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Rotating-radio-frequency ion traps
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We discuss a radio-frequency (rf) ion trap, the rotating-radio-frequency (rotating-rf) trap, in which the
motion of a charged particle is described by trigonometric functions rather than the usual Mathieu functions of
a normal rf trap. In the rotating-rf trap, a rotating quadrupole electric field confines charged particles, whereas
in a normal 1f trap, an oscillating quadrupole electric field does. Ion motion in a rotating-rf trap is a superpo-
sition of two nondegenerate circular secular motions and two corresponding circular micromotions. The cases
of applying a uniform dc magnetic field or a quadrupole dc electric field in addition to the rotating-rf field are
also discussed. Confinement in a rotating-rf trap can be tighter than in a normal linear rf trap with the same

experimental parameter values.

DOI: 10.1103/PhysRevA.72.043403

I. INTRODUCTION

Ion traps are commonly used in many different applica-
tions. Examples include quantum-computation studies [ 1-4],
high-resolution spectroscopy and atomic clocks [5-9], non-
neutral-plasma physics [10-14], and mass spectroscopy
[15,16]. The rf (or Paul) ion trap is particularly useful for
applications where a large magnetic field is not desired or
important. In atomic physics and quantum optics, for ex-
ample, rf traps have been used to make careful studies of the
interaction of atoms with light [17-19].

The rf trap, which is the three-dimensional version of a
magnetic-field-free mass spectrometer invented by Paul in
the 1950s [15], uses the force generated by an inhomoge-
neous, oscillating rf electric field to confine charged particles
[20]. A rotating-saddle potential has been used to explain the
operation of a rf trap [21]. However, the rotating-saddle trap
is not an accurate mechanical analog of the rf trap, because
in the case of a rf trap the electric saddle-shaped potential
oscillates or “flaps” with the rf drive frequency, whereas in
the case of a rotating-saddle trap the gravitational saddle-
shaped potential rotates around an axis of gravity [22]. Tt
turns out that motion of a ball in a rotating-saddle trap can be
described by trigonometric functions [22], in contrast to
those in a rf trap, which are described by Mathieu functions
[15,23,24]. Therefore, it is naturally imagined that the mo-
tion of a charged particle in an electric version of the
rotating-saddle trap could also be described by trigonometric
functions and can be simpler than that in a normal 1f trap.
Simpler ion motion could be useful for some of the applica-
tions and studies that use rf traps.

In this paper we discuss a trapping scheme that is an
electric version of the rotating-saddle trap. The trap consists
of a dc electric field for the confinement in one direction (z)
and a rotating quadrupole electric field for confinement in the
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orthogonal (radial) directions. The rotating-rf (rrf) trap is
similar to the commonly used linear rf (Irf) trap [5]. The
difference is that the oscillating rf quadrupole electric field in
the Irf trap is replaced by a rotating rf quadrupole field in the
rrf trap. The rotating quadrupole electric field can be gener-
ated by applying sinusoidal voltages with different phases to
six or more electrodes that azimuthally surround the trap.
This method has been used to generate a rotating electric
field in a Penning trap in order to control the plasma rotation
frequency, a method sometimes referred to as a rotating wall
[25,26].

II. STABILITY OF ROTATING-rf TRAPS

A 1rf trap consists of a static electric potential (®,) for
axial confinement and a rotating electric potential (®,) for
radial confinement. These are expressed as

\4
®,=- (=22,
Tq

@,:%r2c05[2(0+ wt)]. (1)

r
Here, r, 6, and z describe the position of the particle in cy-
lindrical coordinates, V,; and V, are the dc and the rotating
voltages, r, and r, are effective dimensions (including geo-
metric factors) of the electrodes, and w is the rotation fre-
quency of the field. Positive w corresponds to rotation in the

— 6 direction, and throughout the rest of this paper we implic-
itly assume w>0. The potentials of Eq. (1) can be provided
by electrodes shown in Fig. 1, for example. In Fig. 1, a
sinusoidal voltage with a specific phase is applied to each of
six rod electrodes. The angular frequency of this voltage is
2w. The field generated by the configuration of Fig. 1 may
contain not only the quadrupole field rotating with frequency
 but also the octupole field rotating with frequency —w, and
higher-order fields. At the center of the trap, however, the
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FIG. 1. A possible experimental realization of a rrf trap. The
phase shifters delay the ac voltage by the shown phase; namely, if

the input of the 277/3 phase shifter is V cos2wt, the output is
Vcos(2Qwt—21/3).

contribution of the quadrupole field is dominant because the
spatial dependence of the octupole field is proportional to r*.
In addition to the fields of Eq. (1), we also consider a uni-
form magnetic field B pointing in the z direction.

The equations of motion can be written as

d’x

d—ql=M£_+dx—2q(x cos 27—y sin 27), (2)

d d.

ﬁz—ﬂd—j_+dy+2q(x sin 27+ cos 27), (3)
d’z
— =-2dz. 4
e 2 4)

Here, =wt, pw=Q=eB/m is the cyclotron frequency, d
=2eV,/mriw’, g=eV,/mr’e’, and m and e are the mass and
charge of the particle, respectively. 7, u, d, and g are dimen-
sionless. Axial confinement with axial frequency w,=v2dw
is obtained by choosing positive d. Hence we need to discuss
the criteria for stable confinement in only the radial direc-
tion. The value of ¢ can be either positive or negative, but
physically the sign of ¢ depends only on how the x and y
axes are chosen. Therefore, the sign of g will not affect the
trap stability.

Throughout this paper we will compare the rrf trap with
the Irf trap. We consider a Irf trap whose static electric po-
tential is identical to @, in Eq. (1) and whose rf “flapping”
potential is given by

\%
D= — 7 cos(26)cos(2w1). (3)

r

This potential can be generated by a standard four-rod trap
configuration whose dimensions and rf voltage amplitude are
the same as the rrf trap discussed above. The equations of
motion for the Irf trap are the same as Egs. (2)—(4), except
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that the 2qy sin 27 term in Eq. (2) and the 2¢x sin 27 term in
Eq. (3) are missing.

As discussed in Ref. [27], Egs. (2) and (3) can be solved
analytically (with no approximations) by introducing new
coordinates (£,¢) in a frame rotating with frequency w, de-
fined by

x=§&cos 7+ {sin 7,

y={cos 7— &sin 7. (6)

The solution in the rotating frame is

2
_ iN;T —i\;
f—zl(cje J +Dje -/1),
j=

; N pwdl-
=21

Jj=1 )\j(M -2)
where C; and D; are constants determined by the initial con-
ditions, and the \; are given by

2 . .
L(cierm-De™n, (1)

N=[u—d-1+3u-22+ 31 (u-2)2? - 4d) + 164°]"

No=[p—d=1+5u-2)? - N (u-2)2(12 - 4d) + 1642] .
(8)

If the A; have a nonzero imaginary part, the solutions of
Eq. (7) diverge exponentially and the trap is not stable. If the
A; are real valued numbers, the trap is stable. The conditions

that must be satisfied simultaneously for real \; are

(u—2)%(u*-4d) + 164> >0,

p—d—=1+3(n=2)% = 3\(u—2)(u> - 4d) + 164> > 0.
)

Because £ is a real variable, C; and D; must be complex
conjugates of each other for real-valued A;. This condition
automatically makes { real valued. In this case, the solutions
in the laboratory frame become

x= 2 [(1=y)Acos(w), 7+ )
j=12

+(1+ y)Acos(w;_7— )],

=12

- ¢l (10)

where Aje'%i=C;=D;, y;=(\}-p+d+1-29)/[\}(u-2)],
and w;,=—1%\; (j=1,2) are the normalized characteristic
frequencies of the trapped particle motion in the laboratory
frame. We note that w;,_=-2-w;,. Equation (10) shows that
the characteristic motions are circular, and their rotation di-
rections are determined by the sign of the eigenfrequencies.

For the case of a rrf trap, u=0 (no magnetic field), and

the stability condition of Eq. (9) becomes
d<gq,
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FIG. 2. Stability diagrams in the g-d plane for u=0 of a rrf and
a Irf trap. The stability region of the Irf trap extends to larger ¢ and
d, but becomes more narrow as g and d increase. The checked area
is the stable region for both traps. Black dots shown correspond to
the values of parameters used in Fig. 3. The line shows the param-
eter values for which one of the secular frequencies (w;,) becomes
ZEro.

d>2|q|-1,

d<1. (11)

Additionally, the condition of d>0 is necessary for stability
in the z direction. The stability diagram of a rrf trap is shown
and compared with the low-order stability region of a Irf trap
in Fig. 2 [28]. There is only one stability region for a rrf trap,
and its area is smaller than the area of the stability region for
the Irf trap.

With =0, the eigenfrequencies of Eq. (8) become:

N=(1—-d+2Vg*-d)'?,

N=(1-d-2\g>—d)'"?, (12)
and in the laboratory frame,

wa=—1x(1-d+2V¢*-d)"?,

wy=—1x(1=d=2\g*-d)">. (13)

w;_ and w,, are always negative, corresponding to circular

motion in the —6 direction (the same direction as the applied
rotating potential). w;, can be of either sign, but is positive
(corresponding to circular motion in a direction opposite to
the applied rotating potential) for a trap with weak axial con-
finement (d<<g). Therefore in general the radial motion is
composed of circular components rotating in both directions.
For the special case d=—2+2v1+¢?, which is shown in Fig.
2, wy, 1s zero, and the terms associated with w;, in the so-
lutions of Eq. (10) are constants [x=(1-1;)A;cos ¢; and y
=(1-y)A;sin ¢,].

One advantage of a rrf trap is that there are only four
Fourier components in the radial motion, whereas in a Irf
trap the radial motion, which is described by Mathieu func-
tions, has an infinite number of Fourier components
(1% Wgeeuiars Where Qy is the applied rf frequency, gecyiar
is the secular frequency, and n is any integer). This could
mean for example that the optical spectral lines of energetic
ions in the rrf trap can be simpler than those in the Irf trap
because of fewer motional sidebands.

Some examples of trajectories of a particle are shown in
Fig. 3. The trajectories were calculated by numerical integra-
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FIG. 3. Examples of trajectories in a rrf trap in the laboratory
frame. These trajectories are numerically calculated from 7=0 to
100 by the fourth-order Runge-Kutta method with x=1, y=0,
dx/d7=0, and dy/d7=0 as initial conditions. The particle is trapped
in (a), (b), and (e), whereas it is unstable in (c) and (d). The values
of the ¢ and d parameters are shown in Fig. 2. Especially in (a), a
large circular secular motion with a small micromotion can be seen.
For (e), the parameter values are chosen so that w;,=0, in which
case the w;, secular motion is just a displacement from the trap
center.

tion using the fourth-order Runge-Kutta method, although
the analytical solutions [Egs. (6) and (7)] could also have
been used. A large-radius secular motion with a small circu-
lar micromotion, similar to that for a particle in a Irf trap, can
be seen, especially in Fig. 3(a). In Fig. 3(e) we set d=-2
+241+¢?, in which w;,=0 and the corresponding motion is
displaced from the center of the trap.

II1. PARTICLE MOTION IN A ROTATING-rf TRAP

In this section we discuss the motion of a charged particle
in a rrf trap for weak drive amplitude corresponding to g°
< 1. Although we have obtained the exact solutions for a rrf
trap, this approximate analysis will help us to understand the
dynamics. In a Irf trap, a pseudopotential approximation
works well in this regime. That is, for time scales that are
long compared to the period of the rf drive, the confining
force due to the inhomogeneous tf fields can be derived from
a potential called the pseudopotential. For the Irf trap the
pseudopotential is cylindrically symmetric and characterized
by a frequency w,; called the secular frequency. For
¢*<1 the Irf trap secular frequency is given by wy
~\gq?/2—-d<1. The general motion is a superposition of this
slow secular motion and rapid micromotion at multiples of
the rf drive frequency (-2 in normalized units).

To second order in ¢ and \s‘“qz—d, and to first order in d,
the characteristic frequencies of Eq. (13) are given by

2

) q

W~ \Ng —d—-"—,
1+ Vg 5
2

| q
w2+~_Vq2_d_?v
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[ 2

w1_~—2—\e‘"q2—d+%,

— q2
w2_~—2+y"q2—d+5. (14)

Expanding the 7y;’s to first order in small parameters, the
laboratory-frame solutions of Eq. (10) become

x~ D [(2- q)A;cos(w;, T+ @) + gA;cos(w;_T— ;) ],
j=12

y~ > [2- @A sin(w;, T+ @) + gA;sin(w;_T— ¢))].
=12

(15)

We see that w,, and w,, are the frequencies of two, in
general nondegenerate, circular secular motions. w;_=-2
—w;, and w,_=-2-w,, are almost equal to the driving fre-
quency [-2 in the normalized units of Egs. (2)—(4)]. There-
fore they are the frequencies of two circular micromotions.
The radius of the micromotion is ~¢/2 times smaller than
the radius of the secular motion.

Equation (14) shows that to first order the secular fre-
quencies are +yg>’—d. Therefore in this lowest-order ap-
proximation, the two secular motions are degenerate, corre-
sponding to circular motions of the same frequency but
opposite directions. This is similar torthe Irf trap, except the
secular frequency in the rrf trap is V2 larger for the same ¢
(i.e., the same amplitude and frequency of the applied ac
field). However, in the rrf trap, the degeneracy of the secular
frequencies is broken in second order. This is to be con-
trasted with the Irf trap, where the secular frequencies for the
x and y motion are degenerate to all orders of ¢ and d.

The breaking of the degeneracy of the secular frequencies
produces a precession in the motion of a charged particle in
a rrf trap at a frequency —¢>/2. In Eq. (15) let x=X+x,, and
y=Y+y,, where X and Y represent the secular motion (the
;, terms) and x,, and y,, represent the micromotion (the w;_
terms). Consider the secular motion only and, as an example,
assume an initial (7=0) position and velocity of the particle’s

secular motion of X=1, Y=0, X=0, and Y=0. Keeping
second-order contributions to the characteristic frequencies
but only first-order contributions to the amplitudes, we ob-
tain

2
X+iY= e‘i(qz’2)7<cos V@ —dr+ i——— qz*sin\e"q2 - dr)
Z\r'q -
(16)

for the secular motion of the particle. Equation (16) de-
scribes _an _elliptical particle orbit with aspect ratio of
q*/(2Vg*-d) that precesses about the z axis at a frequency

¢*/2 in the —6 direction.

The precession can also be observed through numerical
simulation of Egs. (2) and (3). Figure 4 shows particle orbits
calculated with the fourth-order Runge-Kutta method for ¢
=0.2 and different values of d. The initial conditions x=1,
y=0, x=0, and y=—¢ for the total particle motion (secular
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FIG. 4. Precessing secular motions with circular micromotion
from 7=0 to 100 when ¢=0.2. Initial conditions are x=1, y=0,
dx/dt=0, and dy/dt=—-q. In every case, the secular motion pre-
cesses about 120° for 7=100, regardless of the value of d.

plus micromotion) give approximately the same initial con-
ditions for the secular motion used to derive Eq. (16). From
7=0 to 100 the particle orbit precesses approximately 120°
(~2.1 rad), which agrees with the theoretical prediction of
(¢*/2)7=2 radians.

The breaking of the degeneracy of the secular frequencies
is due to different radii of the micromotion associated with
the two different secular motions. This can be directly ob-
served by calculating the coefficients 1+7; in Eq. (10) to
second order in g. Physically these two secular motions are
not equivalent because they correspond to different motions
relative to the rotating quadrupole field. The w,, secular mo-
tion corresponds to a circular motion about the trap axis in

the — direction; that is, a circular motion in the same direc-
tion as the rotating field. For an axially weak trap (d <q) the
w1, secular motion corresponds to a circular motion that op-
poses the rotating field.

For an axially weak trap (d<¢g) and a weak rf drive
(¢*<1), we can readily show that the Coriolis force is prin-
cipally responsible for the difference in the radii of the two
micromotions. Consider the case where only the w;, secular
motion is excited [A;#0 and A,=0 in Eq. (10)] and trans-
form to a frame rotating with w,. In this frame the quadru-
pole potential rotates about the z axis at frequency —1-wy,.
Because this is a quadrupole potential, the electric field at the
particle position rotates at a frequency —2—-2w,. This rotat-
ing electric field drives a circular motion at this same fre-
quency. The centrifugal potential in the w,, rotating frame is
~q2 and can be neglected for a weak rf drive. Therefore, as
sketched in Fig. 5, the particle motion consists principally of
circular motion at the frequency —2—-2w,,. The radius p, of
the micromotion is determined by two forces: the force Fp
due to the rotating field and the Coriolis force F-; due to the
transformation to the w;, rotating frame. These normalized
forces are given by
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FIG. 5. Schematic representation of the motion of a particle in
the frame rotating at w;, and the forces acting on the particle. Fg;
and Fc are, respectively, the electric field force and the Coriolis
force.

FE1=_2qu’

Feo1=20,(-2-2w,)p; ~ —4w,p;. (17)

Here r, is the cylindrical radius of the center of the micro-
motion, and negative force means that it points toward the
center of the micromotion. For circular motion with radius p;
we must have the relation Fpj+Fq=—(-2-2w,,)’p;~
—4(142w,,)p;. From this force balance we obtain

rS rS
2 1 - wy). (18)

P v, 2

This shows that due to the Coriolis force the radius of the
micromotion depends on the secular frequency. For the w,
secular motion, p; is reduced by w,,. However, because the
w,, secular motion rotates in the opposite direction (w,,
<0), p,, the micromotion radius for the w,, secular motion,
is increased by |w,,|. A larger micromotion radius produces a
larger secular restoring force. For example, in the laboratory
frame and within the approximations of Eq. (18) we can
write the w,, secular and corresponding micromotion as

q(l - wy,)

5 (X —iY)e 2, (19)

x+iy=X+i¥V+
By substituting Eq. (19) into Egs. (2) and (3) and collecting
slowly varying terms we obtain

%(XHY):[d—qz(l —w) (X +iY). (20)

Because Eq. (20) is the equation for the secular motion, the
coefficients of the right-hand side must be —w% + Therefore
we obtain w;, ~ +q>—d—g*/2, and apparently the plus sign
should be chosen. Likewise, we obtain the same equation for
w,,, and hence the minus sign is for w,,. This result agrees
with Eq. (14) when d<gq.

IV. MODIFICATIONS OF ROTATING-rf TRAPS
A. Uniform magnetic field

With a uniform magnetic field along the z direction, the
radial motion of a particle is still described by four Fourier
components as shown in Sec. II. This trap should be referred
to as a rrf Penning trap. Stability conditions of a rrf Penning
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FIG. 6. Stability diagrams in the g-d plane for some specific
values of u. The case of u=0(c) is the same as Fig. 2.

trap were already obtained in Eq. (9) and in Ref. [27]. Figure
6 shows stability diagrams for some values of w in the g-d
plane. For u>1 and d=p-1, the trap is
unstable regardless of g. In this case w is either one of two
characteristic ~ frequencies of a  Penning trap,
namely, the magnetron frequency [wm: %(Q— \J’QZ—wa)] or
modified cyclotron frequency [Qm=%(Q+ \"Qz—2w§)] [29].
Consequently, this instability is due to parametric excitation
of a Penning trap motional frequency by the applied rotating
quadrupole electric field. The case of w~ w,, was investi-
gated in detail experimentally in Ref. [27].

The eigenfrequencies in a rrf Penning trap are given by
the w;.. [w;.=—1=\; where the \; are given by Eq (8).] For
the special case of ¢g=0, these become (when u<2)

7

1 2
= ’ 2 / s
Wiy + Vu _4d

R —
wy == =Sl - 4d,
[ —

w2_=—2+§+5\~ﬂ2—4d. (21)

Hence w, is the magnetron frequency (normalized units),
and w,, is the modified cyclotron frequency in a Penning
trap. There is no motion corresponding to w;_ or w,_, be-
cause the amplitudes of these motions, 1+; [Eq. (10)], are
zero if ¢g=0. For the case of u>2,w,_ is a modified cyclo-
tron frequency, and w,_ is a magnetron frequency.

B. Static quadrupole potential

One of the important applications of rf traps is mass spec-
troscopy. In particular the Irf trap in the limit d=0 is fre-
quently used as a quadrupole mass filter (QMF) [15,16]. For
mass spectroscopy a static quadrupole field given by the ex-
pression V(x>~y?)/r? is applied in addition to the oscillating
quadrupole field. Mass spectroscopy is typically accom-
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FIG. 7. Stability diagrams of a rrf and a Irf QMF in the g-a
plane. The checked area is the stable region for both filters. One of
the small stability regions at high ¢ and a of a Irf QMF is also
shown as an inset. There is only one stable region for a rrf QMF.

plished by adjusting the rf frequency while keeping the volt-
ages of the static and rf quadrupoles constant to confine
charged particles whose charge-to-mass ratio lies within a
particular range.

Here we consider the case in which a static quadrupole
potential V,(x>~y?)/r? is applied in addition to the rotating rf
field of a rrf trap. We consider only the case of u=d=0. The
equations of motion become

X gxcos 27+ 24y sin?2
— =—-2gxcos 2T sin 27— ax,
A7 q qy
d*y .
—5 =2qy cos 27+ 2gx sin 27+ ay, (22)
dr
where a is a dimensionless parameter defined as

2eV/mriw?.

The transformation of (x,y) to (¢,) of Eq. (6) no longer
simplifies Eq. (22). Therefore, motions in this trap must be
expressed by Mathieu-type functions. The solutions can be
obtained by an analysis that is a two-dimensional version of
that used for Mathieu equations [24]. Details of this analysis
are shown in the Appendix.

From the analysis in the Appendix we obtain the stability
diagram in the g-a plane of a rrf QMF (Fig. 7). For compari-
son we also show the stability diagram of an Irf QMF in this
figure. In the rrf QMF there are no stability conditions of
higher order, in contrast to the Irf QMEF, for which additional
small stability regions exist (around a=3 and g=3, for ex-
ample). The simpler stability diagram of the rrf QMF could
have advantages for mass spectroscopy. In addition the range
of g in the rrf QMF stability region is lower than that of the
Irf QMF. Therefore the rrf QMF can be operated with smaller
values of g. This may also provide some advantages for mass
spectroscopy; for example, the upper limit of the mass range
of a rrf QMF can be higher than that of a Irf QMF, since ¢ is
proportional to 1/m.

V. CONCLUSIONS

We have discussed a proposal for a rotating-rf trap, in
which the ion motion is described by simple trigonometric
functions. This simple ion motion might be advantageous,
for example, in producing simpler motional sidebands of op-
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tical spectral lines of trapped ions compared to those in a Irf
trap. The simplicity of the classical motion in a rrf trap may
also simplify the quantum-mechanical analysis of this trap.
As far as we know, the rrf trap is the only type of rf trap that
is not expressed by a Mathieu-type solution. The motion of a
particle in a rrf trap is composed of two circular secular
motions and two corresponding circular micromotions. For
an axially weak trap (d<<q) one of the secular motions ro-
tates in a direction opposite to that of the rotating field, and
the other secular motion rotates in the same direction. The
difference in the absolute values of the secular frequencies is
of order ¢°, and this difference causes a precession of the
secular motion. The secular frequency in a rrf trap is V2
larger than that for a Irf trap with the same trap parameters.
Therefore tighter confinement can be achieved in a rrf trap.

If a uniform magnetic field is applied along the trap axis
the motion is still described by trigonometric functions.
However, applying a static quadrupole electric field requires
Mathieu-like functions to describe the ion motion. The sta-
bility diagram of a rrf quadrupole mass filter with static
quadrupole field was obtained. The rrf QMF may have some
advantages over Irf QMF’s due to its single stability region,
which occurs for lower values of g.

ACKNOWLEDGMENTS

This research was partially supported by the Japan Soci-
ety for the Promotion of Science, Grant-in-Aid for Scientific
Research No. 16740232. We thank W. Oskay (NIST) and M.
Jensen (NIST) for their comments on the manuscript.

APPENDIX: STABILITY CONDITIONS OF
TWO-DIMENSIONAL MATHIEU EQUATION

The differential equations to be solved here are given by
Eq. (22). By Floquet’s theorem the solutions can be ex-
pressed as

x= 2 [APmyy(1) + Bie Py (- ],
j=1.2

y= 2 [CiePimy(n) + De Py (- ). (A1)

j=12

Here, #;(7) is a function of 7 with a period of 7, namely,
Y(r+m)=y(7), and A}, B;, C;, and D; are constants deter-
mined by initial conditions. There are eight constants, which
may seem like too many, but four of them are functions of
the others.

The factor B; is determined by g and a. Because of the
periodicity of ¢;, the imaginary part of §3; is arbitrary up to a
multiple of 2i,8;=p; ,+2in (n is an integer, and S;, is a
principal value). Further, the sign of §; is arbitrary, because
both of e#™ and e Ai™ appear in Eq. (Al). For convenience,
we choose 0<Im(B))<1 as the principal value. To deter-
mine $3; and ;(7), the second terms of the right-hand side of
Eq. (Al) are not necessary, and hereafter we suppose B;
=D;=0.

Iéecause of the periodicity, ;(7) can be expanded as
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FIG. 8. Lines of 8=0 and B=i for the solutions of a rrf QMF in
the g-a plane. The region labeled A is the only stable region.

oo
2ikT
E cj,ke .

k=—o0

(1) = (A2)

By substituting Egs. (A1) and (A2) into Eq. (22) and equat-
ing terms of the same frequencies, we have
[(B;+2ik)* +alAjc; ;== q(Ajc; o) + A )
—iq(Cicj i1 = CiCjjr) s

[(B;+2ik)* - a]C

JCik =" lCI(AjCj -1~ Ajc), fr1)

+q(Cicjjo1 + Cicjpsr) . (A3)

A necessary and sufficient condition for the existence of a
nontrivial solution of Eq. (A3) is

Ai(B) =0, (A4)
where
0O 0 0
1 QJ(',_k)—l 0 0
AB)=|0 o 1 Q7 0|, (A3
0 0 Qj.fk)H I
0 0 0
q . q
(B—2ik)7+a (B—2ik2+a
gi=| 7, ", . (A6)
+7 —
“B-2ikP-a  (B-2ikP-a
(1 0) (A7)
“\o 1/’

The determinant A(3;), which consists of an infinite
number of elements, has a period of 2i in ;. Equation (A4)
is identical regardless of j, and this suggests that two solu-
tions of Eq. (A4) should be obtained. In fact, it turns out later
that this suggestion is correct, and hence we will stop using
the subscript j.
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The determinant A(B) can be obtained as follows. A(B)
has poles at B=2ik+\+a. A function y(B) defined as

COS(i7T,3) +€

(A8)

[cos imB) — cos(imy a)][cos(mr,B) —cos(imy—

also has the same poles (e is a constant determined later).
Therefore, A(B)—xx(B) has no singularities if x« and € are
chosen suitably and must be a constant by Liouville’s theo-
rem. The constants « and € can be determined as follows.
When Re(B) — o, all off-diagonal elements of Eq. (A5) tend
to zero, and hence

lim A(B)=1, (A9)
Re(B)—°
and from Eq. (A8),
lim x(B8)=0. (A10)
Re(B)—e
Then we have for any S,
A(B) - kx(B) = 1. (A11)
When |8 <1, x(B) is expanded as
1+e€ b.b_—1+eb,+b_-2
TS Rk ey
+0(BY), (A12)

where b, =cos(im/%a). On the other hand, A(B) is expanded
as
d’A(0)
g

Note that A(8) must be an even function of B [see Egs. (A8)
and (A11)]. From the zeroth- and second-order terms of Egs.
(A12) and (A13) and using Eq. (A11), we have

(1-b)(1-b )(cﬂA(O)(1
LS dp’

- {A0) - 1](b,b_— 2))

AR =A0) + >——=B*+0(B"). (A13)

+)(] - b—)

K=

_ m[A0) = 1](byb_ = 1) = [d*A(0)/dB)(1 = b,)(1 = b.)
[dZA(O)/dB2](1— )(1=b_) — 7 [A0) - 1](b,b_—-2)
(A14)

To determine B, which satisfies Eq. (A4), we use Eq.
(A11) and obtain

B=—cos™!
X

1
% <5[b+ +b_—kx\(b,+b_— k) —dKe— 4b+b_]> ,

(A15)
Consequently, B can be obtained by computing A(0) and
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d*A(0)/dB* and by substituting them into Eq. (A15). It is
found that there are two solutions of 8 in Eq. (A15), and as
stated before, one of them is B; and the other is S3,. As
mentioned previously, the sign of B is arbitrary, and this is
expressed in Eq. (A15) through the arbitrary sign of the arc-
cosine function.

To compute A(0) and d*A(0)/dB*, we must approximate
the infinite-dimensional matrix of Eq. (A5) to that of a finite
number of elements. The off-diagonal elements can be ap-
proximated as zero except when k2~_ia/ 4. Therefore we
consider only elements where k~ +v+a/2. When a=+4k?,
it seems at first that we cannot compute A(0) and
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d*A(0)/dB? because of the singularity; but we can calculate
B in Eq. (A15) by supposing a # +4k* and finally taking the
limit of a — +4k>.

The stability diagram in the g-a plane can be obtained by
calculating B as a function of ¢ and a. Stable and unstable
regions are separated from each other by the =0 and B=i
lines, which are shown in Fig. 8. Whether the solution inside
each region is stable or unstable can be found by calculating
Re(B). If Re(B) # 0, the solution exponentially diverges. It
turns out that the region named A in Fig. 8 is the only stable
region, which is the stability region of a rrf QMF shown in
Fig. 7.
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