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ABSTRACT We describe the concept and experimental demon-
stration of the basic building blocks of a scalable quantum
computer using trapped-ion qubits. The trap structure is di-
vided into subregions where ion qubits can either be held as
memory or subjected to individual rotations and multi-qubit
gates in processor zones. Thus, ion qubits can become en-
tangled in one trapping zone, then separated and distributed
to separate zones (by switching control-electrode potentials)
where subsequent single- and two-ion gates, and/or detection
is performed. Recent work using these building blocks includes
(1) demonstration of a dense-coding protocol, (2) demonstration
of enhanced qubit-detection efficiency using quantum logic,
(3) generation of GHZ states and their application to enhanced
precision in spectroscopy, and (4) the realization of teleportation
with atomic qubits. In the final section an analog quantum com-
puter that could provide a shortcut towards quantum simulations
under requirements less demanding than those for a universal
quantum computer is also described.

PACS 03.67.Lx; 32.80.Qk

1 Basic architecture

1.1 Original Cirac/Zoller proposal

Trapped ions as a processor for quantum informa-
tion were first proposed by Cirac and Zoller in 1995 [1]. The
architecture consists of one string of ions stored in a linear
quadrupole trap. Two long-lived electronic levels of each ion
are used to implement one quantum bit (qubit), well protected
against environmental disturbances. The necessary interac-
tions for gate manipulations can be precisely switched on
and off by focussed laser beams addressing the qubits indi-
vidually. To provide a universal set of gates (to be able to
implement any algorithm), one needs single-qubit gates and
a conditional two-qubit gate. Single-qubit gates are performed
with laser pulses exciting resonant transitions between the in-
ternal levels of the qubit in question. Two-qubit gates use one
normal mode of collective vibration of the ions as a data bus
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between qubits, i.e. as a means to couple the possibly non-
neighboring partners in the gate operation [1]. To this end,
all normal modes of vibration have to be precisely initialized,
i.e. should be cooled close to the ground state before the algo-
rithm starts.

This proposal stimulated a new field in trapped-ion re-
search, but it soon became clear that it would be difficult
to scale the original architecture to several hundred qubits –
the amount necessary to perform quantum calculations be-
yond the capabilities of classical computers. In addition, to
implement the probably inevitable error correction, one has
to take auxiliary qubits (ancillae) into account. Depending on
the error rate, this overhead of approximately 100 ancillae
per physical qubit (to provide one fault-tolerant logical qubit)
boosts the number to aim for towards 105 ions [2].

In particular, confining a linear string of ‘only’ thousands
of ions in one trap would lead to unrealistically high poten-
tials on the end-cap electrodes to counteract their Coulomb
repulsion. Keeping the distance between neighboring ions
above the diffraction limit of the (individually) addressing
laser beam requires rather low axial potentials and therefore
decreasing motional frequencies for an increasing number
of ions. Low motional frequency and therefore a slow data
bus limits gate speeds for the computation (in the original
proposal, the gate rate has to be below the lowest motional
frequency). Finally, from a practical point of view, the emer-
gence of 3N normal modes for N ions plus their sum and
difference frequencies leads to an increasingly crowded exci-
tation spectrum where individual components are difficult to
identify and off-resonant coupling to ‘spectator’ transitions is
hard to avoid.

1.2 Multiplexed trap proposal

In 1998 the group at NIST proposed a multiplexed
trap architecture [3, 4] that might alleviate the problems de-
scribed above and is modular, so scaling to higher qubit num-
bers seems to be feasible. The basic idea is to expand the
original architecture to an array of many independently con-
trollable subtraps (see Fig. 1).

Qubits that do not partake in a given step of the algo-
rithm are stored in ‘memory’ regions. To execute a gate on
certain qubits, they are separated out of the memory regions
and shifted into one of the ‘processor’ regions. Moving ion
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FIGURE 1 Multiplexed trap architecture. An array of independently con-
trollable subtraps holds the ion qubits (the radio-frequency electrodes pro-
viding the radial confinement are not displayed). Qubits that are not involved
in a given step are held in a ‘memory’ region (m). Before performing a gate
on a certain pair of qubits, they are shifted into a ‘processor’ unit (p), and
sympathetically recooled with another ion species. Single-bit rotations or an-
cilla read outs can be performed in any region sufficiently isolated from the
remaining qubits (for example in (r))

qubits around does not lead to decoherence in the computa-
tional Hilbert space spanned by the qubits, since the motion
is only used for coupling the qubits during the gate opera-
tion in the processor trap. Still, the ion qubits may gain some
excess motional energy, but they can be sympathetically re-
cooled close to the ground state with another ‘refrigerator’
ion [5, 6] before the next gate is applied. Since this cool-
ing overcomes the motional heating, the time available for
a computation would be limited only by the decoherence of
the internal qubit states. The radiative lifetime of the hyper-
fine ground states is extremely long (many years). Therefore,
the memory decoherence is primarily due to phase errors in-
duced by external perturbations, e.g. magnetic field fluctua-
tions. In a carefully controlled environment, decoherence time
scales could be on the order of many days with experimentally
demonstrated lower limits of several minutes (see e.g. [7]).
A further advantage of the multiplexed architecture is the abil-
ity to read out a qubit without compromising neighboring ion
qubits through rescattered photons. These read outs can be
performed in areas that are sufficiently spatially isolated from
the remaining qubits.

All steps described above can be done in a highly parallel
fashion, an important prerequisite for efficient error correc-
tion. Scaling to many, possibly thousands of, ions is tech-
nically challenging, but seems possible without fundamental
limitations.

2 Experiments at NIST

The qubits used at NIST are spanned by the |F =
2, MF = −2〉 and |F = 1, MF = −1〉 ground-state hyperfine
levels of 9Be+ labeled |↓〉 and |↑〉, respectively (splitting
ω0/2π = (E↑ − E↓)/h � 1.25 GHz). In the following, we
use the formal equivalence between a two-level system and
a spin- 1

2 magnetic moment in a magnetic field (Bloch-vector
representation) [8, 9].

Controlled ion-qubit shuttling is accomplished with negli-
gible heating. Ion separation is accomplished with no detected
failures and small heating (about 10 quanta).

To implement quantum information processing (QIP) pro-
tocols, we have to realize single-qubit gates (rotations) and
two-qubit conditional logic gates [2].

2.1 Single-qubit gates

For a single-qubit gate on ion i, the states |↓〉i and
|↑〉i are coupled with two-photon stimulated-Raman transi-
tions excited with two laser beams (designated ‘blue’ and
‘red’ to indicate their relative detuning) [3]. By tuning the dif-
ference frequency of the laser beams to (ωblue −ωred)/2π =
ω0/2π, we implement rotations of the qubit state on the Bloch
sphere

Ri(θ, φi) ≡
(

cos θ
2 −ie−iφi sin θ

2−ie+iφi sin θ
2 cos θ

2

)
, (1)

where we use the conventions |↓〉 ≡ (0, 1)T, |↑〉 ≡ (1, 0)T.
The angle θ is proportional to the duration of the Ra-

man pulse. The phase factor φi = ∆k ·xi +φblue,i −φred,i is the
phase difference between the Raman beams at the position xi

of the ith ion (∆k ≡ kblue −kred, the wave-vector difference
of the Raman beams). There are two different beam geome-
tries used. (a) The beams are oriented such that kblue is par-
allel to kred(|∆k| � 0). Motion does not affect the transitions
driven by these beams. (b) The k vectors of the beams are ori-
ented such that kblue is approximately perpendicular to kred and
∆k ≡ kblue −kred � √

2|kblue|ẑ ≡ ẑ2π/λeff, where λeff is the ef-
fective wavelength of the Raman transition and ẑ denotes the
direction of the trap axis. These transitions depend sensitively
on the ion motion and can therefore be used for cooling and
gates where the motion acts as a bus between different qubits.

We will need to implement single-qubit rotations on one
ion without changing the state of the neighboring ion; this
can be accomplished in one trap zone even though the Raman
beams overlap the ions [10].

If we use the intensity profile of the parallel Raman
beams (a) to locate the two qubits at different beam intensities,
we can rotate one state by e.g. θ = 4π, effectively not chang-
ing its state, while rotating its neighbor by θ = 3π, effectively
performing an individual Ri(π, φ) pulse on the second ion.

We can also use the phase of the effective wave provided
by the interfering perpendicular beams (b). To see how this
is done, consider the following example on two qubits [11].
Suppose we want to prepare the state (|↓〉1 +|↑〉1)⊗|↓〉2
from the state |↓〉1|↓〉2 (suppressing state-normalizing fac-
tors). We first apply a Raman pulse acting equally on both ions
(R1(

π
4 ,−π

2 )⊗ R2(
π
4 ,−π

2 )). The spins rotate into a state rep-
resented pictorially by |↘〉1|↘〉2. The spacing of the ions is
now changed by λeff/2. A second Raman pulse of the same
duration is applied to both qubits (R1(

π
4 ,−π

2 )⊗ R2(
π
4 ,+π

2 ))
such that the laser phase on qubit 1 is the same but, because
of the change in ion separation, the phase on qubit 2 is shifted
by π. Thus, qubit 2 is rotated back into its initial state while
qubit 1 completes a θ = π

2 rotation. Pictorially, application
of the second Raman pulse implements the transformation
| ↘〉1| ↘〉2 → |→〉1|↓〉2 = (|↓〉1 +|↑〉1)⊗|↓〉2.

Generalizing this, we can apply the Pauli operators σx , σy,
and σz to ion 1, which, up to global phase factors, correspond
to the operators R1(π, 0), R1(π, π

2 ), and R1(π, 0)R1(π, π
2 ),

respectively.
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2.2 Conditional two-qubit gates

To implement universal logic between the ions,
the Raman laser beams can be configured to apply state-
dependent optical dipole forces. We choose the polarizations
of the beams so that these forces along the z direction are
related by F↓ = −2F↑ [12, 13]. We implemented different
versions of this gate on two or three ions using different
normal modes as data bus. We describe here a two-qubit
gate using the stretch (breathing) mode to elucidate the ba-
sic idea. We adjust the frequency difference between the Ra-
man beams and therefore the frequency of the optical dipole
force to be equal to ωSTR + δ (|δ| 
 ωSTR). The ions are
separated by a distance m ×λeff (were m is an integer). By
applying the state-dependent dipole forces for a gate time
τG = 2π/δ and adjusting their magnitude appropriately, we
coherently excite the motion of two ion qubits along a closed
path in motional phase space if they are in different inter-
nal states, while they are not excited if they are in the same
state. The different state combinations of the ions pick up
a phase proportional to the phase-space area circumscribed,
leading to a geometric phase gate Gφ, which implements the
operation [12]

Gφ : a| ↓〉| ↓〉+b| ↓〉| ↑〉+ c| ↑〉| ↓〉+d| ↑〉| ↑〉
→ a| ↓〉| ↓〉+ eiφb| ↓〉| ↑〉+ eiφc| ↑〉| ↓〉+d| ↑〉| ↑〉 . (2)

The gate can be converted into a π-phase gate or a controlled
NOT (CNOT) gate with single-bit rotations for φ = π/2.
Starting, for example, with the state |↓↓〉 and sandwiching
this gate between π/2 and 3π/2 (spin-echo) pulses applied
to both ions, we are able to produce maximally entangled
states of the form |ψ〉 = |↓↓〉+ | ↑↑〉 [14] with a fidelity of
0.97 [12].

2.3 State-sensitive detection

We distinguish the two states of a qubit, |↓〉 and
|↑〉, by observing state-dependent laser-driven fluorescence.
The laser-beam frequency is tuned to drive the qubit from
the |↓〉 state to some excited state, which subsequently de-
cays back to |↓〉, emitting a photon that can be detected.
When the the qubit is in the |↑〉 state, laser-beam scatter-
ing is absent and, for the |↓〉 state, the qubit scatters many
photons [15].

2.4 Sources of error

In practice, the largest contribution to errors is
due to fluctuations of the magnetic field. However, we
employ the technique of spin echoes [9] to correct the
related dephasing. Aside from adding global phase fac-
tors, the spin-echo pulses do not change the protocols and
are omitted in the following discussions. Remaining er-
rors are due to fluctuations in the trap frequency, fluctua-
tions in the Raman-beam intensity, and spontaneous emis-
sion during the gate operation. If frequency drift and in-
tensity errors could be reduced to order 10−3 and spon-
taneous emission suppressed (i.e. by using a different ion
species [13]), the expected gate fidelity is on the order of
0.9999.

3 Demonstration experiments

On the way towards scalable quantum computation
in the multiplexed architecture, we can perform experiments
involving the basic elements of QIP while testing the viability
of the tools described above and required for large-scale pro-
cessing [3, 11], including the capability for (1) separation and
transfer of qubits between traps while maintaining their entan-
glement, (2) individual addressing (in tight confinement), (3)
single- and two-qubit gates, (4) using decoherence-free sub-
spaces [11], (5) using measurement outcomes of ancilla qubits
to trigger conditional operations, and (6) implementing non-
local operations.

In addition, the implementation of experimental protocols
serves as a benchmark for comparison of QIP in different
physical realizations [16].

For the experiments described below, we typically ad-
just the axial trap potential to make the lowest normal mode
frequency ωCOM/2π ≈ 4 MHz, corresponding to an inter-ion
separation of approximately 4 µm. At the start of each experi-
ment, the ions are laser cooled to the motional ground state
and optically pumped into the internal states |↓〉 . . . |↓〉 [17].

3.1 Quantum dense coding [19]

Quantum dense coding was first proposed by Ben-
nett and Wiesner in 1992 [19]. Their scheme enables the com-
munication of two bits of classical information (00, 01, 10, 11)
with the transmission of one qubit. Initially, two parties, called
Alice and Bob, each hold one qubit of a maximally entangled
pair [14]. Bob applies one of four possible unitary operations
(each identified with one state of two classical bits shown
above) to his qubit. Due to the shared entanglement, the two
qubits cannot be described individually and Bob’s operation
affects both, even though they are spatially separated. Bob
then sends his qubit to Alice. She performs a Bell measure-
ment [20] of both qubits. One of the four possible outcomes in
the measurement basis (|↓↓〉, |↓↑〉, |↑↓〉, and |↑↑〉) tells her
which of the four operations Bob applied and the correspond-
ing two-bit classical number.

Parts of this protocol were first demonstrated in optics,
where the qubit states were represented by a photon’s states
of polarization [21]. A drawback was, and still is, that two of
the Bell states cannot be distinguished; thus, only three dif-
ferent measurement outcomes are possible (called a ‘trit’ of
information). The experiment with photons also requires post-
selection and many entangled photon pairs are necessary to
realize the transmission of one ‘trit’.

In our implementation [18], a pair of entangled qubits is
prepared by the phase gate described in Sect. 2.2. We let Bob
use the experimental apparatus first to encode his qubit. He ap-
plies a single-qubit rotation, σx, σy, σz , or no rotation (identity
Ĩ), correlated with his message to be transferred. He then turns
over the apparatus to Alice so that she can decode the mes-
sage by applying a Bell measurement [20] using Bob’s and her
qubits.

For each choice of Bob’s operator, we measure the fidelity
of the actual output state relative to the ideally expected one.
This data is included (in bold lettering) in Table 1, where we
also display the probabilities for detecting all other (unde-
sired) states.
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Ĩ σy σz σx

|↓〉B|↓〉A 0.84(2) 0.07(1) 0.08(1) 0.02(1)
|↑〉B|↓〉A 0.07(1) 0.01(1) 0.84(1) 0.04(1)
|↓〉B|↑〉A 0.06(1) 0.84(1) 0.04(1) 0.08(1)
|↑〉B|↑〉A 0.03(1) 0.08(1) 0.04(1) 0.87(1)

TABLE 1 Correlations between Bob’s applied operator (top row) and Al-
ice’s state measurements of both qubits (left-hand column). The entries
correspond to the probabilities measured by Alice for each basis state. Ide-
ally, the entries in bold should equal 1 and all other entries should equal 0

To summarize, we implement the basic protocol [19],
without the need for post-selection of data, and with the abil-
ity to transfer and detect all four Bell states corresponding
to Bob’s two bits of classical information with an average fi-
delity of 0.85(1). In spite of experimental imperfections, the
information transferred exceeds what is possible by transfer-
ring one classical bit.

3.2 Enhancement of detection efficiency by QIP [23]

If the coherent operations (gates) used in an algo-
rithm can be performed with higher efficiency than the state
detection (read out), the overall efficiency is restricted by the
latter. Therefore, low single bit detection efficiency Fdet could
be the bottleneck for scalable quantum computation.

With low detection efficiency, it may require excessive
repetition of an algorithm in order to reliably determine its
output. This is undesirable for algorithms involving many
gates followed by a single measurement. Also, if the algo-
rithm requires a significant amount of error correction, detec-
tion errors are compounded and repetition may fail to give the
desired result. The read out of a projected state of N qubits, as
in Shor’s factoring algorithm, leads to an overall read-out fi-
delity FN

det that decreases exponentially with N, i.e. requires an
exponentially large number of measurements and repetitions
of the algorithm to determine a useful output.

Low detection efficiency can render a system unscalable
because the required maximum tolerable error rate is not
achieved for all operations including detection. Finally, even
if scalability is within reach, the failure of measurements
needed for error correction during the computation requires
additional overhead to avoid miscorrecting errors.

Improving state detection without repetition of the algo-
rithm would be an easy task if one could copy the final state to
be measured. This is precluded by the impossibility of cloning
a general quantum state [2]. However, a way to enhance state-
detection fidelity by using quantum logic gates in conjunction
with auxiliary ‘ancilla’ qubits is outlined in [23]. For simpli-
city, consider a qubit in the superposition state |ψ〉 = α0|0〉+
α1|1〉. A sequence of M CNOT gates [2] involving ancillae a1,
a2, . . . , aM reserved for this qubit encodes |ψ〉 to an entan-
gled state according to the transformation

(
α0|0〉+α1|1〉)|0〉a1|0〉a2 . . . |0〉aM

−→α0|0〉|0〉a1|0〉a2 . . . |0〉aM +α1|1〉|1〉a1|1〉a2 . . . |1〉aM . (3)

Effectively, we amplify the input state to get M +1 tries to de-
termine which state each qubit is projected into. We can then
use a majority vote to determine the correct read out, there-

fore reducing the measurement uncertainty in the detection
process [23].

We have implemented this general protocol using atomic
qubits. For one qubit, to distinguish the two states |↓〉 and
|↑〉, we use the number of detected photons ndet obtained by
state-dependent fluorescence detection (see Sect. 2.3). First,
we have to define a threshold n1 (which depends on the du-
ration of the detection). If ndet > n1, the state is read out as
|↓〉; if ndet ≤ n1, the state is read out as |↑〉 (see Fig. 2). If
the detected counts in one measurement happen to be where
the distributions D↑ for |↑〉 and D↓ for |↓〉 overlap, the state
assignment is ambiguous. In general, the optimum value of
n1 is determined by minimizing simultaneously the fractions
of D↑ with ndet > n1 and D↓ with ndet ≤ n1. The average
error is determined by the normalized sum of the experiments
in the D↑-histogram for ndet > n1 and the D↓-histogram for
ndet ≤ n1. Importantly, the overlap, and therefore the aver-
age error, is much smaller for two qubits in the same state
|↓〉|↓〉 with distribution D↓↓ or |↑〉|↑〉 with distribution D↑↑
and the decision threshold n2 is determined in the same man-
ner as n1.

In our experiment [22], we have low background noise
(〈ṅbkg〉 
 〈ṅ↓〉, where 〈ṅ↓〉 = 1

2 〈ṅ↓↓〉 = 2.5 ×104 s−1 is the
count rate for the |↓〉 state), and the detection efficiency is
high, at least compared to the gate fidelities that are typically
achieved. Therefore, to investigate the fundamental features
of the enhancement scheme, we add Poissonian count noise to
the detected ion fluorescence. We then increase our detection
efficiency using one ancilla qubit initialized, for experimen-
tal convenience, in a superposition state. Using the effective
individual addressing technique described in Sect. 2.1, the
generic initial state of the two qubits is Ψinitial = (α↓|↓〉+

FIGURE 2 Simulated Poissonian distributions D of photon counts for the
detection of fluorescence in the case of (left to right) zero, one, or two qubits
in the |↓〉 state (the state that scatters photons). Background noise counts are
responsible for the finite photon counts in D↑. For the plot shown, the rate
of background noise counts 〈ṅbkg〉 = 0.125〈ṅ↓〉 and the detection duration is
taken to be 324 µs (chosen to correspond to the actual experiment). The state
determination is ambiguous for detected counts ndet where the D↑ and the
D↓ distributions overlap (see magnified inset), leading to errors. Two qubits
being either in the |↓〉|↓〉 state with distribution D↓↓ or in the |↑〉|↑〉 state
with distribution D↑↑ provide a smaller overlap of the distributions, and thus
a smaller read-out error
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FIGURE 3 Experimental error in state identification as a function of the de-
tection duration at a given average count rate 〈ṅ↓〉 = 2.5×104 s−1, for two
levels of background noise. The one-qubit cases (without encoding) are rep-
resented by the dotted lines and the one-ancilla encoded case by the solid
lines, respectively. The shaded areas emphasize the reduction of the error by
the encoded detection scheme. To emphasize the results in the case of back-
ground noise, we add a background count rate of 〈ṅbkg〉 = 0.125〈ṅ↓〉 (a) and
of 〈ṅbkg〉 = 1.5〈ṅ↓〉 (b). Since the photon-number thresholds (see Fig. 1) are
integers, the curves can show steps where n1 and n2 change

α↑|↑〉)(|↓〉a +|↑〉a). We implement the operation

Ψinitial → Ra

(π

2
,
π

2

)
Gπ/2Ψinitial = α↓|↓〉|↓〉a +α↑|↑〉|↑〉a .

(4)

We then measure the fluorescence from both qubits, since the
measurement projects this general input state to either |↓↓〉
with probability |α↓|2 or |↑↑〉 with probability |α↑|2. To ana-
lyze the gain of this protocol it is sufficient to produce two
different input cases: (1) α↓ = 1 and (2) α↑ = 1. As shown in
Fig. 3, the histogram overlaps and corresponding detection er-
rors decrease as the detection duration increases (except for
case (a) beyond 200 µs).

The shaded areas emphasize the reduction of the error by
the encoded detection scheme. The differences between theor-
etically achievable and the observed results are primarily due
to the infidelity in the experimental gates.

To achieve fault tolerance in the future, the fidelity of co-
herent operations will have to be close to 1. Thus, in the
case where a lengthy quantum algorithm is limited by com-
parably poor detection efficiency, a method like the one de-
scribed here is advantageous. The improvement in detection
efficiency would be even more significant, and can be ampli-
fied to be as high as the fidelity of the gate operations, as more
ancilla qubits are used.

3.3 Three-qubit entanglement and spectroscopy
beyond the standard quantum limit [25]

Entanglement between qubits can be used to beat
the statistical limitations in spectroscopic precision [25] of
uncorrelated particles. Ultimately the fundamental precision
limit, governed by the Heisenberg uncertainty principle, can
be reached. To show how this is done, we can compare one
of the most basic spectroscopic measurements, a Ramsey ex-
periment on independent qubits, with one on qubits sharing
entanglement.

To perform a Ramsey experiment on one qubit, a first
Ramsey pulse R(π

2 , 0) at frequency ω (here ω �= ω0) is ap-
plied, rotating the state |↓〉 represented on the Bloch sphere
into the horizontal plane. A free precession for the duration
t evolves the phase φ (in the frame co-rotating at the reso-
nant frequency ω0 of the two-level system) to φ = (ω−ω0)t.
Since a simple state detection would be insensitive to this
phase, a second Ramsey pulse R(π

2 , 0) translates the phase
information into the measurement basis. By measuring the
state population after this pulse sequence, we obtain oscil-
lations between the two eigenstates, |↓〉 and |↑〉, depending
on the accumulated phase φ. We have P↓ = 1/2(1 − cos[ω−
ω0]t) = 1 − P↑. These fringes allow for the determination of
ω0. To increase the spectroscopic resolution, one can either
increase the precession time t or equivalently the number of
qubits. An increase to N qubits will provide an ensemble of N
independent qubits in superposition states after the first Ram-
sey pulse R1 ⊗· · ·⊗ RN (see Fig. 4a). This leads to a max-
imum gain in spectroscopic resolution proportional to

√
N ,

due to the statistical limit [26], equivalent to repeating the
measurement N times on one qubit. Replacing the first Ram-
sey pulse by an operation that produces the entangled state
Ψ = |↓↓↓ . . . ↓〉+ |↑↑↑ . . . ↑〉 would be equivalent to cre-
ating a ‘superatom’ at t = 0 (see Fig. 4b), where the energy
difference between the two new states of the superposition
is N times larger than in the non-entangled individual cases.
In a spectroscopic measurement, this corresponds to a gain
in resolution proportional to N, the Heisenberg limit. Thus,
a gain in precision by a factor of

√
N can be achieved over the

best possible spectroscopy with non-entangled states.
For three qubits, this superatom state Ψ = |↓↓↓〉+|↑↑↑〉

is called a GHZ state [27] and can be provided by an entan-
gling gate operation like the one described in Sect. 2.2, except
that the coherent drive uses the Center-of-mass (COM)-mode
frequency of three-qubit ions [24]. Embedding the gate drive
in the first arm of a spin-echo experiment can be viewed as
the first Ramsey pulse described above creating the entangled
‘superatom’ of three qubits. After the free-precession dura-
tion t the state evolves to Ψ = |↓↓↓〉+ e−i3ω0t |↑↑↑〉 (here
equivalently replaced by a variable phase change of the fol-
lowing pulse). We then apply the equivalent of the second
Ramsey pulse by repeating the same pulse sequence. The
read-out measurement projects the state to either |↓↓↓〉 with
probability P↓↓↓ = 1/2(1 − cos[3φ]) or |↑↑↑〉 with probabil-

FIGURE 4 Applying a Ramsey pulse to N qubits creates a superposition
state. For N independent qubits (a) it creates a product state of qubits in
independent superposition states. The entangled state of N qubits is shown
in (b), where the energy difference between the two states of the ‘super-
atom’ is N times higher, providing

√
N higher resolution in a spectroscopic

measurement for a duration t of free precession t between two Ramsey pulses
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ity P↑↑↑ = 1− P↓↓↓. The two outcomes are optimally immune
against read-out errors due to the minimal overlap of the pho-
ton distributions for the two outcome possibilities (see Fig. 2
for the corresponding two-qubit case).

In our experiment [24], the measured fidelity for the prep-
aration of the GHZ state was 0.89(3). Using this state leads
to a gain in spectroscopic resolution by a factor of 1.45(2)
compared to a perfect Ramsey experiment with non-entangled
qubits. The gain for a Heisenberg-limited measurement of
a factor of

√
3 = 1.78

(√
N

)
is reduced due to imperfect gate

operations and read out.
Since only collective ensemble preparation and detection

pulses are used, the extension of the method to larger numbers
of qubits is straightforward.

3.4 Quantum teleportation [29]

Quantum teleportation [29] realizes the transfer of
quantum information from one location to another without
the physical transfer of the associated quantum information
carrier. The non-local correlations of spatially separated but
entangled qubits are used, as in the dense-coding protocol de-
scribed in Sect. 3.1, but the necessary information to complete
the teleportation is transmitted via a classical channel.

Bob wants to teleport the superposition spin state of a qubit
(labeled T) to Alice. The state can be described by the wave
function |Ψ 〉T ≡ α↑|↑〉T +α↓|↓〉T and could even be unknown
(to him or anybody else). In addition, Alice and Bob hold one
qubit of a two-qubit entangled pair [14] that we assume to be
described by the singlet |S〉A,B ≡ | ↓〉A|↑〉B −|↑〉A|↓〉B. Thus,
Bob possesses qubits B and T, while Alice holds qubit A. Bob
can transfer the state of qubit T to Alice using only classical
information about the outcome of a Bell measurement [20] he
performs on qubits B and T. For the case of a qubit, two bits
of classical information are necessary even though the precise
description of a general qubit would require an infinite amount
of classical information. Once Alice receives this classical
information, she can perform a conditional operation on her
qubit A, turning it exactly into qubit T. No cloning of qubit
T occurred, since the state of this qubit is completely erased
after the Bell measurement. Also, ‘faster than light commu-
nication’ did not occur, because of the limited speed for the
transfer of the necessary classical information.

In the experiment [28], we initialize the three qubits to
the state |↓↓↓〉A,T,B. We apply the phase gate described in
Sect. 2.2 on the stretch mode of the three qubits. Since the
amplitude of motion for the middle qubit T is zero, the en-
tanglement pulse on the three qubits has no effect on qubit
T and produces the state (|↓↓〉A,B +|↑↑〉A,B)⊗|↓〉T. Using
the effective individual addressing techniques described in
Sect. 2.1, we transform qubits A and B into the singlet state
while leaving qubit T unaffected ((|↓↑〉A,B −|↑↓〉A,B)⊗|↓
〉T). The singlet state, being immune to global rotations [11],
allows for a single-qubit rotation applied to all three qubits,
but effectively only addresses qubit T and transforms it into
the input state to be teleported. Separating qubit A to a dif-
ferent trapping zone with a distance of 300 µm from the zone
containing B and T provides the possibility to perform a Bell
measurement on qubits B and T only [20]. The outcome of this
measurement, one out of four possibilities, is the classical in-

formation needed to apply one of the four possible operations
on qubit A to finish the teleportation and rotate the state of
qubit A into the one T was in originally.

To determine the average fidelity of the complete protocol,
we first teleport |↓〉T and |↑〉T and achieve a fidelity of about
80%. We then perform a one-qubit Ramsey experiment1,
where the first Ramsey pulse is applied to qubit T (the one
to be teleported). The Ramsey protocol is completed with the
second pulse applied to Alice’s qubit A after the teleporta-
tion. The Ramsey fringes obtained for two different relative
phases between the two Ramsey pulses, together with the
|↓〉T and |↑〉T cases, yield the average teleportation fidelity
〈F〉 = 78 ±2%, achieved on demand without post-selection
of data.

3.5 Sympathetic recooling

Sympathetic recooling is a crucial step to extend
the capability of QIP with trapped ions to time scales much
longer than the time constant for motional heating (acquired
due to separation, shuttling, or other heating mechanisms in
the trap [33]). It must recool the ions sufficiently close to the
motional ground state so that the fidelity of subsequent quan-
tum gates is not affected.

Sympathetic cooling has previously been demonstrated
using ‘refrigerator’ ions that are the same as the qubit ions [30]
or an isotope of the qubit ions [6]. In order to gain higher im-
munity from decoherence caused by (stray) cooling light, we
have chosen a different ion species for the refrigerator ion.
The cooling laser can be far detuned from all qubit transitions;
therefore, individual addressing is not required.

We stored and Doppler cooled one 9Be+ ion and one
24Mg+ ion in the same trap. We then cooled either the Mg+
ion or the Be+ ion close to the ground state [5]. When cooling
the Mg+ ion we were technically limited by our Raman de-
tuning and achieved n̄ = 0.19(6) and n̄ = 0.52(7) for the two
normal modes, respectively. This result will be improved in
the future by implementing higher Raman detuning. Cooling
the two ions through the Be+ ion (where the detuning is large)
yielded limits of n̄ = 0.03(2) and n̄ = 0.04(3).

For trapped-ion QIP, the described experiments test the vi-
ability of specific tools required for large-scale processing [6,
11], including the ability to separate ion qubits and move them
to separate zones of the trap while maintaining their entan-
glement, manipulate and detect the qubit states without the
need for strongly focussed laser beams, and perform QIP op-
erations conditioned on the measurement outcomes of ancilla
qubits.

4 Quantum simulation

As originally conjectured by Feynman [2], a uni-
versal quantum computer could efficiently simulate the dy-
namics of many-body quantum systems.

1 The spectral resolution for the transition frequency in the two-level
system is proportional to t−1, t being the (laser) pulse length to obtain
the transition. In a Ramsey experiment, one splits the one pulse into
two pulses separated by a time delay T . If the pulses are coherent and
this qubit (ion) does not decohere during T , the spectral resolution is
increased to be proportional to T−1. By increasing the relative phase dif-
ference between the two pulses, one can observe Ramsey fringes, the
oscillation in the two-level system in dependence on this relative phase.
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Simulations of some tens of interacting qubits could al-
ready be intractable for the most powerful classical comput-
ers. For instance, the generic state of 30 spin- 1

2 particles is
defined by 230 numbers and to describe its evolution a matrix
of 230 ×230 has to be exponentiated [32]. Increasing classi-
cal calculation capabilities cannot help to efficiently simulate
even only slightly larger quantum systems (note, for 300 par-
ticles 2300 numbers describe the state, close to the estimated
number of protons in the universe).

On the other hand, to exceed the performance of classi-
cal computers in, for example, factorizing, one will have to
control the order of 10

5
qubits. Even though there appear to

be no fundamental limits in scaling up the basic processor
and memory unit described in the multiplexer approach, there
is still challenging technology to be developed, with a time
scale probably measured in decades. Thus, to gain deeper in-
sight into the dynamics of quantum systems, an alternative
approach could be taken into consideration.

Instead of translating quantum dynamics into an algorithm
to run on a universal quantum computer, one could choose
a system to be controlled and manipulated with its evolution
being governed by the same Hamiltonian as the system to be
simulated [31]. More importantly, one could call this analog
quantum simulator a quantum computer designed to address
a certain set of problems in an even more efficient way than
a universal quantum computer.

The Hamiltonians that can be realized with trapped ions
can show a Heisenberg-like interaction [31, 32]. Quantum
spin Hamiltonians of this type describe magnetism in many
solid-state systems like magnets, high-Tc superconductors,
quantum Hall ferromagnets, ferroelectrics, etc., and their
simulation would allow one to observe and analyze quantum
phase transitions [31].

As an example, we describe the quantum Ising model,
and discuss how the simulation could be implemented
in an ion trap. The quantum Ising Hamiltonian (HIsing =
J

∑
m=n+1 σ z

mσ z
n + Bx

∑
m σ x

m) consists of two contributions.

The first part represents the interaction between the spins of
nearest neighbors in the one-dimensional spin chain, where
the amplitude of J represents the interaction strength while
its positive (negative) sign stands for an anti-ferromagnetic
(ferromagnetic) interaction. The latter part can be under-
stood as the interaction of a magnetic field with each spin
independently.

For the ion string, the parameters can be manipulated in-
dependently. Changing the intensity of the laser beams pro-
viding the effective magnetic field Bx alters the field ampli-
tude; changing the intensity of the beams providing the optical
dipole force alters the amplitude of the interaction strength
|J|. The sign of J can be controlled via the relative angle be-
tween the optical dipole force and the z axis defined by the ion
string, i.e. the relative direction of the laser beams. The range
of interaction can be tuned by the radial trapping potential.

The possibility to control the parameters of the system and
to address each single lattice site turn it into a versatile system
offering tools for analysis overcoming by far the possibilities
in experiments on solid-state systems [31].

The implementation of the most basic protocol for the
two- and three-qubit cases, respectively, could be done in the

FIGURE 5 Results of the classical simulations for a quantum simulation of
the quantum Ising model. The averaged spin per ion is shown versus the rela-
tive Bx/J . In the left-hand part, we show the expected result for a two-ion
experiment. If J > Bx , we see a transition of the spins in a parallel ordered
(ferromagnetic) phase. This is clearly distinguishable from the evolution of
the spins without spin–spin interaction (but exposed to a symmetry-breaking
bias field). In the right-hand part we see a transition into an anti-parallel
(anti-ferromagnetic) order for three ions (labeled as # 1, 2, and 3. The lower
(upper) solid line represents the average spin of the outer two (middle)
ion(s)). The difference in the sign of J is caused by changing the direction
of the optical dipole force from parallel to perpendicular to the trap axis

following way: (1) initialize the two- (three)-qubit ions in the
motional ground state via side-band cooling and in the internal
state |↓↓〉 (|↓↓↓〉) via optical pumping. (2) Switch on adiabat-
ically an effective magnetic field Bx simulated by single-qubit
gates. (3) Switch on adiabatically the effective spin–spin in-
teraction J simulated by the state-dependent optical dipole
force along (perpendicular to) the trap axis. (4) Read out the
average state of the qubits. Figure 5 shows the classically
simulated experimental outcome of a quantum simulation
with two (three) qubits versus the ratio of the magnetic field to
the interaction strength (calculation done by Diego Porras).

The advantages of an analog quantum simulator compared
to a universal quantum computer that would simulate the in-
teraction by executing discrete steps composed from a univer-
sal set of gates are perhaps apparent. In searching for robust
effects, like quantum phase transitions, there would be no
need for fault-tolerant gate operations. Also, the read out of
the simulation requires only a measurement of the global flu-
orescence of all qubit ions.

Scaling the system to 10 qubits might already allow us to
outperform classical simulations and could lead to a deeper in-
sight into the dynamics of quantum systems. With individual
addressing, we could start with a state representing a particu-
lar spin excitation. We could also analyze non-equilibrium
dynamics by switching the interactions non-adiabatically.

5 Conclusions and outlook

In the last few years, the basic building blocks for
a scalable architecture of a quantum information processor
with trapped-ion qubits have been individually demonstrated.
The experiments described here can be viewed as exam-
ples of subroutines that incorporate most of these building
blocks. Sympathetic recooling [5] has been achieved sepa-
rately, but must be integrated into larger computational tasks.
Although it will be a non-trivial technological challenge to
scale the system to many qubits, no fundamental limitations
seem to exist. It also appears technically feasible to reach
the fault-tolerant level for error-correction protocols with the
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demonstrated one- and two-qubit gates. Therefore, trapped-
ion qubits remain a promising candidate for the implemen-
tation of large-scale quantum information processing. On
a shorter time scale, interesting problems might be studied by
realizing an analog quantum simulator based on similar tech-
niques, but with possibly less severe constraints on the fidelity
of operations.
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