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A key requirement for scalable quantum computing is that elementary quantum gates can be implemented
with sufficiently low error. One method for determining the error behavior of a gate implementation is to
perform process tomography. However, standard process tomography is limited by errors in state preparation,
measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect
adverse error-compounding when gates are composed in long sequences. An additional problem is due to the
fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower.
Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that
yields estimates of the computationally relevant errors without relying on accurate state preparation and
measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is
stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion
qubits, establishing a one-qubit error probability per randomized � /2 pulse of 0.00482�17� in a particular
experiment. We expect this error probability to be readily improved with straightforward technical
modifications.
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I. INTRODUCTION

In principle, quantum computing can be used to solve
computational problems having no known efficient classical
solutions, such as factoring and quantum physics simula-
tions, and to significantly speed up unstructured searches and
Monte Carlo simulations �1–4�. In order to realize these ad-
vantages of quantum computing, we need to coherently con-
trol large numbers of qubits for many computational steps.
The smallest useful instances of the above-mentioned algo-
rithmic applications require hundreds of qubits and many
millions of steps. A quantum computing technology that re-
alistically can be used to implement sufficiently large quan-
tum computations is said to be “scalable.” Current quantum
computing technologies that promise to be scalable have
demonstrated preparation of nontrivial quantum states of up
to eight qubits �5� but it is not yet possible to apply more
than a few sequential two-qubit gates without excessive loss
of coherence. Although there have been experiments to de-
termine the behavior of isolated gates applied to prepared
initial states �5–15�, there have been no experiments to de-
termine the noise affecting gates in a general computational
context.

An important challenge of quantum computing experi-
ments is to physically realize gates that have low error when-
ever and wherever they are applied. Studies of fault-tolerant
quantum computing suggest that in order to avoid excessive
resource overheads, the probability of error per unitary gate
should be well below 10−2 �16–18�. The current consensus is

that it is a good idea to aim for error probabilities below
10−4. What experiments can be used to verify such low error
probabilities? One approach is to use process tomography to
establish the complete behavior of a quantum gate. This re-
quires that the one-qubit “analysis” gates employed in the
tomography have lower error than the bound to be estab-
lished on the gate under investigation. If this requirement is
met, process tomography gives much useful information
about the behavior of the gate, but fails to establish that the
gate will work equally well in every context where it may be
required. In particular, because process tomography requires
preparing known initial states and one-qubit analysis gates,
there is no obvious way to determine how well a gate works
when used as the kth gate of a computation. To do so would
require characterizing all the previous gates and, in some
independent fashion, the analysis gates. Process tomography
can also be very time consuming as its complexity scales
exponentially with the number of qubits.

We propose a randomized benchmarking method to deter-
mine the error probability per gate in computational contexts.
Randomization has been suggested as a tool for characteriz-
ing features of quantum noise in Ref. �19�. The authors pro-
pose implementing random unitary operators U followed by
their inverses U−1. Under the assumption that the noise
model can be represented by a quantum operation acting
independently between the implementations of U and U−1,
the effect of the randomization is to depolarize the noise. The
average fidelity of the process applied to a pure initial state is
the same as the average over pure states of the fidelity of the
noise operation. �The latter average is known as the average
fidelity and is closely related to the entanglement fidelity of
an operation �20�.� They also show that the average fidelity
can be obtained with few random experiments. They then
consider self-inverting sequences of random unitary opera-
tions of arbitrary length. Assuming that the noise can be
represented by quantum operations that do not depend on the
choice of unitaries, the fidelity decay of the sequence is
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shown to represent the strength of the noise. Our randomized
benchmarking procedure simplifies this procedure by re-
stricting the unitaries to Clifford gates and by not requiring
that the sequence is strictly self-inverting. An alternative ap-
proach to verifying that sequences of gates realize the de-
sired quantum computation is given in Ref. �21�. In this ap-
proach, successively larger parts of quantum networks are
verified by making measurements involving their action on
entangled states. This “self-testing” strategy is very powerful
and provably works under minimal assumptions on gate
noise. It is theoretically efficient but requires significantly
more resources and multisystem control than randomized
benchmarking.

Our randomized benchmarking method involves applying
random sequences of gates of varying lengths to a standard
initial state. Each sequence ends with a randomized measure-
ment that determines whether the correct final state was ob-
tained. The average computationally relevant error per gate
is obtained from the increase in error probability of the final
measurements as a function of sequence length. The random
gates are taken from the Clifford group �22�, which is gen-
erated by � /2 rotations of the form e−i��/4 with � a product
of Pauli operators acting on different qubits. The restriction
to the Clifford group ensures that the measurements can be
of one-qubit Pauli operators that yield at least one determin-
istic one-bit answer in the absence of errors. The restriction
is justified by the fact that typical fault-tolerant architectures
�those based on stabilizer codes� are most sensitive to errors
in elementary Clifford gates such as the controlled NOT. Pro-
vided the errors in these gates are tolerated, other gates
needed for universality are readily implemented by purified
state preparation �16,23�. Note that the results of Ref. �19�
hold if the unitaries are restricted to the Clifford group, be-
cause the Clifford group already has the property that noise
is depolarized. We believe that randomized benchmarking
yields computationally relevant errors even when the noise is
induced by, and depends on, the gates, as is the case in prac-
tice. The relevant assumptions are given in Sec. V.

Randomized benchmarking as discussed and implemented
here gives an overall average fidelity for the noise in gates.
To obtain more specific information, the technique needs to
be refined. In Ref. �24�, randomization by error-free one-
qubit unitaries is used to obtain more detailed information
about noise acting on a multiqubit system. Randomized
benchmarking can be adapted to use similar strategies.

II. RANDOMIZED BENCHMARK OF ONE QUBIT

For one qubit, our randomized benchmarking procedure
consists of a large number of experiments, where each ex-
periment consists of a pulse sequence that requires preparing
an initial quantum state �, applying an alternating sequence
of either major axis � pulses or identity operators �“Pauli
randomization”� and � /2 pulses �“computational gates”�,
and performing a final measurement M. The pulse sequence
between state preparation and measurement begins and ends
with � pulses. For one qubit, the initial state is �0�. Because
the major axis � and � /2 rotations are in the Clifford group,
the state is always an eigenstate of a Pauli operator during

the pulse sequence. The Pauli randomization applies unitary
operators �“Pauli pulses”� that are �ideally� of the form
e±i�b�/2, where the sign ± and b=0,x ,y ,z are chosen uni-
formly at random and we define �0 to be the identity opera-
tor. For ideal pulses, the choice of sign determines only a
global phase. However, in an implementation, the choice of
sign can determine a physical setting that may affect the
error behavior. The computational gates are � /2 pulses of
the form e±i�u�/4, with u=x ,y. The sign and u are chosen
uniformly at random, except for the last � /2 pulse, where u
is chosen so that the final state is an eigenstate of �z. The
computational gates generate the Clifford group for one qu-
bit. Their choice is motivated by the fact that they are ex-
perimentally implementable as simple pulses. The final mea-
surement is a von Neumann measurement of �z. The last
� /2 pulse ensures that, in the absence of errors, the measure-
ment has a known, deterministic outcome for a given pulse
sequence. However, the randomization of the pulse sequence
ensures that the outcome is not correlated with any indi-
vidual pulse or proper subsequence of pulses. For a fixed
such subsequence, the randomization of the other pulses en-
sures that the outcome is uniformly distributed.

The length l of a randomized pulse sequence is its number
of � /2 pulses. The � /2 pulses are considered to be the ones
that advance a computation. The � pulses serve only to ran-
domize the errors. One can view their effect as being no
more than a change of the Pauli frame. The Pauli frame
consists of a Pauli operator that needs to be applied to obtain
the intended computational state in the standard basis �16�.
We call the � /2 and Pauli pulse combinations randomized
computational gates. In principle, we can determine a pulse
error rate by performing N experiments for each length l
=1, . . . ,L to estimate the average probability pl of the incor-
rect measurement outcome �or “error probability”� for se-
quences of length l. The relationship between l and pl can be
used to obtain an average probability of error per pulse. Sup-
pose that all errors are independent and depolarizing. Let the
depolarization probability of an operation A be dA and con-
sider a specific pulse sequence consisting of operations
A0 ,A1A2 , . . . ,A2l+1A2l+2 ,A2l+3, where A0 is the state prepara-
tion, A1A2 and the following pairs are the randomized com-
putational gates, and A2l+3 the measurement. For the mea-
surement, we can assume that the error immediately precedes
a perfect measurement. The state after Ak is a known eigen-
state of a Pauli operator or completely depolarized. Depolar-
ization of the state is equivalent to applying a random Pauli
or identity operator, each with probability 1/4. The probabil-
ity of the state’s not having been depolarized is � j=0

k �1
−dAj

�. In particular, we can express pl=E	�1−� j=0
2l+3�1

−dAj
�� /2
, where the function E�¯� gives the expectation

over the random choices of the Aj. The factor of 1/2 in the
expression for pl arises because depolarization results in the
correct state 1/2 of the time. The choices of the Aj are inde-
pendent except for the last � /2 pulse. Assume that the depo-
larization probability of the last � /2 pulse does not depend
on the previous pulses. We can then write pl= �1− �1
−dif��1−d�l� /2, where d is the average depolarization prob-
ability of a random combination of one � /2 and one Pauli
pulse �a randomized computational gate� and dif combines
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the depolarization probabilities of the preparation, initial
Pauli pulse, and measurement. Thus pl decays exponentially
to 1/2, and the decay constant yields d.

A commonly used metric to describe the deviation of an
implemented gate from the intended gate is the average fi-
delity Fa, which is defined as the uniform average over pure
input states of the fidelity of the output state with respect to
the intended output state. We are interested in the average
computationally relevant error per step consisting of a ran-
domized computational gate �“average error” for short�. This
is given by the expectation over gates of 1−Fa and relates to
the depolarization parameter d of the previous paragraph by
1−Fa=d /2. In our implementation of the randomized com-
putational gates, the � pulses around the z axis are imple-
mented by changes in rotating frame and do not involve
actively applying a pulse. Therefore, on average, the angular
distance of the randomized gate’s action is �. As a result,
�1−d /2� represents the average fidelity of pulses with ac-
tion �.

Although estimates of pl are sufficient to obtain the aver-
age error for a randomized computational gate, it is useful to
consider the error behavior of specific randomized computa-
tions and even fixed instances of the randomized sequences.
For this purpose, the sequences are generated by first produc-
ing NG random sequences consisting of L random computa-
tional gates, where the gates are chosen independently with-
out considering the final state. These sequences are
considered to be a sample of typical computations. Each se-
quence is then truncated at different lengths. For each length,
a � /2 pulse is appended to ensure that the final state is an
eigenstate of �z. The sign of this final pulse is random. The
resulting sequences are randomized by inserting the random
Pauli pulses. We can then perform experiments to determine
the probability of incorrect measurement outcomes for each
such sequence and for each truncated computation after ran-
domization by Pauli pulses. To be specific, the procedure is
implemented as follows.

Randomized benchmarking for one qubit. This obtains
measurement statistics for NGNlNPNe experiments, where NG
is the number of different computational gate sequences, Nl
is the number of lengths to which the sequences are trun-
cated, NP is the number of Pauli randomizations for each
gate sequence, and Ne is the number of experiments for each
specific sequence.

�1� Pick a set of lengths l1� l2� . . . � lNl
. The goal is to

determine the probability of error of randomized computa-
tions of each length.

�2� Do the following for each j=1, . . . ,NG.

�2a� Choose a random sequence G= 	G1 , . . .
 of lNl
com-

putational gates.
�2b� For each k=1, . . . ,Nl do the following.

�2b1� Determine the final state � f obtained by applying
Glk

. . .G1 to �0�, assuming no error.
�2b2� Randomly pick a final computational gate R among

the two ±x , ±y , ±z axis � /2 pulses that result in an eigen-
state of �z when applied to � f. Record which eigenstate is
obtained.

�2b3� Do the following for each m=1, . . . ,NP.

�2b3a� Choose a random sequence P= 	P1 , . . .
 of lk+2
Pauli pulses.

�2b3b� Experimentally implement the pulse sequence that
applies Plk+2RPlk+1Glk

. . .G1P1 to �0� and measures �z, repeat-
ing the experiment Ne times.

�2b3c� From the experimental data and the expected out-
come of the experiments in the absence of errors �from step
�2b2� and the chosen Pauli pulses�, obtain an estimate pj,lk,m

of the probability of error. Record the uncertainty of this
estimate.

The probabilities of error pl are obtained from the pj,lk,m

by averaging plk
=� j=1

NG �m=1
NP pj,lk,m / �NGNP�. We also obtain the

probabilities of error for each computational gate sequence
pj,lk

=�m=1
NP pj,lk,m /NP. If the errors are independent and depo-

larizing, the pj,lk,m and the pj,lk
should not differ significantly

from the plk
. �Significance is determined by the statistical

error in the measurement of the pj,lk,m by the Ne experimental
repetitions and the method for inferring expectations of �z
from the actual measurements performed.� However, if the
errors are systematic in the sense that each implemented
pulse differs from the ideal pulse by a pulse-dependent uni-
tary operator, this can be observed in the distribution of the
pj,lk,m over m. In this case, the final state of each imple-
mented pulse sequence is pure. The deviation of these pure
states from the expected states is distributed over the Bloch
sphere as m and j are varied. For example, consider the case
where plk

is close to 1/2. If the errors are systematic, the
pj,lk,m are distributed as the probability amplitude of �1� for a
random pure state. In particular, we are likely to find many
instances of j and m where pj,lk,m is close to 0 or 1, that is,
differs significantly from 1/2. In contrast, if the error is de-
polarizing, the pj,lk,m are all close to 1/2 independent of j
and m.

III. TRAPPED-ION-QUBIT IMPLEMENTATION

We determined the computationally relevant error prob-
abilities for computational gates on one qubit in an ion trap.
The qubit was represented by two ground-state hyperfine
levels of a 9Be+ ion trapped in a linear radio-frequency Paul
trap briefly described in Ref. �25�. It is the same trap that has
been used in a several quantum information processing ex-
periments �26–30�. The two qubit states are �↓ � �F=2,
mF=−2� and �↑ � �F=1,mF=−1�, where for our purposes, we
identify �↓ � with �0� and �↑ � with �1�. The state �↓ � is pre-
pared by optical pumping, after laser cooling the motional
states of the ion. We can distinguish between �↓ � and �↑ � by
means of state-dependent laser fluorescence. Computational
gates and Pauli pulses involving x- or y-axis rotations were
implemented by means of two-photon stimulated Raman
transitions. To ensure that the pulses were not sensitive to the
remaining excitations of the motional degrees of freedom,
we used copropagating Raman beams. It was therefore not
necessary to cool to the motional ground state and only Dop-
pler cooling was used. Pulses involving z-axis rotations were
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implemented by programmed phase changes of one of the
Raman beams. This changes the phase of the rotating refer-
ence frame and is equivalent to the desired z-axis rotation.
The z-axis rotations were accompanied by a delay equivalent
to the corresponding x and y pulses.

The Raman beams were switched on and off and shifted
in phase and frequency as necessary by means of acousto-
optic modulators controlled by a field-programmable gate
array �FPGA�. The pulse sequences were written in a special-
purpose pulse-programming language and precompiled onto
the FPGA. The version of the FPGA in use for the experi-
ments was limited to about 100 computational pulses. The
longest sequence in our experiments consisted of 96 compu-
tational gates. Our initial implementations clearly showed
the effects of systematic errors in the distribution of the error
probabilities of individual sequences. This proved to be a
useful diagnostic and we were able to correct these system-
atics to some extent. One of the largest contributions to sys-
tematic errors was due to Stark shifts. To correct for these
shifts, we calibrated them and adjusted phases in the pulse
sequences.

IV. EXPERIMENTAL RESULTS

We generated NG=4 random computational sequences
and truncated them to the Nl=17 lengths 	2,3,4,5,6,8,
10,12,16,20,24,32,40,48,64,80,96
. Each truncated sequence
was Pauli randomized NP=8 times. Each final pulse se-
quence was applied to an ion a total of 8160 times in four
groups that were interleaved with the other experiments in a
randomized order. Pulse durations, qubit-resonant frequen-
cies and Stark shifts were recalibrated automatically at regu-
lar intervals. The number of experiments per pulse sequence
was sufficient to obtain the probability of incorrect measure-
ment outcome with a statistical error small compared to the

variation due to randomization and systematic errors. Figure
1 plots the fidelity �one minus the probability of incorrect
measurement outcome� of each of the 4�17�8=544 final
pulse sequences against the length of the corresponding com-
putational sequence. As explained in the figure caption, the
variation in fidelity for each length shows that nondepolariz-
ing errors contribute significantly to error. Figure 2 plots the
average fidelity over the eight Pauli randomizations of each
computational sequence truncated to the different lengths.
Pauli randomization removes coherent errors, significantly
reducing the variation in fidelities for different computational
sequences. The remaining variation could be due to the small
sample of eight Pauli randomizations used to obtain the av-
erage. The empirical average probability of error per ran-
domized computational gate can be obtained by fitting the
exponential decay and was found to be 0.00482�17�. The fit
was consistent with a simple exponential decay, which sug-
gests that these gates behave similarly in all computational
contexts. The error bars represent standard deviation as de-
termined by nonparameteric bootstrapping �31�. In what fol-
lows, if the fits are good, error bars are determined from
nonlinear least-squares fits. In the cases where we can obtain
a useful estimate of an error per randomized computational
gate but the fits are poor, we used nonparameteric bootstrap-
ping.

For our experimental setting, it is possible to perform ex-
periments to quantify the different types of errors as a con-
sistency check. The results of these experiments are in the
Appendix and are consistent with the randomized bench-
marking data.

V. THEORETICAL CONSIDERATIONS

The average error per randomized computational gate is
obtained by fitting an exponential. For general error models,
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FIG. 1. Fidelity as a function of the number of steps for each
randomized sequence. The fidelity �given by 1 minus the probabil-
ity of error� is plotted on a logarithmic scale. The fidelity for the
final state is measured for each randomized sequence. There are 32
points for each number of steps, corresponding to NP=8 random-
izations of each of NG=4 different computational sequences. We
used Ne=8160 for these experiments. Different symbols are used
for the data for each computational sequence. The standard error of
each point is between 0.001 �near fidelities of 1� and 0.006 �for the
smaller fidelities�. The scatter greatly exceeds the standard error,
suggesting that coherent errors contribute significantly to the loss of
fidelity.
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FIG. 2. Average fidelity as a function of the number of steps for
each computational sequence. The points show the average random-
ized fidelity for four different computational gate sequences �indi-
cated by the different symbols� as a function of the length. The
average fidelity is plotted on a logarithmic scale. The middle line
shows the fitted exponential decay. The upper and lower line show
the boundaries of the 68% confidence interval for the fit. The stan-
dard deviation of each point due to measurement noise ranges from
0.0004 for values near 1 to 0.002 for the lower values, smaller than
the size of the symbols. The empirical standard deviation based on
the scatter in the points shown in Fig. 1 ranges from 0.0011 to
0.014. The slope implies an error probability of 0.00482�17� per
randomized computational gate. The data is consistent with the
gate’s errors not depending on position in the sequence ��2=17.72,
15 degrees of freedom, significance p=0.28�.
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it is possible that the initial behavior of the measured error
probabilities does not represent the average error of interest,
and it is the eventual decay behavior that is of interest. In this
case, randomized benchmarking determines an asymptotic
average error probability �AAEP� per randomized computa-
tional gate. It is desirable to relate the empirical AAEP to the
average error probability �AEP� of a single randomized com-
putational gate. As discussed above, the AAEP agrees with
the AEP if the error of all operations is depolarizing and
independent of the gates. It can be seen that for depolarizing
errors, this relationship holds even if the error depends on the
gates. In general, one can consider error models with the
following properties.

Memoryless errors. The errors of each gate are described by
a quantum operation. In particular, the “environment” for
errors in one gate is independent of that in another.
Independent errors. For gates acting in parallel on disjoint
qubits, each gate’s errors are described by a quantum opera-
tion acting on only that gate’s qubits.
Stationary errors. The errors depend only on the gate, not on
where and when in the process the error occurs.
Subsystem preserving errors. The errors cause no leakage out
of the subsystem defining the qubits.

Although the AAEP need not be identical to the AEP, we
conjecture that there are useful bounds relating the two error
probabilities. In particular, if the AAEP is zero then there is a
fixed logical frame in which the AEP is zero. Trivially, if the
AEP is zero, then the AAEP is zero.

Randomized benchmarking involves both Pauli random-
ization and computational gate randomization. The expected
effect of Pauli randomization is to ensure that, to first order,
errors consist of random �but not necessarily uniformly ran-
dom� Pauli operators. Computational gate randomization en-
sures that we average errors over the Clifford group. If, as in
our experimental implementation, the computational gates
generate only the Clifford group, it takes a few steps for the
effect to be close to averaging over the Clifford group. This
process is expected to have the effect of making all errors
equally visible to our measurement, even though the mea-
surement is fixed in the logical basis and the last step of the
randomized computation is picked so that the answer is de-
terministic in the absence of errors.

VI. BENCHMARKING MULTIPLE QUBITS

Scalable quantum computing requires not only having ac-
cess to many qubits, but also the ability to apply many low-
error quantum gates to these qubits. The error behavior of
gates should not become worse as the computation proceeds.
Randomized benchmarking can verify the ability to apply
many multiqubit gates consistently.

Randomized benchmarking can be applied to two or more
qubits by expanding the set of computational gates to include
multiqubit gates. The initial state is �0¯0�. Pauli random-
ization is performed as before and is expected to convert the
error model to probabilistic Pauli errors to first order. Be-
cause the size of the Clifford group for two or more qubits is

large, one cannot expect to effect a random Clifford group
element at each step. Instead, one has to rely on rapid mixing
of random products of generators of the Clifford group to
achieve �approximate� multiqubit depolarization. The num-
ber of computational steps that is required for approximate
depolarization depends on the computational gate set. An
example of a useful gate set consists of controlled NOTs �al-
ternatively, controlled sign flips� combined with major-axis
� /2 pulses on individual qubits. By including sufficiently
many one-qubit variants of each gate, one can ensure that
each step’s computational gates are randomized in the prod-
uct of the one-qubit Clifford groups. This helps by having the
effect of equalizing the probability of Pauli product errors of
the same weight �see Ref. �24��.

The one-qubit randomized benchmark has a last step that
ensures a deterministic answer for the measurement. For n
�1 qubits, one cannot expect deterministic answers for each
qubit’s measurement, as this may require too complex a Clif-
ford transformation. Instead, one can choose a random Pauli
product that stabilizes the last state and apply a random prod-
uct of one-qubit � /2 pulses with the property that this Pauli
product is turned into a product of �z operators. If there is no
error, measuring �z for each qubit and then computing the
appropriate parity of the measurement outcomes gives a
known deterministic answer. With error, the probability of
obtaining the wrong parity can be thought of as a one-qubit
error probability p for the sequence. If the error is com-
pletely depolarizing on all qubits, with depolarization prob-
ability d, then p=d /2, just as for one qubit. One expects that
for sufficiently long sequences, p increases exponentially to-
ward 1/2 so that the asymptotic average error probability per
randomized computational gate can be extracted as for one
qubit.
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FIG. 3. Measurement of phase decoherence with refocusing. We
measured the probability of �1� as a function of time for the stan-
dard refocused decoherence measurement. The pulse sequence con-
sisted of a � /2 pulse at phase 0 followed by a delay of T /2, a �
pulse at phase �, another delay of T /2 and a final � /2 pulse at
phase �. The straight line shows the fit for exponential decay on the
interval from 1 to 200 �s. Its extrapolation to larger times is shown
dashed. The deviation from an exponential decay at larger times can
be attributed to slow phase drifts that are no longer refocused by the
single � pulse in the pulse sequence. From the fit, the contribution
of unrefocusable phase decoherence to the error probability per step
is 0.0037�1�. The standard deviation of the plotted points ranges
from 0.002 for values near 1 to 0.008 for the smallest values, simi-
lar to the apparent scatter of the plotted points.
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APPENDIX: DIRECT ERROR CHARACTERIZATIONS

We performed experiments to directly quantify the differ-
ent types of errors in our pulses. These experiments charac-
terize only the initial error �the error of the first gates� and
serve as a consistency check for the randomized benchmark-
ing data.

Known sources of errors include �a� phase errors due to
fluctuating magnetic fields and changes in path length be-
tween the two Raman beams �they are merged on a polariz-

ing beam splitter before targeting the ion�, �b� amplitude er-
rors due to changes in beam position at the ion and intensity
fluctuations not compensated by the “noise eaters” �active-
beam intensity stabilization�, and �c� spontaneous emission
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FIG. 4. Measurement of phase decoherence without refocusing.
The randomized benchmark does not systematically refocus
changes in frequency. To estimate the contribution to error from
decoherence including refocusable decoherence, we performed the
experiment of Fig. 3 without the refocusing pulse. This is essen-
tially an on-resonance Ramsey experiment. It was not experimen-
tally possible to eliminate the oscillatory shape of the curve by
calibrating the frequency indicating that the oscillation was not sim-
ply caused by detuning from the resonant frequency. However, the
shape is similar to what one would expect from a roughly periodic
change in frequency that is not synchronized with the experiment.
Such changes could come from magnetic field fluctuations and
phase noise due to air currents in the paths of the two Raman
beams. To estimate the contribution to the probability of error per
step, we fitted an exponentially decaying cos�t� curve to the points
with time coordinates less than 220 �s. The extrapolation of the
fitted curve �dashed� clearly deviates from the data. Note that for
sinusoidal phase noise, the curve should be related to a decaying
Bessel function. Fits to such a function also deviate from the ex-
perimental data, consistent with the phase fluctuations not being
sinusoidal. Since the contribution to the probability of error is de-
rived from the short-time behavior, the effect of the different mod-
els on the inferred probability of error per step is small. For the fit
shown, the inferred contribution to the probability of error per step
is 0.0090�7�, larger than the error per step derived from Fig. 2. This
is likely due to the fact that in the randomized sequences, the cen-
tering of the explicit � pulses in their intervals reduces this contri-
bution by refocusing.
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FIG. 5. Contribution of spontaneous emission to phase decoher-
ence. To experimentally determine the contribution of spontaneous
emission to decoherence, we applied the two Raman beams sepa-
rately for half the time of each arm of the refocused decoherence
measurement and compared the resulting data to that of Fig. 3 �32�.
The points shown here were obtained by dividing the probabilities
measured by the corresponding probabilities of Fig. 3, interpolating
between the nearest points to match the time coordinates. The
straight line shows the fitted exponential decay. The fit was
weighted and used linear approximation to determine standard de-
viations of the points. The standard deviations used range from
0.003 to 0.015, which is substantially less than the apparent scatter
of the plotted points. The inferred contribution to the error probabil-
ity per step is 0.00038�3�. This contribution can be estimated theo-
retically �32�, which for the relevant configuration gives a value of
approximately 0.0003.
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FIG. 6. Rabi flopping experiment. To determine the contribution
to the probability of error per step due to pulse area error and
associated decoherence, we performed a Rabi flopping experiment.
We fitted the points to a decaying cosine curve with a possible
phase offset and both linear and quadratic decay. Again, we re-
stricted the fit to an initial segment of the data �black curve�. The
extrapolation �dashed curve� shows significant deviations. The ran-
dom uncertainty in the points ranges from 0.002 to 0.007, less than
the symbol size of the plotted points. The apparent scatter in the
points near the end of the curve is likely due to slow fluctuations in
pulse amplitude. The contribution to the probability of error per step
as detected in this experiment is 0.006�3� if the calibration were
based on this experiment. Automatically calibrated pulse times fluc-
tuated by around 0.02 �s. For pulse times differing by this amount,
the contribution to the error per step is 0.007�3�.
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from the upper levels required for the stimulated Raman
transition.

Phase decoherence can be measured by observing the de-
cay of signal in a Ramsey spectrometry experiment of the
qubit with or without refocusing �32�. Figure 3 shows the
probability of observing �1� at the end of a refocused Ramsey
experiment as a function of the delay between the first and
last � /2 pulse. By fitting the initial part of the curve to an
exponential decay, one can infer the contribution of unrefo-
cusable phase error to each step of the Pauli randomized
sequences. We obtained an estimate of 0.0037�1� for this
contribution. Figure 4 shows the probability of observing �1�
in a similar experiment but with the refocusing pulse omit-
ted. This is an on-resonance Ramsey experiment. The fit sug-
gests a contribution of 0.0090�7� for the error per step. This
is larger than the inferred error from the randomized experi-
ments, which can be explained by the refocusing effects of
the Pauli randomization. See the caption of Fig. 4 for a dis-
cussion of fitting issues. We note that our benchmarking ex-
periments, as well as the error characterizations in this sec-
tion, were performed without line triggering the experiments,
thereby making them sensitive to phase shifts caused by 60

Hz magnetic field fluctuations. Greatly improved decoher-
ence times are typically obtained if such triggering is used.

The contribution of spontaneous emission to phase deco-
herence can be determined by a refocused Ramsey experi-
ment where the two Raman beams are on separately half the
time during the intervals between the pulses �32�. To deter-
mine the desired contribution, the probability of �1� as a
function of time is compared to the data shown in Fig. 3. The
results of the comparisons are in Fig. 5. The inferred contri-
bution to the error probability per step is 0.00038�3�, well
below the contribution of the other sources of error.

The effect of amplitude fluctuations can be estimated
from the loss of visibility of a Rabi flopping experiment. The
data are shown in Fig. 6. Modeling the Rabi flopping curve is
nontrivial and the fits are not very good. Nevertheless, we
can estimate a contribution to the error probability per step
from the behavior of the curve during the first few oscilla-
tions. This gives a contribution of 0.006�3�, consistent with
the probability of error per step obtained in the randomized
experiments. Note that the contribution measured here also
includes errors due to phase fluctuations during the compu-
tation pulses.
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