no phase information is required, and the lasers are large, cumbersome, and expensive.

Novel lasers, developed for cold atom research, use a photonic crystal fiber (PCF) to generate a strong light wave with a low-reflection coating on the end of the fiber. These lasers were developed to have a much narrower line width than the beam of a conventional laser, which is necessary if one is to use a low power source to generate CPT resonances in atoms. The low intensity of the laser beam is sufficient to excite CPT transitions in atoms, and the laser is used to create a bichromatic field.

4.4 Dark Resonances in Thin Cells

Considerable recent work has focused on the use of atoms confined in cells for which the transit time across the cell is short. (Briatudeau et al., 1996). In these experiments, the cell walls do not collide with the cell walls before the wall-induced relaxation of the optical absorption. By contrast, in a conventional cell, the cell walls do not collide with each other and the cell walls are typically very large, preventing effective evaluation of the effects of atomic clocks (Lenca et al., 2009).

4.5 The Lineshape of CPT Resonance

The simplest theories of the CPT lineshape are consistent with collisional or diffusion-induced relaxation. These relaxation mechanisms are the sum of the interactions of physical effects that occur in resonance lineshape. It has been found that the intensity distribution of the excitation field is smaller than the ground-state relaxation time scale, and that the lineshape is determined by the dispersion of the excitation field. A more detailed analysis of the lineshape is given in the papers by Levi et al. (2005a) to form a pointed resonance based on the Ramsey effect, in which a
Population Trapping

Processes have been used to generate the light to excite hyperfine CPT resonances. The intensities of the light source are not nearly as high as those of more sophisticated dye lasers, so the lamps currently used in compact CPT lasers are too incoherent to generate CPT effects. The requirement on the coherence of the light source is smaller than the coherence times in the alkali atoms, typically gigahertz to several tens of gigahertz, which allows great latitude in laser respect to other criteria.

In experiments, a variety of more sophisticated dye laser-optically modulated dye lasers, injection-current-modulated edge-emitting lasers (Levi et al., 1997; Zanon et al., 2005) or edge-emitting lasers (Crawford, 2000); injection-current-modulated lasers (VCSELs) (Affolderbach et al., 2008; Kitching et al., 2000; Lutwak Youngner et al., 2007); and electrooptic laser (Fukuda et al., 2004a). Each of these light sources have very low coherence and low-power instruments based on them with respect to the modulation sidebands. VCSELs can be controlled very precisely, but the locking is difficult to implement experimentally. Acousto- and electro-optically modulated sources can have nearly perfect amplitude modulation with no associated phase modulation, but are large, cumbersome, and expensive.

Novel lasers, developed for CPT experiments, include VCSELs in an extended cavity (Gavrin et al., 2008), and very short edge emitting lasers with a low-reflectivity coating on one facet (Karpapolosnev et al., 2009). These lasers were developed to have high modulation bandwidths without the need for even a modest amount of output power (in many experiments 10 μW of optical power is sufficient to excite high-contrast resonances).

4.4 Dark Resonances in Thin Cells

Considerable recent work has focused on the optical properties of alkali atoms confined in cells for which the longitudinal dimension is such that the transit time across the cell is shorter than the optical relaxation period (Briaudeau et al., 1996). In these cells, atoms in velocity classes perpendicular to the cell walls do not build up appreciable optical coherence before the wall-induced relaxation and therefore do not contribute to the optical absorption. By contrast, atoms in velocity classes parallel to the cell walls do not collide with the walls as frequently and hence do build up coherence and exhibit corresponding absorption. Some recent work in this area has focused on the understanding of CPT resonances that are observed in these media (Failache et al., 2007; Fukuda et al., 2005; Petrosyan & Malakyan, 2000; Sargsyan et al., 2006). While the CPT line widths are typically very large (greater than 1 MHz), some work is proceeding to evaluate how these systems might be used in compact atomic clocks (Lenci et al., 2009).

4.5 The Lineshape of CPT Resonances: Narrowing Effects

The simplest theories of the CPT resonance lineshape typically involve collisional or diffusion-induced relaxation processes or radiative relaxation. These relaxation mechanisms result in the typical Lorentzian line width found for most spectroscopic signals. However, there are a number of physical effects that occur in real experiments that can distort the CPT resonance lineshape. It has been found, for example, that if the transverse intensity distribution of the excitation light field is non-uniform, or if the beam diameter is smaller than the diffusion length of the atoms over the ground-state relaxation time scales, then a narrowing of the resonance near its center can result (Levi et al., 2000; Taichenachev et al., 2004a, 2005a) to form a pointed resonance lineshape. This lineshape can also be explained by diffusion-induced narrowing (Xiao et al., 2006, 2008) based on the Ramsey effect, in which atoms diffuse out and then re-enter the
excitation beam before relaxing. Finally, propagation effects are known to cause modifications of the resonance line width compared to that observed in an optically thin medium (Godone et al., 2002d). The optical absorption coefficient is smaller when the CPT resonance condition is satisfied, and because the absorption in an optically dense medium is nonlinear as a function of propagation length, significantly more light may be transmitted when on resonance compared to when away from resonance, producing an artificial narrowing effect. However, it remains unclear whether these unusual linesshapes can be effectively used to improve the performance of a CPT atomic clock in some way.

5. CONCLUSIONS AND OUTLOOK

After considering the many possibilities for improving CPT resonances for use in atomic clocks, it is perhaps important to ask to what extent these techniques have impacted the design and performance of actual devices. To some extent this question is premature, as it often takes considerable time for new knowledge, even if it allows clear performance improvements, to find its way into realized systems implemented in the laboratory or in a commercial setting. The cost, time, and risk associated with implementing a new technique to replace, for example, an already proven commercial instrument or an already-operating laboratory instrument are often considered too high. In addition, until experiments are engineered at a level that their importance emerges, issues believed to be ultimately important, such as the effects of the light shift on the long-term stability of the clock, are often masked by other more technical effects, such as temperature-induced shifts. It is therefore often difficult to establish a clear measure of the improvements certain techniques will allow [see, for example, the work by Shah et al. (2006a)].

However, CPT as a whole has now been not just successful for laboratory instruments, but appears to be on the verge of commercial success (DeNatale et al., 2008; Deng, 2008; Lutwak et al., 2007; Vanier et al., 2005; Youngner et al., 2007). In particular, CPT has been shown to be the method of choice for microfabricated vapor cell frequency standards. This is interesting because comparisons of CPT techniques to conventional OMDR techniques for vapor cell frequency references (Kitching et al., 2002; Lutwak et al., 2002; Vanier, 2001b, 2005) have suggested that there is no clear advantage to be gained through the use of CPT with respect to short-term stability. From a technical viewpoint, the biggest strengths of the CPT approach at present therefore appear to be that (a) the physics package design is simple to implement, and (b) that the considerable work over the last 10 years on miniaturized CPT frequency references has clearly established the technical viability of this approach.

While it remains possible that an OMDR-based CPT atomic clock will ultimately outperform other parts, considerable work is not further for miniaturized devices. The advantage of CPT is that of modulation at a subharmonic of the LO to be placed in close proximity to having radiated RF power into the LO circuit.

Probably the most important thing to be described above has been the work to excite the resonances. The lack of availability of commercial diodes makes it hard to understand the improvements gained by other design improvements, such as the end-terminal, and the linear polarization, and in principle, but work is needed in a real clock experiment. The adding impact on reliability will allow which these techniques will boost efforts to reduce the light shift, surface engineering, are expected to be clock, for which the engineer will reduce technical limitations to the long term.

Whatever the outcome from those results, we can safely say that the understanding of CPT has considerably over the last decade.

ACKNOWLEDGMENTS

We gratefully acknowledge with unlimited thanks to A. Post. This work is a partial project done for the Government, and is not subject to confidentiality.

REFERENCES

ally, propagation effects are known to
dance line width compared to that
in an optically dense medium is
significantly more light
ance compared to when away from
arrowing effect. However, it remains
resilient to a degree can be effectively used to
atomic clock in some way.

LOOK

alities for improving CPT resonances
aps important to ask to what extent
development of CPT is premature, as it often takes
age, even if it allows clear performance
realized systems implemented in the
ng. The cost, time, and risk associated
re to replace, for example, an already
an already-operating laboratory instru-
. In addition, until experiments are
ntance emerges, issues believed to be
fects of the light shift on the long-term
arked by other more technical effects,
. It is therefore often difficult to establish
ments certain techniques will allow
[2006a, 2006b].

ow been not just successful for labora-
on the verge of commercial success
utwak et al., 2007; Vanier et al., 2005; a-
ar, CPT has been shown to be the
ed vapor cell frequency standards.
isons of CPT techniques to conven-
cell frequency references (Kitching
ier, 2001b, 2005) have suggested that
ained through the use of CPT with
an a technical viewpoint, the biggest
present therefore appear to be that
imple to implement, and (b) that the
ears on miniaturized CPT frequency
technical viability of this approach.

While it remains possible that highly miniaturized frequency references
based on OMDR will ultimately be competitive with their CPT counter-
parts, considerable work is needed to develop the OMDR approach
further for miniaturized devices. One additional, and perhaps over-
looked, advantage of CPT is that the resonances can be excited by use
of modulation at a subharmonic of the hyperfine frequency. This allows
the LO to be placed in close proximity to the physics package without
having radiated RF power interfere with the atomic transition.

Probably the most important improvement among the techniques
described above has been the use of the D1 line rather than the D2 line
to excite the resonances. The D2 line was used initially because of the
availability of commercial diode lasers at the 852 nm D2 transition of Cs.
The improvements gained by using the D1 line have, to some extent,
more and the development of new lasers, and it now appears that (a) the
use of the D1 line is clearly superior with respect to the short-term
stability and (b) that there is no significant disadvantage to this approach.
Certain other design improvements focused on improving the resonance
contrast, such as the end-resonance technique, push-pull optical pump-
ing, and the linear polarization techniques, continue to appear promising
in principle, but work is needed to quantify the level of improvement in a
real clock experiment. The additional system complexity and correspond-
ing impact on reliability will also be a factor in determining the extent to
which these techniques will be used in real-world instruments. Techniques
to reduce the light shift, such as pulsed CPT and sideband spectrum
engineering, are expected to be important for future generations of CPT
clocks, for which the engineering has progressed to the point where
technical limitations to the long-term instability have been suppressed.

Whatever the outcome from an instrumentation perspective, it is clear
that the understanding of CPT as it applies to atomic clocks has advanced
considerably over the last decade.

ACKNOWLEDGMENTS

We gratefully acknowledge valuable comments from S. Knappe
and A. Post. This work is a partial contribution of NIST, an agency of the US
Government, and is not subject to copyright.

REFERENCES

Affolderbach, C., Milet, G., Andreeva, C., Slavov, D., Karaulanov, T., & Cartaleva, S. (2003,
May 4–8). Reducing light-shift effects in optically-pumped gas-cell atomic frequency
Symposium & PDA Exhibition and 17th European Frequency and Time Forum, Tampa,
FL, 27–30.

Ezekiel, S., Hennion, P. R., & Leiby, C., stimulated, resonance Raman trans Review Letters, 50(7), 549–549.

Gavro, N., Ruso, V., & Rosenbluh, M. efficiency of vertical cavity surface-contact Letters, 92(22), 221113.

Godonne, A., Micalizio, S., Colosso, C. E., & Transactions on Ultrasonics Ferroelectric.

Strekalov, D., Savchenkov, A., Matsko, A., optical atomic clock on a chip: progressional Ultrasorics, Ferroelectronics, and Ultrasonics, Montreal, PQ, Piscataway, NJ.

Contents

1. Introduction
2. Basic Definitions
3. Experimental Details
 3.1 Afterglow
 3.2 Single-Photon Ring Resonance
4. Theory
 4.1 DR Model
 4.2 H_3^+ Ring Model
 4.3 Vibrational State Dependence
 4.4 One-Photon Resonance
 4.5 Three-Photon Resonance
5. History of CPT Studies
6. Reconciling Experimental Results
 6.1 Afterglow, Very Hot
 6.2 Afterglow, High Temperature
 6.3 Third-Order Resonance
7. Comparison with Previous Work
8. H_3^+ Production
9. Isotope Effects
10. Conclusion
11. Acknowledgments
12. References

Dissociation of H_3^+ Ions

Theory and Experiment

Rainer Johnson

Department of Physics, University of Pittsburgh, PA 15260

Institute for Scientific Research, 650 E. Middlesex Rd., MA 01890, USA