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Abstract

̂Theo1 is the first new species of variance that addresses
a particularly difficult measurement problem, namely, ob-
taining reliable estimation of frequency stability for sam-
ple periods that are long compared to the length of a
data run. ̂Theo1 has statistical properties that are like
the Allan variance (Avar), but ̂Theo1 also has two advan-
tages over other estimators of frequency stability: (1) it
can evaluate frequency stability at a sample period (τ)
of 3/4 the length of a data run, and (2) it presently at-
tains the highest equivalent degrees of freedom (edf) of
any estimator of frequency stability including Total-var
and overlapping-Avar. ̂Theo1 is unbiased relative to Avar
for WHFM noise. ̂Theo1 is biased slightly low with FLFM
and RWFM, and we present a formula for a hybrid statis-
tic (TheoH) made up of a combination of ̂Theo1 and Avar
in which bias is automatically removed. We explain the
sampling function used in ̂Theo1 and show that its fre-
quency response is nearly ideal for extracting power-law
noise processes of the types encountered with precision os-
cillators and clocks. We present results which, for a given
data run, show how ̂Theo1 anticipates the levels of fre-
quency stability that are determined by Avar when given
a longer data run from the same set of clocks.

1 Introduction

The primary strength of the Allan variance is its half-
octave frequency response for a fixed τs, where τs is a
“stride” described in Section 3. Avar’s peak response is
at reciprocal period of fp = 1

2τs
. A weakness of the Allan

variance is that it cannot characterize frequency stability
over an interval τ greater that one-half the length of the
data run. For example, suppose we measure the time er-
ror between two clocks or oscillators, say, every couple of
hours for one month. The maximum-overlap Allan vari-
ance estimator of frequency stability cannot report fre-
quency stability for intervals longer than half the month,
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or two weeks [9, 15, 16]. By definition, a zero-dead-time
average frequency difference for averaging interval τ can-
not possibly extend beyond 50 % of the length of the data
run T , that is, beyond τ = T

2 . Furthermore, this estimate
is often too low. This is because the chi-square distri-
bution function associated with an estimate composed of
only one sample at τ = T

2 (representing one degree of free-
dom) is so negatively skewed that it is twice as likely to be
lower than above the FM noise level’s true value [10, 23].
In addition, if a sample estimate of frequency drift is re-
moved, Avar is likely to respond with levels too low at
longest-term compared to the expected or true underly-
ing characteristic level [10]. The overlapping estimator
for the Allan variance has sufficiently good confidence at
short- and medium-term τ averaging intervals but, to be
conservative in light of the reasons just stated, it is not
recommended for τ beyond 10 % of a data run T [15].
In the one-month example above, this amounts to only a
three-day τ -average. In this situation, the best estimator
of the Allan variance, which is the Total variance, or Tot-
var [7, 10, 15], is recommended. Use of the Total approach
yields improved confidence between 10 % and 50 % of a
data run, or up to two weeks in a one-month data run.
At this writing, analysts in our field are confident of Tot-
var’s properties. Easy-to-use 32-bit Windows software is
commercially distributed that implements Totvar on large
data sets, computes its confidence intervals, and automat-
ically adjusts for bias [22].

It would seem preposterous to report a reliable estimate
of frequency stability at a τ of three weeks, given a one-
month data run, again considering the reasons stated, not
to mention that this is theoretically impossible with the
Allan variance! In this paper, we discuss ̂Theo1, a special-
purpose statistic that evaluates very-long-term frequency
stability at τ between T

2 and T , is less susceptible to drift
removal, and has a more symmetric distribution function
than that of chi-square [6]. At this writing, the statis-
tic has the highest confidence in estimating long-term fre-
quency stability.

2 Sampling Function

Based on the experience gained from Totvar [5, 10, 12] we
can manipulate frequency response while maintaining de-



sirable statistical properties. The development of ̂Theo1
involved the following issues: First, it is common practice
to measure samples of the time-error function x(t) between
two oscillators and then derive frequency stability. For
example, Avar is usually calculated as a normalized sec-
ond difference of time-error measurements {xn}. Measur-
ing in this way assures Avar’s statistical requirement for
zero dead-time between average frequency differences [2].
Second, we desire a frequency response that efficiently ex-
tracts levels of common nonstationary FM power-law noise
types [1, 14, 18, 19, 21, 24] while retaining simple, distinct
straight-line mapping (on log-log plots) to Sy(f), which
is the recommended characterization of frequency stabil-
ity [3]. Finally, we want to maximize equivalent degrees
of freedom (edf) for a data run while minimizing bias
relative to the conventional Allan variance. We can ac-
complish these goals by using most, and preferably all, of
the available {xn} data, including small sampling interval
τ0 � T . Starting with a sequence of time-error samples
{xn : n = 1, . . . , Nx} with a sampling period between
adjacent observations given by τ0, ̂Theo1 averages every
permissible squared second-difference of time errors in a
given span or stride τs = 0.75mτ0 as shown in Figure 1.
It is defined in terms of {xn} data by

̂Theo1(m, τ0, Nx) =
1

0.75(Nx − m)(mτ0)2

Nx−m∑

i=1
m
2 −1∑

δ=0

1
(m

2 − δ)
[
(xi − xi−δ+ m

2
) + (xi+m − xi+δ+ m

2
)
]2
, (1)

for m even, 10 ≤ m ≤ Nx − 1. The sampling functions of
̂Theo1 are easier to understand intuitively in terms of frac-

tional frequency measurements {yn} as shown in Figure 1,
where {yn} is defined in terms of {xn} as

yn(τ) =
xn − xn−1

τ
. (2)

Figure 1 shows ̂Theo1’s sampling of fractional-frequency

τsn (b)

(a)

τs1
= τ1 = T/2

T
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τsN

τ0

τ1
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...

τn

Figure 1: Sampling using ̂Theo1 of fractional-frequency
measurements {yn} at varying stride values, τs1,s2,etc..

measurements {yn}. ̂Theo1 computes frequency differ-
ences in interval T at varying stride τs1,s2,etc. and corre-
sponding averaging time τ1,2,etc. given by the inner sum-
mation in Equation (1). The summation’s first term
(δ = 0) is the sampling in (a) which is that of the classical
Allan variance. In this case, stride τs1 equals averaging
time τ1, and both equal T

2 . For 1 < δ ≤ m
2 , interme-

diate sampling functions are illustrated by (b) in which
τs(·) > T

2 . The summation’s last sampling function is (c)
in which τs(N) = T − τ0. Therefore, the effective τ -value
of the individual frequency differences averaged in ̂Theo1
is between T

2 and T − τ0.

3 Bias

3.1 The Bias Function

Because of the novel data sampling of ̂Theo1 (see Fig-
ure 1), there is an inevitable bias with respect to the Allan
variance or “Avar”. Bias in this instance is the ratio of the
expected value of Avar to ̂Theo1. ̂Theo1 is formulated in
order to be unbiased with respect to Avar in the case of the
white FM (WHFM) noise type. A single bias value was
previously reported for each of the five noise types [13].
However, it has since been found that the bias has a slight
dependence on τ . The dependence can be described by
the function

bias(τ) = a +
b

τc
, (3)

where a, b, and c are constants. These constants are sum-
marized for each of the five noise types in Table 1. The
bias functions were fits to results of Monte Carlo simula-
tions. Thousands of data sets of different lengths (up to
105) were used for computer-generated realizations of the
five noise types listed in Table 1.

Table 1: Constant values for the bias functions of ̂Theo1
defined in Equation (3).

Noise a b c
WHPM 0.09 0.74 0.40
FLPM 0.14 0.82 0.30
WHFM 1 0 0
FLFM 1.87 -1.05 0.79
RWFM 2.70 -1.53 0.85

3.2 TheoBR and TheoH

A strategy we might follow for using ̂Theo1 as an estimate
for Avar at long values of τ is to calculate ̂Theo1 and
correct for the bias using the above table. However, this
method assumes we know the noise type at a particular
value of τ , which leads us to a difficulty at τ > T

2 . A useful
method for determining noise type is the B1 function [4];
however, this function is undefined beyond T

2 since Avar
is undefined. Since B1 does not exist for the longest τ

values of ̂Theo1, we cannot determine the noise type and



hence correct for bias. We can estimate long-term noise
types only by noting how much pre-whitening is required
for a data run [20].

Another simpler strategy for using ̂Theo1 as an estima-
tor of frequency stability is to just remove a computed
bias between ̂Theo1 and Avar for a given data run. An
unbiased version of ̂Theo1, called TheoBR (for “Theo bias-
removed”), can be written

TheoBR(m, τ0, Nx)

=

[
1

n + 1

n∑

i=0

Avar(m = 9 + 3i, τ0, Nx)
̂Theo1(m = 12 + 4i, τ0, Nx)

]

× ̂Theo1(m, τ0, Nx), (4)

where n = b 0.1Nx

3 − 3c (where b·c denotes the floor func-
tion). In this equation, ̂Theo1 is defined as in Equa-
tion (1), and Avar has its usual definitions as follows:

Avar (m, τ0, Nx) =
1

2 (mτ0)
2 (Nx − 2m)

×
Nx−m∑

n=m+1

(xn+m − 2xn + xn−m)2 , (5)

for τ = mτ0.

In order to get the most complete information over the
entire data range, we define a hybrid frequency stability
estimator called TheoH as a composite of Avar (m, τ0, Nx)
and TheoBR(m, τ0, Nx), namely,

TheoH(m, τ0, Nx)

=





Avar(m, τ0, Nx), for 1 ≤ m < k
τ0

,

TheoBR(m, τ0, Nx), for k
0.75τ0

≤ m ≤ Nx − 1,

m even,

(6)

where k is the largest τ ≤ 10%T where Avar (m, τ0, Nx)
has sufficient confidence. From Equation (4),
TheoBR(m, k, Nx) = Avar (m, k, Nx); thus TheoH
can be plotted vs. τ as one function with no discontinuity
using (6); however, it must be noted that within the
definition, Avar and TheoBR have different dependence
on τ of τ = mτ0 and τ = 0.75mτ0 respectively. We note
that deviation or square root of Equations (4)-(6) will be
reported.

4 Properties of ̂Theo1

4.1 Criteria for τs = 0.75mτ0

Response of a statistic is the Fourier transform of its sam-
pling sequence that, in some cases, can be nearly impos-
sible to interpret in the time domain but easier to under-
stand in the frequency domain [11]. Recall that it is de-
sirable to maintain Avar’s half-octave frequency response

with peak at a reciprocal period of fp = 1
2τ . The dashed

line in Figure 2 shows the response of a constant-Q, half-
octave pass-band filter considered to be ideal for extract-
ing typical power-law noise levels [1, 14, 18, 19, 21, 24].

Frequency-response functions associated with ̂Theo1 and
Avar are shown in Figure 2. Prior to Equation (1), we
obtained a high-edf, low-bias prototype variance, whose
frequency response peak was shifted above fp = 1

2τs
. We

found that if τs = 0.75mτ0 and the amplitude of the
response is adjusted by 0.75 (in the denominator of the
amplitude coefficient of definition in Equation (1)), then
the frequency response could be shifted to be precisely
fp = 1

2τs
.

4.2 Response to Data Periodicity

Avar has deep nulls in its response to periodic or cyclical
variations in {xn} at frequencies f = int

τ , int = 1, 2, 3, ...
, whereas ̂Theo1 does not (see Figure 2). This means that
the response of ̂Theo1 to a periodic term in the data with
frequency near f = int

τ is going to be more accurate than
if Avar is used. In the end, ̂Theo1’s frequency response
is closer to the response of the ideal pass-band filter that
Avar attempts to approximate. This closer approximation
explains why ̂Theo1 is so efficient in extracting power-law
noise levels and types.

Figure 2: A comparison of frequency responses of ̂Theo1,
Avar, and a passband variance consisting of a simple cas-
cade of a single-pole high-pass followed by a low-pass filter
with identical break points at RC = τ/2 [24].

5 Extraction of Noises and Other Errors

If the plot of frequency stability is not a straight line over a
particular range (for example, it has nulls, “structure” or
oscillations), then it is probably not a power-law process
and we must try to estimate the spectral density Sy(f)
using another method such as a DFT or FFT in addition
to using the ̂Theo1-deviation plot. In general, any number
of random noise components may be present in the data,



depending on the type of test and reference oscillators be-
ing compared and the environment in which the data are
obtained.

After using a method to extract the level of contribu-
tion for each component, relationships of ̂Theo1-deviation
slopes, various noise sources, and the corresponding noise
level as previously discussed above are summarized in Ta-
ble 2. Assuming that the computed ̂Theo1-deviation is
expressed in fractional frequency fluctuation and that τ is
in seconds, then the expressions can be used for 1σ mea-
sures of level.

Table 2: Mapping of ̂Theo1-deviation level and slope on
log-log plot to the square root of noise spectrum,

√
Sy(f),

or rms fractional frequency fluctuations, ∆ν
ν0

of an oscilla-
tor pair, in a 1 Hz BW evaluated at Fourier-frequency f .
QPM is quantized phase modulation. QSFM(f0) means
quasi-sinusoidal frequency modulation at f0.

Noise ̂Theo1 ̂Theo1
√

Sy(f)
Type Level aµ Slope µ

2 or
(
∆ν
ν0

)
rms
vs.f

QPM* a−2 −1 1
2
√

3fh
τa−2

WH/FL PM* a−2 −1 π√
3fh

τa−2

WH FM a−1 − 1
2

√
2τa−1

FL FM a0 0 1√
ln2

a0

RW FM a+1 + 1
2

1
π

√
6
τ a+1

Drift a+2 +1 2
τ a+2

QSFM(f0) ∆ν
ν0

(
sin2πfoτ

πfoτ

)
−1(avg) 2∆ν

ν0
(fo)

*requires fh (high-freq. cutoff), 2πfhτ � 1.

6 Examples

It is well known that interpreting the longest-term fre-
quency stability from a σy(τ) plot can be problematic,
even misleading, as frequency fluctuations become increas-
ingly nonstationary [8, 17]. It is desirable to see how
readily we can identify integer power-law noise types and
levels at long-term extremes using log-log plots of ̂Theo1-
deviation on actual data as compared with the same data
processed with the best (max-overlap) sample Allan devi-
ation σy(τ). Accurate noise typing at long term remains
essential for at least the following reasons:

1. predicting the evolution of time-error of a single clock,

2. calculating confidence intervals,

3. distinguishing and estimating frequency drift,

4. properly correcting for measurement-system dead-
time, if any,

5. optimally combining clocks or frequency standards in
an ensemble to form a time scale.

̂Theo1(m, τ0, Nx) formulated in Equation (1) has been
coded into NIST’s time-scale computer for testing pur-
poses. Various time-difference {xn} series of clock and
time scale comparisons are readily available, data which
have been recorded over many years at NIST, and a rep-
resentative set of example plots are given that illustrate
how ̂Theo1-deviation characterizes frequency stability for
averaging times up to the full length of a data run. 90 %
confidence limits are set according to the straight-line
slope projected off the preceeding adjacent power-of-2 τ -
value. For slope µ ≥ −0.5, FLFM noise is assumed, oth-
erwise WHFM is assumed. Finally, the confidence on the
last point of ̂Theo1-deviation plots assumes RWFM if a
straight-line does not fit within the confidence limits of
the preceeding two shorter-term power-of-2 τ -values, for
example, if the last three points oscillate beyond a straight
line that is able to fit inside their 90 % confidence limits.

Figure 3: Two high-performance commercial Cs frequency
standards in NIST’s time scale taken over five days. The
bottom plot, which estimates Theo1(τ)-deviation, can
characterize fractional-frequency noise level and power-
law noise type out to 3/4 of the length of the data run.
̂Theo1(τ)-deviation also has lower overall uncertainty com-

pared to σ̂y(τ). Even though the last point drops, WHFM
noise type is still supported within ̂Theo1(τ)’s uncertain-
ties.



In addition to knowing the nature of the oscillators or time
scales involved in a particular comparison, the narrower
confidence limits of ̂Theo1-deviation are especially useful
for singling out a likely underlying candidate power-law
noise type. Table 2 allows us to relate the ̂Theo1-deviation
amplitude to the amplitude of the spectral density of fre-
quency noise modulation, namely

√
Sy(f), arguably the

most useful function involving frequency-standard noise
modeling, oscillator synchronization or clock ensembling
for example. Using ̂Theo1-deviation, we are able to con-
fidently estimate spectral-density noise level and type at
unprecedented low values of Fourier frequencies.

The first examples (figures 3 and 4) compare a σy(τ) plot
and a ̂Theo1-deviation plot obtained from two commercial
Cs standards for data runs of 5 days and 170 days. In
both examples, the characteristic noise type is WHFM
out to 3/4 of the 5-day and 170-day lengths of the data
sets according to the ̂Theo1-deviation plot.

Figure 5 shows the evolution of frequency stability plots of
two high-grade commercial Cs standards in the NIST time
scale starting at the same time origin and advancing from
one day to over two years of data. These are particularly

Figure 4: Two high-performance commercial Cs frequency
standards from NIST’s time scale with data taken over 170
days.

interesting because the plots show ̂Theo1-deviation values
beyond the last σy(τ) values and give some feel for whether
̂Theo1-deviation can anticipate longer-term σy(τ) values.

To begin, figure 5-c shows that ̂Theo1-deviation indicates
the onset of non-WHFM (nonstationary) long-term noise
at τ ≈ 85 − 150, days whereas the σy(τ) plot does not to
its last calculable value of τ = 85 days. As the data run
gets longer, figure 5-d shows that the σy(τ) indicates that
flicker FM is occuring at this time. This would be reason-
able as shown over the last four octaves of τ , out to its

Figure 5: Frequency stability plots that start at the same
time representing two high-performance commercial Cs
standards in the NIST time scale for (a) one day, (b) 37
days, (c) 146 days, (d) 583 days, and (e) 701 days. The
Allan deviation function is identified by the hexagons, and
Theo1(τ)-deviation function is identified by the diamonds.



last σy(τ)-value, corresponding to about 170 days, except
that ̂Theo1-deviation contradicts this hypothesis. In fact
at the same time, ̂Theo1-deviation supports a hypothesis
of WHFM becoming RWFM, or possibly frequency drift,
at τ ≈ 170 − 450 days since the slope is slightly steeper
than RWFM ∝ τ+ 1

2 but not quite as steep as Dr ∝ τ+1.
Full results using the remaining 120 days are shown in
figure 5-e and indicate that ̂Theo1-deviation continues to
support long-term RWFM, and now, σy(τ) does as well.

7 Conclusion

̂Theo1 is effective to large τ -values, including 3/4 of the
entire data run. This means that longest-term frequency
stability can be obtained with only one-third more data-
collection time. ̂Theo1, like Avar and Totvar, is invariant
to an overall shift in phase and frequency. ̂Theo1, like
Avar and Totvar, retains simple straight-line mapping (on
log-log plots) to Sy(f) for easily extracting the levels of
the usual five FM power-law noise types by a linear-least-
squares fit.
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