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Abstract—We discuss the implications of using high-
power microwave tests in a fountain frequency standard
to measure the frequency bias resulting from distributed
cavity-phase shifts. We develop a theory which shows that
the frequency bias from distributed cavity phase depends
on the amplitude of the microwave field within the cavity.
The dependence leads to the conclusion that the frequency
bias associated with the distributed cavity phase is typi-
cally both misestimated and counted twice within the error
budget of fountain frequency standards.

I. Introduction

The subject of frequency shifts in atomic frequency
standards caused by distributed cavity phase is not

new; it goes back to the earliest days of the thermal beam
standards [1], [2] and has been the subject of continuing
work both theoretical and experimental over the last 50
years [3]–[5]. Laser-cooled fountain frequency standards
pose significantly different problems with respect to dis-
tributed cavity phase than the thermal beam standards.
This is due to both the very different microwave structure
used in fountains as well as the very narrow velocity distri-
bution that allows test operation at microwave power sig-
nificantly higher than in normal operation. Observations of
power-dependent frequency shifts due to tilting of a short
atomic fountain that are related to the work presented
here have been made by the group at the Paris Observa-
tory (Systemes de Reference Temps Espace) (SYRTE) [6].

The analysis of the phase of the microwave field within
the microwave cavities used in cold atom fountain fre-
quency standards has been the subject of a large body of
work. DeMarchi and collegues [7]–[9] provided the seminal
contributions of proving the correspondence between the
phase and power flows within the microwave cavity, identi-
fying the preferred cavity configuration and modeling the
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phase of the microwave field within the cavity. Full three-
dimensional analyses of the microwave field within the cav-
ity have been completed by several authors [10]–[14]. In
many of the studies, large phase excursions are predicted.
At least one paper [12] has used these phase excursions
to predict frequency shifts as a result of distributed cav-
ity phase in the δf/f � 10−16 range, outside the current
value assigned in the error budget of our fountain-type pri-
mary frequency standard. The size of the frequency error
caused by the distributed cavity phase is estimated in Na-
tional Institute of Standards and Technology (NIST)-F1
as δf/f ≤ 1×10−17. The theory presented here allows the
direct experimental measurement of the frequency shift at
the δf/f ≈ 1 × 10−16 level, thus discriminating between
various estimates of the frequency shift in the NIST foun-
tain.

We begin by briefly reviewing the microwave field
within a resonant cavity and recalling various properties
of the microwave field and its phase. We then solve the
Schrödinger equation for a two-level atom in the case in
which the field within the microwave cavity has both real
and imaginary parts, which is the case required to under-
stand the distributed cavity phase shift. We then exam-
ine the power dependence of the frequency bias caused by
distributed cavity phase. The Appendix presents both nu-
merical and analytic integrations of the Bloch vector for-
mulation that agree quite well with the analytic solution
of the Schrödinger equation, which we now describe.

II. Microwave Cavities and Phase

The typical configuration of the microwave cavity,
shown schematically in Fig. 1, in cesium (and rubidium)
fountain frequency standards is a cylindrical cavity res-
onating in the TE011 mode at the hyperfine frequency
of the atom, 9.193 GHz in the case of cesium. The “z-
axis” of the cavity is nominally aligned with the gradient
of the gravitational potential, and atoms enter and leave
the cavity via below-cutoff waveguides. This form of cavity,
as described by Vecchi and DeMarchi [8], has the crucial
property of allowing below cutoff cylindrical waveguides
of relatively large diameter (2ra ∼ 1 cm) for atoms to en-
ter and leave the cavity without unduly influencing the
TE011 mode of the cavity, and thereby causing large phase
gradients in the microwave field. To lowest order the field
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Fig. 1. A schematic of the TE011 mode cylindrical cavity showing
the principal dimensions. In the NIST-F1 cavity that is resonant at
9.193 GHz, rC = 3.00 cm, ra, the radius of the below cutoff wave-
guides is 0.50 cm, and d the cavity height is 2.2 cm. The cavity has
four symmetrically placed feeds on the midplane and an unloaded Q
of 22,500. The loaded Q is also 22,500 as a result of severe undercou-
pling (the insertion loss of the cavity in transmission is ≈ 30 dB).

within the cavity is describable as purely TE (EZ ≡ 0),
and all field components are derivable from the longitudi-
nal magnetic field Hz(x, y) [15]. Under these assumptions,
and using a slight extension and modification of the nota-
tion of Khursheed et al. in [9], the longitudinal field can
be written as:

HZ(x, y, z) = |H(x, y)| eiϕ(x,y)f(z), (1)

where ϕ(x, y) is the distributed cavity phase under discus-
sion here and f(z) describes the longitudinal variation of
HZ . The expression for the real part of the field within the
cavity is given (with a change to cylindrical coordinates ρ,
φ and z) to lowest order by:

Re [HZ(ρ, φ, z)] =
(π

2

)
H0J0

(
p′
0,1ρ

rC

)
sin

(πz

d

)
,

(2)

where p′
n,m is defined as the mth solution of (dJn(x)/dx) =

0, rC is the radius of the cavity, d is the height, and πH0/2
is the field amplitude at the center of the cavity (see Fig. 1
and [15]). The cavity phase is defined by the relation:

ϕ ≡ tan−1
(

Im (HZ)
Re (HZ)

)
, (3)

where the real part of HZ is approximated by (2) and the
imaginary part is, roughly, approximated by:

Im (HZ)

=
πH0

2Q

[(
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(
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)2

+
(

ρ
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)4

cos 4φ

)(
z

d
− 1

2

)2
]

,
(4)

where Q is the quality factor of the cavity. The second term
in (4) comes from power flows to the walls from the stand-
ing mode of the field. The third term comes from power
flows associated with the four-feed structure of the partic-
ular cavity investigated here [10]. The terms proportional
to ρ/rC and z/d should be small for a symmetric, well con-
structed cavity and are neglected here. The overall cavity

phase has been set equal to zero at the geometric center
of the cavity, and the various coefficients of the expansion
have all been set equal to one.

Several things can be seen by inspection of (1)–(4). The
first is that the phase of the microwave field within the cav-
ity is independent of microwave power (as it should be).
The second point to note is that the microwave phase can
get relatively large when the real part of Hz is sufficiently
small, that is, when the Rabi frequency of the atom is suf-
ficiently small. Inspection of (3) shows that this can hap-
pen whenever the real part of Hz tends toward zero more
rapidly than the imaginary part of Hz. This happens at the
ends of the cavity in which the cavity phase near the end-
caps may reach milliradians or more. For example, on the
axis of the NIST-F1 cavity, just above the lower endcap
at z = 10−5 cm, according to (3), the cavity phase ap-
proaches 1 radian. However, the phase of the atomic wave
function is affected only at the microradian level because
the microwave field (and hence the atom’s Rabi frequency)
is 10−5 of its value at the center of the cavity. Because the
Rabi frequency of the atom is (essentially) zero, the atom
is (essentially) unaffected by the relatively large numeri-
cal value of the microwave phase. In other words, what is
ultimately of interest is not the value of the phase angle
of the microwave field, but rather the value of the phase
angle imposed on the atomic wave function as a result. In
order to quantify the effect of the imaginary part of the
microwave field upon the atom, we now obtain a solution
to the time-dependent Schrödinger equation as the atoms
pass through a cavity with fields described by (2) and (4).

III. Schrödinger Equation and Ramsey

Lineshapes

We extensively use the theoretical framework developed
by Shirley [16], [17] and Shirley et al. [18] and give here the
extensions required to handle both the real and imaginary
phases of the microwave field within the cavity.

We begin by assuming that the problem can be handled
within the framework of a two-level system. The Hamilto-
nian for the system can be written as (cf. (7) of [18]):

H = h̄

(
ωa 2b cosωt + 2b′ sinωt

2b cosωt + 2b′ sinωt ωb

)
,
(5)

where h̄ωa and h̄ωb are the energies of the upper and
lower states, respectively. The interaction Rabi frequency
for the real part of the microwave field is given by 2b =
µBgRe (HZ) /h̄ where µB is the Bohr magneton, g is the
Landé g-factor, and HZ is the microwave magnetic field
parallel to the quantization axis imposed by the exter-
nal C-field. A similar expression applies for b′, 2b′ =
µBgIm (HZ) /h̄, the Rabi frequency due to the imaginary
part of the microwave field. Both b(t) and b′(t) are time
dependent, owing to the atom’s motion in the cavity. We
also define b0 ≡ (gµB/2h̄)H0.
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In the rotating wave approximation, the Hamiltonian in
(5) is written:

H = h̄

(
ωa (b + ib′) e−iωt

(b − ib′) eiωt ωb

)
. (6)

Note the sign change in b′(t) in the off-diagonal cou-
plings. This comes about because the rotating-wave ap-
proximation selects one exponential from sinωt in one cou-
pling and the other exponential in the other coupling (com-
pare to (7) and (8) in [18]). Using the “phase factored”
solutions, α and β, (cf (9) and (10) of [18]) gives us the
Schrödinger equation for the system:

ih̄
d

dt

(
α

β

)
= h̄

(
−∆ (b + ib′)

(b − ib′) ∆

)(
α

β

)
, (7)

where α is the probability amplitude that the system re-
mains in its initial state, and β is the probability ampli-
tude that the system changes state. ∆ is half the detuning
δω from the atomic resonance ω0; ∆ = (1/2) (ω − ω0) =
(δω/2), where ω0 = ωa−ωb is the hyperfine splitting of the
atom. ∆, b, and b′ are all real, possibly time-dependent,
quantities.

We now give a solution to (7), valid through first order
in ∆ and b′(t), under the assumption that the detuning
is small compared to the Rabi frequency and that ∆ is
constant. α and β, obtained by analogy with (25)–(28) of
[18], can be expressed as:

α(τ) = cosa(τ) + i∆ζ(τ) − iη(τ) and
β(τ) = −i sina(τ) − ∆ξ(τ) − ε(τ),

(8)

here a, ζ, η, ξ, and ε are given by:

a(t) =

t∫
0

b (t′) dt′ =
b0τ

2

[
1 − cos

(
πt

τ

)]
,

ζ =

τ∫
0

cos (2a(t) − a(τ)) dt,

η =

τ∫
0

b′(t) sin (2a(t) − a(τ)) dt,

ξ =

τ∫
0

sin (2a(t) − a(τ)) dt, and

ε =

τ∫
0

b′(t) cos (2a(t) − a(τ)) dt.

(9)

Note that the first-order corrections, ζ, η, ξ, ε, to α and
β are out of phase with the primary parts of α and β,
and, hence, become of second order in the Rabi transition
probability; but they affect the Ramsey fringe in first-order
as shown below.

If we use subscripts 1 and 2 to denote the first and sec-
ond Ramsey microwave interactions and denote the Ram-

sey drift time by TR, the wave function for Ramsey exci-
tation can be written as (compare (35) of [18]):

ψ (τ2 + TR + τ1)

=
(

α2 −β∗
2

β2 α∗
2

)(
eiδωTR/2 0

0 e−iδωTR/2

)(
α1 −β∗

1
β1 α∗

1

)
ψ(0),

(10)

where ψ(0) is given here by:

ψ(0) =
(

α(0)
β(0)

)
≡

(
1
0

)
. (11)

The transition amplitude from the initial state to the final
state is given by:

α1β2e
iδωTR/2 + α∗

2β1e
−iδωTR/2, (12)

and the transition probability is given by its absolute
square:

P = |α2|2 |β1|2 + |α1|2 |β2|2 + 2Re
[
β2β

∗
1α2α1e

iδωTR
]
.

(13)

Using our previous solutions (8) for α and β and assum-
ing that a(τ) is the same for both excitations leads to a
transition probability of:

P =
sin2 (2a(τ))

2

[
1 + cos δωTR +

{
(ε2 − ε1) csc a(τ)

+
(

(η1 + η2) − δω

2
(ζ2 − ζ1)

)
sec a(τ)

}
sin δωTR

]
. (14)

Only terms of zeroth and first order in ε, η, ζ, and ξ
have been retained. P can clearly be seen as a normal Ram-
sey fringe (the cos δωTR term) plus an underlying fringe
of small amplitude and π/2 displacement (the sin δωTR

term). The terms symmetric in the detuning, δω, (the
cos δω and (δω/2) (ζ2 − ζ1) sin δω terms), do not lead to
a frequency shift. The asymmetric terms, however, cause
a distortion of the Ramsey curve and, therefore, lead to a
frequency bias. When using square-wave frequency mod-
ulation, the frequency bias at optimum power is propor-
tional to the difference in the transition probability on the
left and right sides of the central Ramsey fringe at equal
detunings. This difference is given by:

PL − PR = sin2 (2a(τ))
[

ε2 − ε1

sin (a(τ))
+

η2 + η1

cos (a(τ))

]
,
(15)

where PL,R is the probability given by (14) on the left
and right sides of the central Ramsey fringe, respectively
(that is with δω = ∓ (π/2TR), respectively); (15) is shown
plotted below in Fig. 2. The corresponding (fractional) fre-
quency shift:

δν

ν
� PL − PR

ω0TR sin2 (2a(τ))

=
1

ω0TR

[
ε2 − ε1

sin (a(τ))
+

η2 + η1

cos (a(τ))

]
,

(16)
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Fig. 2. The calculated microwave power dependence of the distortion
of the central Ramsey fringe caused by the distributed cavity phase
shift. The calculation is normalized to the shift at optimum (π/2)
power.

is given by (15) divided by twice the slope of the side of
the Ramsey fringe. As we shall see later, η1 and η2 are
zero in the present case. Furthermore, (16) becomes sin-
gular when a(τ) = π, 2π, 3π, etc. This singularity in the
frequency shift is perfectly acceptable; it happens when
the transition probability (14) vanishes. And (16) applies
when using normal, slow-square-wave frequency modula-
tion, but the result for slow-square-wave phase modulation
is similar.

IV. Power Dependence

We approximate b′(t) with the leading radial term in (4)
(because of the time-reversal symmetry experienced by an
atom in a fountain trajectory, the constant term does not
cause a frequency shift in a fountain) to get:

η1,2 =
b0π

2Q

τ∫
0

(
ρ1,2

rC

)2 (
z

d
− 1

2

)2

sin
(

b0τ cos
(

πt

τ

))
dt,

(17)

ε1,2 =
b0π

2Q

τ∫
0

(
ρ1,2

rC

)2 (
z

d
− 1

2

)2

cos
(

b0τ cos
(

πt

τ

))
dt,

where η1,2 or ε1,2 denotes η or ε on the first or second
pass through the cavity, as appropriate, and similarly for
ρ1,2. The η1,2 term vanishes identically from symmetry
considerations. The evaluation of ε1,2 is facilitated by the
identity (9.1.44 in [19]):

cos(γ cos θ) = J0(γ) + 2
∑

k

(−1)kJ2k(γ) cos(2kθ).
(18)

This can be substituted into (17) along with the re-
placement of z/d by t/τ , and assuming vertical atom-

TABLE I
Microwave Field Dependence of the Frequency Bias

Attributable to Distributed Cavity Phase.

Frequency shift, normalized
Microwave field amplitude, to the frequency shift at

b0τ = (nπ/2)1 b0τ = (π/2) ·
[

δν@(nπ/2)
δν@(π/2)

]
n = 1 1
n = 3 −1.855
n = 5 5.169
n = 7 −2.129
n = 9 7.832
n = 11 −2.254
n = 13 9.957

1The microwave field is given in units of π/2 pulses where b0τ =
(nπ/2).

trajectories (ρ1,2 constant over one pass through the cav-
ity) to give:

ε1,2 =
b0π

2Q

(
ρ1,2

rC

)2 τ∫
0

(
t

τ
− 1

2

)2
[
J0 (b0τ)

+ 2
∞∑

k=1

(−1)kJ2k (b0τ) cos
(

2k
πt

τ

)]
dt. (19)

Evaluating ε1,2 (19), we find:

ε1,2 =
πb0τ

24Q

(
ρ1,2

rC

)2
[
J0 (b0τ) +

12
π2

∞∑
k=1

(−1)k

k2 J2k (b0τ)

]
,

(20)

where the power dependence is now explicit in b0τ .
We now take the simplified case of ρ1 = 0 and ρ2 =

(rC/6)), corresponding to the atom ascending on the cen-
terline of the cavity and descending just next to the wall
of the below-cutoff waveguide in our cavity. The Ram-
sey microwave cavity in NIST-F1 has an unloaded Q of
22,500 and a cavity radius, rC , of 3.0 cm, and is resonant
at 9.1926 GHz, which we use for the analysis here [10]. The
distortion of the Ramsey fringe by the distributed cavity
phase as a function of microwave power (15) is shown in
Fig. 2, and the frequency bias caused by the distributed
cavity phase (16) is given in Table I.

It clearly can be seen from Fig. 2 and the data in Ta-
ble I that the frequency bias caused by the distributed
cavity phase is a function of microwave power. For exam-
ple, the frequency shift between excitations of 3π/2 and
5π/2 caused by the distributed cavity phase shift is ap-
proximately seven times larger than the shift at optimum
excitation. This dependence on microwave power allows
the frequency bias from the distributed cavity phase to
be measured, or at least constrained. Note also that the
data in Fig. 2 and Table I are normalized to the shift at
optimum power b0τ = (π/2).

The results plotted in Fig. 2 and given in Table I are not
critically dependent on the exact form of the distributed
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cavity phase assumed in (4). One way to deduce this is
that what appears in the frequency shift (16) is the inte-
gral of b′ weighted by b, an average of b′ that is relatively
insensitive to the details of b′. If, however, the imaginary
part of the microwave field is assumed to have the same
spatial dependence as the real part of the microwave field,
the power dependence of ε cancels that in (16). This is as it
should be. If the imaginary and real parts of the field have
the same spatial dependence, then the distributed cavity
phase is constant (3), and the frequency shift vanishes ex-
actly. In fact, the power dependence exists whenever the
temporal dependance (as seen by the atoms) of the real
and imaginary parts of the field are different, which they
will be in any cavity with below cutoff waveguides in the
endcaps.

Although we have evaluated the shift for a “worst case”
atom trajectory, the shape of the shift as shown in Fig. 2
(and given in Table I) is invariant for other trajectories
(up to a factor of −1) with the assumption that the atom
travels vertically on a single pass through the cavity. The
overall frequency bias in the fountain then is given by eval-
uating the bias over the atomic distribution function.

V. Discussion

The frequency shifts associated with microwave leakage
are closely related to the frequency shifts associated with
distributed cavity phase. In both cases, the frequency shift
is associated with an out-of-phase excitation, which is in-
side the cavity for the case of the distributed cavity phase
bias and between the cavities in the case of frequency bias
from microwave leakage. Impurities in the microwave spec-
trum also give rise to frequency biases that are dependent
on the microwave power level. As a result of the relatively
complicated signature of the distributed cavity phase-shift
frequency bias with microwave power, it may be possible
to separate the effects of leakage, microwave spectrum, and
distributed cavity phase by measuring the frequency bias
at several microwave powers. This will require a theory of
the effects of microwave leakage more complete than cur-
rently exists in the literature. Until we have a complete
theory of the dependence on power of the frequency biases
associated with:

• microwave leakage,
• the microwave spectrum, and
• distributed cavity phase,

the frequency biases which have been attributed to each
of these effects are in some doubt. We are presently devel-
oping a more complete theory of the microwave leakage at
elevated microwave power.

We have measured the microwave power dependence of
the output frequency of NIST-F1 many times and have
not seen a statistically significant shift. Using data from
these measurements and assuming that the frequency bias
from the distributed cavity phase is the dominant effect
(which we believe to be the case), the frequency bias at-

tributable to the distributed cavity phase shift in NIST-F1
at optimum excitation is no more than (δf/f) ≤ 1×10−16.

Most laboratories operating cesium fountain primary-
frequency standards test for a microwave leakage bias by
using elevated microwave power in their standards [20]–
[23]. It usually is assumed during these tests that the fre-
quency bias associated with the distributed cavity phase
is invariant under changes in microwave power. How-
ever, it can be seen from Fig. 2 and Table I that these
tests may significantly alter any frequency shift due to
the distributed cavity phase. High-power microwave tests
in a fountain with a significant distributed cavity phase
induced-frequency bias can lead to mistakes in estimating
both the sign and magnitude of the leakage bias if that
frequency bias is assumed to be linear in the microwave
field amplitude. Consider a fountain in which the leakage
bias at high microwave powers is estimated by measuring
the frequency shift when operated at 3π/2 and 7π/2, then
using Table I we see that the shifts from distributed cavity
phase measured are of opposite sign to the shift at π/2,
and the magnitude of the bias also never approaches the
factor of 7 one would assume from linearity.

In a typical case, for example, the frequency bias as-
sociated with microwave leakage was quoted as (δf/f) ≤
2.0 × 10−16 as evaluated by high-power microwave tests,
and the frequency bias associated with the distributed cav-
ity phase was theoretically evaluated as (δf/f) ≤ 1×10−15

and both effects were included in the uncertainty analy-
sis [23].

It is reasonable to conclude in this case that the bias
from the cavity phase was already counted, at least par-
tially, in the microwave leakage experiment and should not
be counted again in a theoretical evaluation. If the bias
from the distributed cavity phase shift is constrained by
measurement to a value smaller than that from a theoret-
ical simulation of the cavity, it seems that the measured
constraint is the appropriate one to use.

Appendix A

The Bloch Vector Approach:

An Alternative Viewpoint

In a classic paper, Rabi et al. [24] formulated the solu-
tion of Schrödinger’s equation as the precession of a mag-
net in a magnetic field (the “Bloch vector”) [24]. Feynman
et al. [25] later reinterpreted the result more generally, and
we use their formulation here. The wave function of any
cesium atom in the fountain may be written as:

ψ(t) = α(t)ψα + β(t)ψβ , (21)

where ψα and ψβ are the eigenstates of the two-level sys-
tem of interest here. Following [25], we define the compo-
nents of a “spin vector” in a rotating frame:

r1 ≡ αβ∗ + βα∗,

r2 ≡ i (αβ∗ − βα∗) ,

r3 ≡ αα∗ − ββ∗.

(22)
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Direct substitution of (7) into (22) gives the equation of
motion of the spin vector in an external field, including the
imaginary part of the microwave field. We find the motion
of the spin vector is described by:

ṙ1 = δωr2 − 2b′r3,

ṙ2 = −δωr1 − 2br3,

ṙ3 = 2br2 + 2b′r1.

(23)

And (23) preserves the normalization r2
1 + r2

2 + r2
3 = 1. In

this picture, the probability that the atom be in state β is
given by Pβ = 1/2 (1 − r3).

We have numerically integrated (23) over a complete
Ramsey-style excitation starting in state α, (11), and using
the microwave fields in (2) and (4). The resulting data for
the probability that the atom is in state β then is used
to calculate the distortion in the Ramsey fringe at δω =
∓ (π/2TR). This numerical approach reproduces the data
shown in Fig. 2 with a root mean square error of less than
1%. The close agreement of the numerical result with the
analytic result (16) and (15) provides strong confirmation
of the analytic result.

Expression (23) also can be solved analytically, to the
order of approximation in this paper, giving a result for
the transition probability that is of a slightly simpler form
than given in (14), but which is identical to it. We outline
the method here.

The state of the atomic system upon beginning the first
pass through the cavity is assumed to be described by
r1 = r2 = 0, and r3 = 1, (11). An approximate solution
is first obtained by neglecting terms in ∆ and b′(t). The
result is r2 = − sin 2a(t), r3 = cos 2a(t). Substituting back
into the first of the equations of motion and integrating
gives to first order:

r1(t) = −2∆

t∫
0

sin (2a (t′)) dt′ − 2

t∫
0

b′ (t′) cos (2a (t′)) dt′.
(24)

Then because r1 is of first order, no further changes in the
other components are required.

As the atom passes into the drift region, boundary val-
ues of the spin components must be matched. Thus at
t = τ1, the boundary conditions are:

r11 = r1 (τ1) , r2 = − sin (2a1) , r3 = cos (2a1) .
(25)

Because there are no significant microwave magnetic
fields in the drift region, r1 and r2 oscillate harmonically.
We temporarily take t = 0 at the boundary. Then solutions
that satisfy the boundary conditions at t = 0 are:

r1 = − sin (2a1) sin (2∆t + ϕ) ,

r2 = − sin (2a1) cos (2∆t + ϕ) ,

r3 = cos (2a1) ,

(26)

where the phase ϕ is determined by:

sinϕ =
−r11

sin (2a1)
, (27)

and terms in the square of r11 are ignored. The compo-
nents at the boundary between leaving the drift region
and the second pass through the cavity are obtained from
(26) by substituting t = TR. And (26) then become bound-
ary conditions for the components on the second pass. In
particular we set:

r12 = − sin (2a1) sin (2∆TR + ϕ) . (28)

We can obtain an approximate solution of the equations
of motion in the second passage through the cavity by
again neglecting terms in ∆ and b′. The results can be
expressed as:

r1 = r12 = sinB,

r2 = cosB cos (2a(t) + C) ,

r3 = cosB sin (2a(t) + C) ,

(29)

where C is an integration constant, and where we take
t = 0 at the instant the atom starts the second pass
through the cavity. The constant C is determined from
the boundary conditions:

cosC = − sin (2a1) cos (2∆TR + ϕ)
cosB

,

sinC =
cos (2a1)

cosB
.

(30)

A first order solution to the equations of motion now can
be obtained by the method of variation of constants—that
is, we let B and C vary with time and substitute the solu-
tions, (29), into the equations of motion and differentiate,
keeping only first-order terms in ∆ and b′. (Only two in-
dependent quantities vary because of normalization.) The
equations can be combined to give:

Ḃ = 2∆cos (2a + C) − 2b′ sin (2a + C) ,

Ċ = tanB [2∆ sin (2a + C) + 2b′ cos (2a + C)] . (31)

On the right, the quantities B and C can be taken to be
constants, to the order of the calculation. Then (31) can be
integrated. The results are given by (32) (see next page).

The final transition probability now can be constructed
using the expression for probability in terms of r3, and
(29), (30), and (32), and expanding all terms only to first
order in the small quantities ∆ and b′. The result is of
the same form as (14), except that the coefficient of the
sin (δωTR) term inside the brackets is (33) (see next page)
where b1 and b2 are b′ on the first and second passes
through the Ramsey cavity. The result is identical to (14),
but the integrations occur in a somewhat simpler form.
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C(t) = C + tanB

⎡
⎣2∆

t∫
0

sin (2a (t′) + C) dt′ + 2

t∫
0

b′ (t′) cos (2a (t′) + C) dt′

⎤
⎦ ,

cosB(t) = cosB − sinB

⎡
⎣2∆

t∫
0

cos (2a (t′) + C) dt′ + 2

t∫
0

b′ (t′) sin (2a (t′) + C) dt′

⎤
⎦ .

(32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2∆

τ∫
0

sin (2a (t′)) dt′
1 − cos 2a

sin 2a
− 2∆

τ∫
0

cos (2a (t′)) dt′

−2

τ∫
0

b1 (t′) cos (2a (t′)) dt′/ sin 2a + 2

τ∫
0

b2 (t′) sin (2a (t′)) dt′

+2

τ∫
0

b2 (t′) cos (2a (t′)) dt′
cos 2a

sin 2a
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (33)
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