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Trapped ions offer long internal state (spin) coherence times and strong interparticle interactions
mediated by the Coulomb force. This makes them interesting candidates for quantum simulation of
coupled lattices. To this end, it is desirable to be able to trap ions in arbitrary conformations with precisely
controlled local potentials. We provide a general method for optimizing periodic planar radio-frequency
electrodes for generating ion trapping potentials with specified trap locations and curvatures above the
electrode plane. A linear-programming algorithm guarantees globally optimal electrode shapes that
require only a single radio-frequency voltage source for operation. The optimization method produces
final electrode shapes that are smooth and exhibit low fragmentation. Such characteristics are desirable for

practical fabrication of surface-electrode trap lattices.
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Trapped ions are a promising system for quantum com-
putation and quantum simulation [1,2]. For the latter,
simulations of coupled lattices that are ubiquitous in
condensed-matter systems are of particular interest, as a
“proving ground” for establishing the viability of large-
scale quantum simulations as well as for studying poorly
understood systems in great detail.

The trapping of ions over micro-fabricated planar
surface-electrode structures has been demonstrated [3],
and the lithographic manufacturing process is well suited
for producing complex electrode arrays [4]. Further, pro-
posed schemes for local control over ion interactions using
magnetic fields [5,6] instead of laser beams have the
potential to greatly simplify experimental setups. How-
ever, a dense lattice of microtraps cannot be constructed
by just placing individual microtrap electrode sets side by
side, because their electric fields overlap significantly and
distort their microtraps. A regular dense lattice of ions for a
two-dimensional condensed-matter simulation should be
located at a height z as far from the electrode plane as
possible, because heating effects induced by the electrode
surfaces scale strongly with this distance (proportional to
7~ 2 for Johnson noise [7] and to z~# for anomalous heating
[8]). Moreover, this distance is crucial for directing laser
beams onto the ions to induce spin-dependent interactions.
The aforementioned cross talk effects become prominent
as the ion-surface distance z is increased to about half the
inter-ion spacing d. In this regime, the surface electrodes
for individual traps must be replaced by complex electrode
patterns to generate a desired microtrap lattice. We present
an algorithm that directly produces the periodic electrode
structure for a desired lattice of trapping sites.

We consider ions of mass m and charge ¢ that are
confined by a time-averaged ponderomotive potential cre-
ated by an inhomogeneous raglio—frequency (rf) electric

field with amplitude E(F) = —V®(7) at angular frequency
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Q. Additional electrodes inducing static electric fields
could be incorporated for greater flexibility of design, but
we do not consider this possibility here. In the adiabatic
approximation, which assumes that the motion of the ions
is slow on the time scale 27/, the ponderomotive
pseudopotential is [9-11]

_ QUEGIP
4mef

Our aim is to create a periodic pseudopotential lattice with
minima at a set of desired trap positions 7;. We would like
to specify the curvature of the pseudopotential at these
sites, and also require that the rf field E(?j) vanishes, so
that the ions undergo no rf-induced micromotion [10]. At a
field-free point 7;, the pseudopotential curvature tensor is
proportional to the square of the electric potential curva-
ture tensor @2 (7,) = 9,0 5D (7)),

W (7) (D

2
WO(F) = 0,0,W(F) = 2,3% D7) - D7), (2)
Since V2®(7) = Tr®?(7) = 0, the principal curvatures
of the pseudopotential cannot be chosen independently.
Our algorithm requires specifying the electric potential
curvature tensors @@ (7 j), which can be determined up to
their irrelevant sign from the corresponding \I’(Q)(?j)
through Eq. (2), provided that W is fully confining at 7;.
We can quantify the strength of a microtrap indepen-
dently of the distance to the electrode plane z; and the
potential U, cos({),¢7) applied to the rf electrodes by [12]

K; = | det ®D(7)['3(23/Uyy). 3)
For typical experimental parameters Uy = 50V, Q¢ =
27 X 200 MHz, and z; = 30 um, the geometric mean of

the three principal trapping frequencies for °Be™ ions is
@ = k; X 277 X 53 MHz. The values «; depend solely on
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the geometry of the surface electrodes. Small dimension-
less curvatures k; can to some extent be compensated by
lowering ()¢, subject to the Mathieu stability requirements
[10], or by increasing U,;. However, much can be gained by
optimizing the electrode shapes such that the «; are maxi-
mized for given constraints. The trap depth, i.e., the pon-
deromotive pseudopotential W (7, ;) = 1 j‘i’ ; of the lowest
saddle point 7, ; between a microtrap and the boundaries,
is not optimized in the present algorithm, but will be given
in what follows in terms of the energy scale ¥ i =q*U%/
(4mefzf). For the above typical parameters, W j=4.7eV.

The resources we consider for realizing general surface-
electrode arrays for trapped ions are two types of periodic
electrodes in the xy plane, one being grounded or at a
slowly varying control potential, and the other carrying the
rf potential at a uniform amplitude and phase. These elec-
trodes are assumed to completely cover a single plane
[11,13]. Our algorithm optimizes the shapes of these
electrodes to achieve maximal curvatures «; at a set of
M field-free microtraps per unit cell at positions {?j}j!’lzl
and with electric potential curvature tensors {dJ(z)(?j) =
cu,Il j}j?il. The 3 X 3 matrices I'; must be symmetric and

traceless to fulfill the Laplace equation. The dimension-
less curvatures of the various microtraps are k; =
|C |Z?| detT’ jll/ 3. Maximizing the common scaling factor
|C| therefore simultaneously maximizes all the «; while
preserving the relative curvatures of the different
microtraps.

We subdivide the unit cell of the desired Bravais lattice
into N small patches, and label %, = ®;/U,; the dimen-
sionless electric potential amplitude of the ith patch elec-
trode, with ¥; = 0 (¢; = 1) signifying a connection to
ground (rf). The algorithm below produces the optimal
set of binary values &; €{0,1} Vi=1,...,N with a
negligible number of instances where intermediate values
0 < ; <1, which would require additional rf voltage
sources, occur. The radio-frequency electric potential
®(x, y,0) in the electrode plane is fully determined by
the shape of the surface electrodes, i.e., by the
N-component parameter vector . This Dirichlet boundary
condition can be extended from the electrode plane into the
third dimension using a Fourier transform [11,13] since the
electric potential satisfies the Laplace equation V2®(7) =

>

0: each Fourier component of in-plane wave number k =

(ky, ky) is damped exponentially as exp(ik.x + ik,y —
l|k|lz) away from the electrode plane. The typical size of
the electrode patches gives a natural cutoff in this Fourier
series. The resulting dimensionless potential @(J9;F) =
3 :9;0,(7) is then constrained to have the desired structure
of M microtraps per unit cell: at the position of each field-
free microtrap the electric field must vanish,

VO 7) = 3 9;Ve,(F) =0, )

giving 3M linear conditions on the coefficient vector .
Further, the curvature tensors of the electric potential at the
microtrap positions must match the desired trap curvatures,

04050(3: 7)) = OI(F:F) = 39,00 (F) = T, (5)

giving another 5M linear constraints on 3. In principle we
could add other linear local constraints, such as higher
order derivatives of the electric field for controlling anhar-
monicities, to further customize the result to the situation at
hand; however, doing so might result in a decrease of the
maximum achievable curvatures. The set of 8M linear

constraints are denoted A - = Cb in matrix representa-

tion. We define y = A™" - b as their unique inhomogene-
ous solution which is orthogonal to the null space of A,
computed from the Moore-Penrose pseudoinverse A™*.
After decomposing 3= Cy + & with & - vy =0, the
electrode optimization problem is to find the vector 3
satisfying A - &' = Ayt -9 =0, with 9, €{0, 1} V i =
1,..., N, and maximizing |C| = | - Y1/11711?, where we
have used y+ = 1 — ¥97/]|7|* as the perpendicular com-
plement of y. Such integer linear programs are typically
nondeterministic polynomial time hard to optimize [14].
Fortunately, relaxing the integer constraints to 0 = ; =
1 Vi=1,...,N yields a linear program [15] that gives
globally optimal results within O(N) time and memory.
The reason that relaxed constraints are sufficient in prac-

tice is that the optimal solution for & contains at most 8M
“interior” values, 0 < ¢; < 1, and consequently at least
N — 8M patch potentials are “railed” at either #; = 0 or
¥; = 1 and satisfy the original binary constraint. This is
because the optimal solution of a linear program is a
“basic” solution; by construction all basic solutions fulfill
this railing condition [15]. As the resolution of the patch
decomposition is increased to infinity, the combined area
of the fixed number of unrailed patches becomes vanish-
ingly small, and the optimal electrode converges to a
solution of the integer linear program in the sense that
®(x,y,0)/U;s € {0, 1} for all (x, y). In practice, rounding
the interior values to O or 1 has very little effect on the
properties of the resulting potential even for modest grid
resolutions.

We have implemented the algorithm for oblique and
hexagonal Bravais lattices. The oblique implementation
uses N = n; X n, identical parallelogram-shaped patch
electrodes per unit cell, while the hexagonal implementa-
tion takes n; = n, = n and further divides each rhomb
into two equilateral triangles, giving N = 2n? patch elec-
trodes. Optimizations with N = 10° can be done in half an
hour on a desktop computer. Our results are optimized with
ny = ny, = n = 250, using (2 X 250)? Fourier waves. We
have found it unnecessary to use symmetries for specific
wallpaper groups in the assignment of the patch electrodes,
as the solutions found by interior-point methods of linear
programming do not spontaneously break such symme-
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tries, and the gain in computational time is only minor, due
to the O(N) scaling.

The surface-electrode ion trap with the highest possible
curvature is an rf ring electrode with a ratio of outer to
inner radii of 4.98 embedded in an infinite grounded plane
[13]. We use its dimensionless curvature k = 0.298 as a
reference value. Regular sparse (z/d < 1/2) lattices of
such cylindrical microtraps at a given trapping height z
are most easily constructed from lattices of similar ring
electrodes, with the inner and outer radii reoptimized for
each z/d such that « is maximized. This simple parame-
trization already gives surprisingly good results, with val-
ues of « at most 10% below the global optima, as deter-
mined by high-resolution linear programs (Fig. 1). How-
ever, the outer radius must be smaller than d/2, which
limits the possible trapping heights or necessitates more
complex parametrizations. Nonparametric optimization,
on the other hand, has solutions for any desired trapping
height, as shown in Fig. 1, albeit with exponentially de-
creasing dimensionless curvatures for large z/d [k >
(Q2)* exp(—Qz) for Qz > 1, with Q the wave number of
the dominant Fourier component of the electrode pattern].
The dimensionless trap depths 7 are also found to decrease
exponentially with z/d [n = exp(—2Qz) for Qz > 1];
however, the given values are not necessarily maximal.
Figure 2 shows that for low trapping heights the electrodes
consist of almost circular ring electrodes centered under
the desired microtrap locations; but at larger values of z/d
the electrodes of neighboring lattice sites overlap and
interact significantly. This leads to nonintuitive patterns
that, by construction, are optimal in the sense of max-
imizing k.

A major advantage of our nonparametric method is that
much more complex trapping geometries can be con-
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FIG. 1 (color online). Optimized dimensionless curvatures
(black, left axis) and trap depths 1 (cyan, right axis) as functions
of the ratio of microtrap height z to inter-ion spacing d, for
several lattice geometries. Curvature tensors are cylindrically
symmetric out-of-plane quadrupoles as for the optimized ring
trap (k = 0.298 and 7% = 0.0196; see text). The decreases in
dimensionless curvatures and trap depths depend strongly on the
typical electrode structure size A = 277/Q (see text). Spurious
microtraps may be present for some parameters.

structed with no additional effort. However, for compli-
cated microtrap structures the optimized dimensionless
curvatures «; and trap depths n; tend to be vanishingly
small, requiring unfeasibly large rf potentials for sufficient
trapping. As an example, Fig. 3 shows the optimized
electrode for constructing a bilayer honeycomb lattice
with right angles between nearest-neighbor directions
[16] and unequal trapping frequencies in these directions.
The microtrap frequencies are chosen to be equal in the
two trapping planes, leading to different dimensionless
curvatures K.

Figures 2 and 3 illustrate that optimal electrodes tend to
consist of large smooth structures, with the unrailed
patches located on the boundary between the rf and ground
electrodes, reminiscent of antialiasing effects. This obser-
vation, which ensures that optimal electrodes can realisti-
cally be microfabricated, is attributed to the fact that
microtraps can often be approximated by a localized can-
cellation of a small number of long-wavelength Fourier
modes; the amplitudes of long-wavelength modes are
maximized when the electrodes consist of large uniform
areas, with sizes related to the wavelengths of the modes
involved in the microtraps.

The linear-programming algorithm is not limited to
infinite periodic planar gapless electrodes. Any set of
two- or three-dimensional electrodes can take the role of
the “patch” electrodes, with an appropriate generalization
of the method for extending the electric potential into the
region where the ions are to be trapped. The algorithm will
then specify which of these electrodes should be connected
to rf and which to ground. In particular, finite planar
electrodes for a typical experimental setup may be opti-
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FIG. 2 (color online). Top (bottom) row: optimized electrodes
for square (triangular) lattices of microtraps at varying height
z/d = 0.2, 0.3, 0.4, 0.5 (0.25, 0.5, 0.75, 1) in units of the ion
spacing d. Ground and rf electrodes are shown in white and blue
(with arbitrary assignment). Microtrap locations are marked with
triangles. Curvature tensors are cylindrically symmetric out-of-
plane quadrupoles as for the optimized ring trap (see text). For
z/d = 0.2, 0.3 (0.75, 1) the electrodes maximizing the dimen-
sionless curvature « (outlines shown) give rise to spurious
trapping sites which have been eliminated by imposing addi-
tional constraints (see text) reducing « by 0.07% and 0.04% (4%
and 18%), respectively.
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FIG. 3 (color online).

Optimized electrodes for a bilayer hon-
eycomb lattice. The desired microtraps, shown as equipotential
ellipsoids, are at heights z../b = 0.4 = 21 , with b the honey-

comb lattice periodicity and d = b/ V2 the inter-ion distance.
Vibrational frequencies of the microtraps are (w,, w,, ®,) =
wo(¢p~ 1, 1, @) in the three mutually orthogonal nearest-neighbor
directions (marked with solid lines and projections; lighter
shades indicate higher frequencies), where ¢ = (1 + \/5)/ 2 is
the golden ratio. Dimensionless curvatures are xk_/k = 0.0022
and k., /k = 0.020 (differing because of the different heights
z+). The locations of spurious microtraps are marked with small
spheres. Thin vertical lines are added for clarity of perspective.

mized in order to avoid finite-size effects coming from the
truncation of a periodic electrode array.

The algorithm offers unlimited freedom for placing
arbitrary microtraps in arbitrary locations, and is optimal
in the sense of globally maximizing the curvatures (3) and
producing smooth binary electrode shapes, but also has
some limitations. First, it offers no possibility to optimize
the trapping depth instead of its curvature, because the
former is a spatially nonlocal property and is therefore
incompatible with the linear-programming algorithm.
Possibly parametric optimizations such as the ring-trap
optimizations outlined above can be adapted to take the
trap depth into account [11,13]. Second, specifying the
desired set of microtraps does not imply that these will
necessarily be the only microtraps generated by the opti-
mized electrode set. Complex electrodes, such as those
shown in Fig. 3, often generate a multitude of unwanted
microtraps, predominantly on points or lines of symmetry
of the underlying wallpaper symmetry group. In highly
symmetric setups (Fig. 2), these spurious microtraps can
often be eliminated by constraining the out-of-plane elec-
tric field E_(7) to judiciously chosen nonzero values at the
spurious trap sites, thus adding further linear equalities or
inequalities to the algorithm and reducing the optimized
curvatures «;. In setups lacking symmetry (Fig. 3) this
procedure is much less intuitive. In many cases, it is
possible to operate the trap in a regime where the spurious

trapping sites are unstable, while the trapping sites at 7; are
stable [10].

The Coulomb interaction between ions at different trap-
ping sites can lead to net static forces, due either to a finite
lattice or to an insufficiently symmetric or nonplanar unit
cell (giving out-of-plane forces in Fig. 3). Such static
forces tend to push the ions away from their rf zeros,
thus inducing unwanted micromotion. Efforts should be
made to compensate these forces by suitable control po-
tentials. For this purpose, we can subdivide the unit cell
into control electrodes and ““patch’ electrodes before opti-
mizing the latter with our algorithm; alternatively, the
optimized ground and rf electrodes can be subdivided
into areas biased with different control voltages. The
same approaches are readily generalized to nonperiodic
ion trapping setups.
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