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We cool the fundamental mode of a miniature cantilever by capacitively coupling it to a driven rf
resonant circuit. Cooling results from the rf capacitive force, which is phase shifted relative to the
cantilever motion. We demonstrate the technique by cooling a 7 kHz cantilever from room temperature to
45 K, obtaining reasonable agreement with a model for the cooling, damping, and frequency shift.
Extending the method to higher frequencies in a cryogenic system could enable ground state cooling and
may prove simpler than related optical experiments in a low temperature apparatus.
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Stimulated by the early work of Braginsky and collabo-
rators [1,2], the quantum-limited measurement and control
of mechanical oscillators continues to be a subject of great
interest. If one can cool to the ground state of the oscillator,
the generation of nonclassical states of motion also be-
comes feasible. For an atom bound in a harmonic well,
laser cooling in a room-temperature apparatus can cool the
modes of mechanical motion to a level with mean oc-
cupation numbers hni< 0:1 for oscillation frequencies
�1–10 MHz [3,4]. This has made it possible to generate
nonclassical mechanical oscillator states such as squeezed,
Fock [5], multiparticle entangled [6], and (in principle)
arbitrary superposition states [7].

For more macroscopic systems, smaller and smaller
micromechanical resonators have approached the quantum
limit through thermal contact with a cryogenic bath (for a
summary, see [8] ). Small mechanical resonators, having
low-order mode frequencies of 10–1000 MHz, can come
close to the quantum regime at low temperature (<1 K),
and mean occupation numbers of approximately 25 have
been achieved [9]. Cooling of macroscopic mechanical
oscillators also has been achieved with optical forces.
The requisite damping can be implemented by use of active
external electronics to control the applied force [10–13]
(see also [14] ). Passive feedback cooling has been realized
in which a mirror attached to a mechanical oscillator forms
an optical cavity with another stationary mirror. For ap-
propriate tuning of radiation incident on the cavity, a delay
in the optical force on the oscillator as it moves gives
cooling. This delay can result from a photothermal effect
[15,16] or from the stored energy response time of the
cavity [17–19]. Closely related passive cooling has been
reported in [9,20].

We demonstrate a similar cooling mechanism where the
damping force is the electric force between capacitor plates
[21] that here contribute to a resonant rf circuit [2,22]. This
approach has potential practical advantages over optical
schemes: eliminating optical components simplifies fabri-
cation and integration into a cryogenic system, and the rf
circuit could be incorporated on-chip with the mechanical
oscillator.

A conducting cantilever of mass density � is fixed at one
end [Fig. 1(a)]. One face is placed a distance d from a
rigidly mounted plate of area w� h, forming a parallel-
plate capacitor Cc � �0wh=d, where �0 is the vacuum
dielectric constant. An inductor L0 and capacitor C0 in
parallel with Cc form a resonant rf circuit with frequency
�0 � 1=

���������������������������
L0�C0 � Cc�

p
and with losses represented by

resistance R0. We assume Qrf � 1, where Qrf �
�0L0=R0 � �0=� and � is the damping rate.

We consider the lowest-order flexural mode of the can-
tilever, where the free end oscillates in the x̂ direction
[vertical in Fig. 1(a)] with angular frequency !c � �.
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FIG. 1. Schematics of the cantilever cooling and detection
electronics. (a) Cantilever and associated rf circuitry. (b) Mo-
tional detection electronics. Near !c the rf circuit looks like a
short to ground as shown. (c) Equivalent circuit for the cantilever
and detection electronics near ! 	 !c.
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We take x to be the displacement at the end of the canti-
lever, so the displacement as a function of (horizontal)
position z along the length of the cantilever is given by
x�z� � f�z�x, where f�z� is the mode function (see, e.g.,
[23] ). Small displacements due to a force F can be de-
scribed by the equation of motion,

 m �x�m� _x�m!2
cx � F; (1)

where � is the cantilever damping rate and m its effective
mass, given by ��00cwhcs, where �00c 


1
hc

R
hc
f�z�2dz �

0:250 for a rectangular beam.
For simplicity, first assume h� hc, so that the force is

concentrated at the end of the cantilever. If a potential V is
applied across Cc, the capacitor plates experience a mu-
tual attractive force F � �0whV2=�2d2� � CcV2=�2d�.
Consider that V is an applied rf potential Vrf cos��rft�
with �rf 	 �0. Because !c � �0, the force for frequen-
cies near !c can be approximated by the time-averaged rf
force

 Frf �
CchV2i

2d
�
CcV2

rf

4d
�
�0whV2

rf

4d2 ; (2)

where, for a fixed input rf power, Vrf will depend on �� 

�0 ��rf , according to

 

V2
rf

V2
max

�
1

1� �2Qrf��=�0

2 
 L����: (3)

As the cantilever oscillates, its motion modulates the ca-
pacitance of the rf circuit thereby modulating �0. As �0 is
modulated relative to �rf , so too is the rf potential across
the capacitance, according to Eq. (3). The associated
modulated force shifts the cantilever’s resonant frequency.
Because of the finite response time of the rf circuit, there is
a phase lag in the force relative to the motion. For ��> 0
the phase lag leads to a force component that opposes the
cantilever velocity, leading to damping. If this damping is
achieved without adding too much force noise then it cools
the cantilever.

The average force due to applied potentials displaces the
equilibrium position d0 of the cantilever. We assume this
displacement is small and is absorbed into the definition of
d0, writing [24] d 
 d0 � x, where x� d0. Following [2]
or [22] we find !2

c ! !2
c�1� �� and �! �� �0, with

 � 

CcV2

maxL����

2m!2
cd2

0

�
�00 �

2��0�2Qrf��L����

�

�
Cc

Cc � C0

�
; (4)

 �0 

QrfV

2
maxC

2
c

m!cd
2
0�Cc � C0�

��0�2��L����2

�
sin�; (5)

where �0 
 1
h

R
h f�z�dz and �00 
 1

h

R
h f�z�

2dz are geo-
metrical factors required when h� hc is not satisfied.
The phase � is equal to !c�, where � � 4L����=� is
the response time of the rf circuit [25]. For ��> 0, �0

gives increased damping. For �� � �=2 and h� hc
(�0 	 �00 	 1), we obtain the expressions of [22]. For our
experiment, h 	 hc, �0 � 0:392, and �00 � �00c � 0:250.

We detect the cantilever’s motion by biasing it with a
static potential Vb through resistor Rb as shown in
Fig. 1(b), where Ra, Ca, ia, and ea represent the equivalent
input resistance, capacitance, current noise, and voltage
noise, respectively, of the detection amplifier. We make Ra
and Rb large to minimize their contribution to the current
noise ia. We assume Ci � �Cc � Ca� and !cR�Cc �
Ca� � 1, where 1=R 
 1=Rb � 1=Ra. As the cantilever
moves, thereby changing Cc, it creates a varying potential
that is detected by the amplifier.

The (charged) cantilever can be represented by the series
electrical circuit in Fig. 1(c). From Eq. (2) and following
[26], the equivalent inductance is given by Leq �

md2
0=�qc�

0�2, where qc is the average charge on the canti-
lever. From Leq, !c, and �, we can then determine Ceq �

1=�!2
cLeq� and Req � Leq�. Additional damping due to the

rf force is represented by Rrf � Leq�0. For frequencies
! 	 !c, the parallel combination of Rb, Ca, and Ra can
also be expressed instead as the Thévenin equivalent Rs-Cs
circuit in Fig. 1(c). The amplifier’s current noise ia is now
represented as en�Rs�. The intrinsic thermal noise of the
cantilever is characterized by a noise voltage en�Req� hav-
ing spectral density 4kBTcReq, where kB is Boltzmann’s
constant and Tc is the cantilever temperature.

We must also consider noise from the rf circuit. In
Eq. (2), we replace Vrf with Vrf � vn�rf�, where vn�rf� is
the noise across the cantilever capacitance Cc due to
resistance in the rf circuit and noise injected from the rf
source. The cantilever is affected by amplitude noise vn�rf�
at frequencies near �rf �!c, because cross terms in
Eq. (2) give rise to random forces at the cantilever fre-
quency. This force noise can be represented by en�rf� in the
equivalent circuit. The noise terms sum to e2

n � e2
n�Req� �

e2
n�Rs� � e

2
n�rf� (ea does not drive the cantilever), which

gives a cantilever effective temperature

 Teff �
e2
n

4kB�Req � Rrf � Rs�
: (6)

Our cantilever has nominal dimensions hc 	 1:5 mm,
s 	 14 �m [27], and w 	 200 �m, created by etching
through a p��-doped (�0:001 � cm), 200 �m thick sili-
con wafer with a standard Bosch reactive-ion-etching pro-
cess. Its resonant frequency and quality factor are
!c=�2	� 	 7 kHz andQ 	 20 000. The cantilever is sepa-
rated by d0 	 16 �m [27] from a nearby doped silicon rf
electrode, forming capacitance Cc. The sample is enclosed
in a vacuum chamber with pressure less than 10�5 Pa. The
rf electrode is connected via a vacuum feedthrough to a
quarter-wave resonant cavity with L0 � 330�30� nH and
with loaded quality factor Qrf � 234�8� at �rf=�2	� �
100 MHz when impedance matched to the source. The
cantilever is connected by a short length of coaxial cable
and blocking capacitor Ci � 4 nF to a low-noise junction
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field-effect transistor amplifier [see Fig. 1(b)]. We have
Ca � 48�1� pF, with Ra � Rb � 1 G�. We use Vb �
�50 V, which gives a measured 2:5 �m static deflection
at the cantilever end.

We temporarily lowered Ra to 600 k� 	 1=�!cCa�, in
which case the cantilever noise spectrum strongly distorts
from a Lorentzian line shape (not shown), and it becomes
straightforward to extract the equivalent circuit parameters
of Fig. 1(c). We find Leq � 27 000�600� H. To lowest order
in rf power this equivalent inductance remains constant, so
we assume this value for Leq in subsequent fits to the
thermal spectra, while Rrf is allowed to vary to account
for rf power induced changes in the cantilever damping.

For Ra � 1 G� we measure ea � 1:5 nV=
������
Hz
p

and
ia � 16 fA=

������
Hz
p

. Figure 2 shows a series of thermal spec-
tra acquired with this value of Ra at different values of rf
power Prf but at constant detuning �� � 2	� 90 kHz �
0:21�. Both the lowering and the broadening of the spectra
with increasing Prf are evident, in accordance with Eq. (5).
Here, the effective temperature is very nearly proportional
to the area under the curves, although there is a slight
asymmetric distortion from a Lorentzian line shape, fully
accounted for by the equivalent circuit model. The center
frequency of each spectrum also shifts to lower frequencies
for increasing Prf , as predicted by Eq. (4) and the definition
of � in terms of !c. After calibrating the gain of the
amplifier, we extract e2

n for each spectrum from a fit to
the model of Fig. 1(c). The absolute effective temperature
is then given by Eq. (6).

Equations (5) and (6) predict that the cantilever’s effec-
tive temperature should fall with increasing Prf , as dem-
onstrated by the data in Fig. 3 for low power. With no rf
applied we find Teff � 310�20� K. The coldest spectrum
corresponds to a temperature of 45(2) K, a factor of 6.9

reduction. The minimum temperature appears to be limited
by AM noise from our rf source. This noise power at �rf �
!c is constant relative to the carrier, leading to a noise
power at !c given by en�rf�2 / P2

rf . We fit the residual
noise en�rf�2 to a quadratic in Prf , giving the dashed line
temperature prediction in Fig. 3. From this fit we determine
that the AM noise of our source is �170 dBc=Hz, reason-
ably consistent with the value (�167 dBc=Hz) measured
by spectrum analysis.

The inset shows the cantilever damping rate � versus
Prf . The slope is �0=Prf � 5450�70� Hz=W, slightly higher
than the value 3970 Hz=W calculated from Eq. (5) and the
nominal cantilever dimensions. The nonlinearity in �0=Prf

at higher powers is consistent with the cantilever being
pulled toward the rf electrode. We have numerically simu-
lated this effect and find reasonable agreement. The varia-
tion of � with Prf (not shown) is also linear, with a slope
�=Prf � 7:64�8� W�1, compared with the value 3:45 W�1

calculated from Eq. (4).
Although �0=Prf and �=Prf differ from their predicted

values, this disagreement is not unexpected considering the
relatively large variations in dimensions d0 and s [27].
Another indication of these uncertainties is that optical
measurements of the static deflection of the cantilever
along its length disagree with predictions based on a con-
stant cantilever cross section. This will lead to deviations
from our calculated values of �0, �00, and �00c . However, we
stress that these deviations should not give significant
errors in our measured values of Leq, Req, and therefore
our determination of Teff .

To further test the model, we examine � and !c as a
function of �� (Fig. 4). For large detunings ��, �
asymptotically approaches the value obtained in Fig. 3
for Prf � 0. Near �� � 0, fc is generally shifted to a
lower value, while � is either enhanced or suppressed,
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according to the sign of ��. Data cannot be obtained for
��< 0 when the rf power level is sufficient to drive the
cantilever into instability (�< 0). The solid line fits show
good agreement with the predicted behavior. From these
fits we extract Cc � 0:09 pF, lower than the value 0.17 pF
obtained from the physical dimensions. This disagreement
is not surprising for the reasons mentioned above.

Some experiments using optical forces have observed
strong effects from the laser power absorbed in the canti-
lever mirror. A conservative estimate of the rf power dis-
sipated in our cantilever gives a temperature rise of less
than 1 K at the highest power, so these effects should not be
significant.

Although rather modest cooling is obtained here, the
basic method could eventually provide ground state cool-
ing. For this we must achieve the resolved sideband limit,
where !c > � [25,28], and the cooling would be very
similar to the atomic case [3,4]. To insure a mean quantum
number n less than one, the heating rate from the ground
state _nheat � �kBTc=�@!c� must be less than the cooling
rate for n � 1! 0. The cooling rate _ncool can be estimated
by noting that each absorbed photon on the lower sideband
(at the applied rf frequency �0 �!c) is accompanied by
reradiation on the rf ‘‘carrier’’ at �0. If we assume the
lower sideband is saturated for n 	 1, _ncool 	 �=2. Hence
we require R 
 _nheat= _ncool 	 2kBTcQrf=�@�0Qc� � 1.
For example, if Tc � 0:1 K, �0=�2	� � 20 GHz, Qrf �
5000 (e.g., a stripline), and Qc � 20 000 we have R 	

0:05. For resolved sidebands, we require !c=�2	�>
4 MHz.
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FIG. 4 (color online). Variation of the cantilever resonance
with respect to rf frequency. (a) Cantilever frequency fc and
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0 MHz correspond to a region of instability where � becomes
negative. Solid lines are fits to Eqs. (4) and (5).
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