
CHAPTER 10 

Electron g - 2, Entanglement, and Trapped-Ion 
Quantum Information Processing 

D. J. Wineland 

nrne and Frequency Division, NIS2: Bouldel; CO 80305-3328 

Abstract. Experiments on quantum-state synthesis of trapped ions and their connection to trapped- 
electron g - 2 experiments are discussed briefly. The trapped-ion work has the overall goal of 
performing large-scale quantum information processing; however, the techniques employed can also 
be applied to fundamental tests and demonstrations of quantum mechanical principles, as well as to 
the improvement of quantum-limited measurements. 

INTRODUCTION 

On this occasion where we honor Prof. Hans Dehmelt upon his retirement we can 
see, in many ways, his influence upon the work that we currently pursue. In research 
devoted to the possibility of processing quantum information using trapped ions, this 
influence is rather direct. For example, the trapped-ion method follows his pioneering 
work on its applications in atomic physics. In addition, the key entangling operation 
needed for quantum information processing is a close analog to the "g - 2" measurement 
technique that was used for the high-precision measurements of the electron and positron 
g-factors in Prof. Dehmelt's group at the University of Washington. Before discussing 
this connection, we first recall some of the basic ideas involved in the electron g - 2 
measurement. 

G - 2 AND SPINIMOTION ENTANGLEMENT 

Consider an electron in a magnetic field go as shown schematically in Fig. 1. The 
energy of the electron's spin magnetic moment in this field is given by Hs = -@.  -. 
Bo = -gj.lBBomS where g E -2.002 is the electron g-factor, p~ is the Bohr magneton, 
and ms E {- 112, +1/2) - {L, T) is the electron's spin eigenvalue with respect to a 
quantization axis determined by go. The electron's motion in a direction perpendicular 
to Bo is described by its cyclotron orbit (in the x-y plane of Fig. 1) at frequency 
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.FIGURE 1. Schematic representation of the motion of an electron in a strong uniform magnetic field 
plus a gradient field acting as a perturbation. When the electron traverses its cyclotron orbit, it sees an 
oscillating magnetic field parallel to 2 as it moves through the field gradient. If this field is modulated 
at Igl - 2 times the cyclotron frequency w, where g is the electron g-factor, the electron experiences an 
oscillating magnetic field that flips its spin. 

= eBo/me where e and me are the electron's charge and mass. Assume that a weaker 
magnetic field gradient is also applied to the electron, where this additional field is 
perpendicular to Bo as indicated in the figure. As the electron traverses its cyclotron 
orbit, it sees an oscillating component of the magnetic field in the 2 direction due to its 
motion in the field gradient. Now assume that this field gradient oscillates sinusoidally 
at the frequency as - w ,  where as is the electron's spin-flip frequency. We represent 
the y-component of the electron's motion and the field gradient as 

y (t) = Yo cos(wt) ,  dB, /dy  = B' cos ((as - %It). 

Lf we substitute these expressions into the expression for the total field (indicated in the 
figure), we find that the electron sees the field 

The last term in this equation is non-resonant and may be neglected. However, the term 
that oscillates as cos(aSt) causes the spin to flip. Hence, by modulating the gradient 
field at a frequency equal to the "g - 2 frequency" as - = (Igl - 2) x Q, we 
cause the spin and cyclotron motion to exchange energy. After the cyclotron motion 
has radiatively re-thermalized with the environment, the change in averaged magnetic 
moment energy (spin plus cyclotron magnetic moment energy) is detected through 
a shift in the electron's axial frequency [I], thereby signaling the g - 2 resonance 
condition. 
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If we describe this situation treating both the spin and motion mechanically, 
we write the system Hamiltonian as 

where o+ = (ox + ioy)/2 and o- = (ox - ioy)/2 are the raising and lowering operators 
for the spin, and ox, oy, and o, are the usual Pauli matrices. Yo has been replaced 

t by the position operator yo(ac + ac), where a c  and a: are the lowering and raising 
operators for the cyclotron motion and yo represents the zero-point amplitude of the 
motion. When dBX/dy is modulated at the g - 2 frequency, the resonant (and dominant) 
part of HI is proportional to acof + aLo-, an interaction that entangles the spin and 
cyclotron motion. For pure states of two quantum systems, such as the spin and cyclotron 
motion in the present context, entanglement means that the wavefunction describing the 
overall system cannot be written as a direct product of wave functions of the separate 
systems. One consequence of entanglement is that measurements on one system are 
correlated with those on the other system. Logic gates used in quantum computers 
generate entanglement between quantum bits or "qubits" and, as we will see below, an 
interaction entirely analogous to that in Eq.(3) is the basis for entanglement and quantum 
logic gates between a t e s k i o n  qubits. 

BASIC IDEAS OF' TRAPPED-ION QUANTUM COMPUTATION 

Efforts to realize the elements of quantum computation (QC) experimentally with 
trapped atomic ions have been stimulated in large part by a 1995 proposal by Cirac 
and Zoller [2]. In this scheme, ions confined in a linear RF (Paul) trap are cooled and 
form a stable spatial array whose motion is described by collective normal modes. Two 
internal levels in each ion form a qubit (referred to as a spin qubit below). The spacing 
(> 1 pm) between ions is typically large enough that the direct coupling of internal states 
of ions is negligible, thereby precluding logic gates based on internal-state interactions. 
To overcome this limitation, Cirac and Zoller suggested cooling the ions to their mo- 
tional ground state and using the ground and first excited state of a particular motional 
mode as a qubit (motion qubit). The motional mode can act as a data bus to transfer in- 
formation between ions by first mapping the spin qubit state of a particular ion onto the 
selected motion qubit with a laser beam focused onto that ion. The ability to construct 
a logic gate between the motion qubit and another selected spin qubit, coupled with the 
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ability to perform single-spin qubit rotations provides the necessary requirements for 
universal quantum computation [3,4]. 

The ion-trap scheme satisfies the main requirements for a quantum computer as out- 
lined'by DiVincenzo [5]: (1) a scalable system of well-defined qubits, (2) a method to 
reliably initialize the quantum system, (3) long coherence times, (4) existence of uni- 
versal gates, and (5) an efficient measurement scheme. Most of these requirements have 
been demonstrated experimentally; consequently, ion-trap quantum information proces- 
sors are studied in several laboratories. Here, we focus on experiments carried out at 
NIST but note that similar work is being pursued at Aarhus, Almaden (IBM), Hamburg, 
Hamilton (Ontario, McMaster Univ.), Innsbruck, Los Alamos (LANL), University of 
Michigan, Garching (MPI), Oxford, and Teddington (NPL, U.K.). For brevity, we dis- 
cuss only one example of a trapped-ion logic gate and indicate steps being taken towards 
scaling to a large system. 

COHERENT QUANTUM CONTROL 

The key entangling operation in the 1995 Cirac/Zoller scheme for QC, and other 
schemes that rely on the ions' motion, is an operation that coherently couples a spin 
qubit with the motion in a spin-state-dependent way. Assume that the spin qubit has a 
ground state labeled I L) and a higher metastable state labeled I f )  that are separated in 
energy by Am. First assume that single-photon transitions between these levels can be 
excited with a focused laser beam. For simplicity, we will assume electric dipole transi- 
tions, but this is easily adapted to other cases such as electric quadrupole transitions as 
in the experiments at Innsbruck [6]. The interaction between an ion and the electric field 
of the laser beam can be written as 

where d i s  the electric dipole operator, Z is the ion position operator for displacements 
from the ion's equilibrium position (expanded in terms of normal mode operators), kL 

.is the laser beam polarization, k is the laser beam's k-vector (taken to be parallel to 
2, the axis of the trap), CI)L is the laser frequency, and @ is the phase of the laser field 
at the mean position of the ion. Eo is the laser beam electric field amplitude at the 
ion, which is assumed to be classical. We characterize the laser field's polarization 
with respect to a magnetic field go that sets the quantization axis for the ions. The 
polarization is expressed in terms of left circular (&), linear (R), and right circular 
(&+) polarizations, so that kL = e-6- + eoR + e+&+ with le- l 2  + leoI2 + le+I2 = 1. 
The dipole operator .d is proportional to o+ + 0-, where o+ - I f ) (1 1, o ( 1) (f 1 .  
We take Z = zo(a +at), where a and at are the lowering and raising operators for the 
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harmonic oscillator associated with the selected motional mode (frequency mZ) and zo is 
the extension of the ground-state wavefunction for the particular ion (and mode) being 
addressed. We assume all other z modes are cooled to and remain in their ground states 
and for simplicity have neglected them in 2. In the Lamb-Dicke limit, where the extent of 
the ion's motion is much less than A1276 = Ilk, we can write Eq. (4) (in the interaction 
frame, and making the rotating wave approximation (see for example, ref. [lo])) as 

Here, R -Eo(f 1 2 .  1) /(2h) and q = kzo is the Lamb-Dicke parameter (<< 1 in the 
Lamb-Dicke limit). 

For certain choices of WL, HI is resonant and the spin and motion can be coupled 
efficiently. For example, when WL = - wZ, HI E iqh(Rei@)o+a + h.c. This is usually 
called the "red-sideband" coupling and is formally equivalent to the Jaynes-Cummings 
Hamiltonian from quantum optics (see, for example, Ref. '[7]). As noted above, it is 
essentially the same interaction used in the g - 2 experiments. Here, I J )  -+ I I') transitions 
are accompanied by In) -+ In - 1) motional mode transitions. When WL = Q + W, (the 
"blue sideband" frequency), HI 21 iqh(i2ei$) o+ai  + h.c., and I 1) -t I T transitions .are J accompanied by In) -+ In + 1) transitions. When WL = q, HI -- h(S2ei )o+ + h.c. and 
I J) -+ I f )  transitions do not change n. These "carrier" transitions are used to perform 
the single spin-qubit rotations. 

Raman transitions 

Some experiments use two ground-state hyperfine levels as qubits. Coherent transi- 
tions between these levels can be implemented with two laser beams that drive coherent 
two-photon stimulated-Raman transitions. For this case, in Eq. (5) ,  k must be replaced 
by the difference Ak = lX1 - z21 between k-vectors for the two Raman beams (again as- 
sumed to be parallel to ?), WL and @ are replaced by ol - C& and - &, the frequency 
difference and phase difference between the laser beams at the mean position of the ion, 
and Rei@ is replaced by the resonant two-photon Raman Rabi rate 

In this expression, the subscripts denote the two laser beams, li) are the (virtual, elec- 
tronically excited) intermediate states of the Raman process, and Ai are the detunings 
of the Raman beams as indicated in Fig. 2. We have assumed Ai >> yj:, where yj: are the 
decay rates from the intermediate states. With these substitutions, Eq. (5) applies in the 
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l i') 1 - - - - - -  
I ~ i '  1 

FIGURE 2. Schematic representation 'of relevant energy levels for stimulated-Raman transitions (not 
to scale). Shown are two ground-state hyperfine levels ( I  J) and I T)) for one ion, two (of possibly 
many) excited levels (li) and lit)), and the harmonic oscillator levels for one mode of motion. Qpically, 

<< @ << Ai,Ail, OF << Ooprr where o,~, is an optical frequency. 

Lamb-Dicke limit, where the Lamb-Dicke parameter is now given by 77 = Mzo << 1. 
For brevity, we will specialize to the stimulated-Raman transition case in what follows.' 

When the difference'frequency of the Raman beams is tuned to resonance with the 
red or blue sidebands or carrier, the interaction leads to the coherent evolution 

and 
I T )  In) + -ie-jrn ~in(Q,,~lt)  1 1)  In) + cos(Q, i t )  I T) In'). (8) 

%%en n' = n  41 1 (blue or red sidebands), %,,I = q ~ ( n , ) ' / ~ ,  where n, is the of 
n  or n'. In Fig. 2, we show a red sideband transition for n  = 1. When the duration of this 
operation is adjusted to give a x pulse, the mapping from the spin qubit to motion qubit 
required in the Cirac/Zoller scheme ( a  1 1)  + P I T ) )  10) + I 1) (aJO) + P 11)) is executed. 

In principle, we could drive hyperfine carrier and sideband transitions with single photons at frequencies 
oo and o& k y. However, in practice, attainable field gradients appear to be relatively small and the 
resulting small values of 77 would lead to slow sideband transition Rabi rates[& 91. 
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From expressions (7) and (8) the entanglement between the spin and motion is evident 
since the final state cannot in general be factored into the product of spin and motional 
wavefunctions. Carrier transitions can also be described by these expressions, where 
n = n' and R,,,r = Q. 

In order to keep the duration of an entangling operation relatively short, a,,,, for 
n # n' cannot be too small relative to fin,,. Therefore q must be chosen large enough 
that our interaction does not rigorously satisfy the Lamb-Dicke criterion and correction 
factors must be added to the expressions for the Rabi frequencies Q,,,I. These correction- 
factors, which can be called Debye-Waller factors [lo], have been observed by Meekhof 
et al. [ l  11 and also form the basis for a controlled-not (CNOT) gate between motion and 
spin discussed below. 

State initialization and detection 

To initialize the qubits for each experiment, we use a combination of internal-state 
optical pumping (to pump to the I L )  state) and sideband laser cooling to optically pump 
the motional modes to their ground states [6, 12, 13, 141. As in many atomic physics 
experiments, the observable in the ion-trap experiments is the ion's spin qubit state. We 
can efficiently distinguish ( 1) from I T) using a cycling transition to implement "electron- 
shelving" [15, 161 detection. 

GATES 

Equations (7) and (8) illustrate a basic source ofdentanglement in ion experiments from 
which universal logic gates have been constructed. For example, a CNOT and x-phase 
gate between the motion and spin qubit for a single ion have been demonstrated [lo, 171. 
Also, using the scheme suggested by Sgrensen and Mglmer [18, 191 and Solano et al. 
[20], a universal gate between.two spin qubits has been realized [21;22]. Here, another 
example of trapped-ion quantum gate is described. 

Controlled-NOT " wave-packet" gate 

Recently, a new kind of CNOT gate between the motion qubit (control bit) and spin 
qubit (target bit) that was proposed in Ref. [23] has been realized experimentally [24]. 
A CNOT gate toggles or leaves unaltered the state of the target bit depending on the 
state of the control bit. This gate described here uses carrier transitions and relies on 
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Debye-Waller correction factors [lo] to provide the conditional dynamics for the gate. 
Including these correction factors, the carrier Rabi frequencies now depend on n: 

where L,,, (X) is the Laguerre polynomial of order n. For the lowest three values of n, we 
have 

L , ( ~ ~ )  = 1, L~ ( ~ 2 )  = 1 - q2,  L~ = 1 - 2 ~ 2  + q4/2. (10) 

The spin (target) qubit was formed from the 2s 'sII2, 1 F = 2,mF = -2) = 1 1) and 
IF = 1, r n ~  = - 1) - I T)  ground state hyperfine levels in ' ~ e + .  For the motional (control) 
qubit states we chose the In = 0) and In = 2) Fock states of the axial ( z )  motion of the ion 
in a linear Paul trap [25]. Therefore the four basis states for the spin and motion qubit 
were 1 1) 10); 1 1) 12), 1 T )  lo), and I T) 12). TO construct the CNOT gate we chose q2 = 0.129, 
corresponding to q / 2 x  = 3.51 MHz. This gave Q0,0/Q2,2 = 413. By choosing the 
interaction time such that Qo,ot = 2x, we realize the transformations 1 1) 10) -+ 1 1) lo), 
1T)lO) + IT)lO), 11)12) + iJT)12), and 1T)12) + ilJ,)12). Up to phase factors that can be 
corrected by single-ion qubit rotations (or accounted for in software2), this gate is the 
CNOT gate. The gate operation is depicted schematically in Fig. 3. 

This gate, when acting on eigenstates (as shown in the figure) acts like a classical 
gate. However it can also act on superposition states [24] (decidedly nonclassical), which 
leads to entanglement. Compared to the previously realized CNOT gate between motion 
and spin [17] this gate has the advantages that (1) it requires only one step instead of 
three, (2) it does not require an auxiliary internal state, and (3) it is immune to Stark 
shifts caused by coupling to "spectator" states [24] (here, two-photon Stark shifts from 
coupling to non-resonant sideband transitions). This gate is fundamentally different from 
previously demonstrated gates in that it relies on the wave-packet nature of the ions. To 
obtain the correct interaction with the laser, we must average the laser field over the 
extent of the ion's wave packet (giving the Debye-Waller factors) rather than assuming 
it is a point particle. 

TOWAIPDS LARGE-SCALE QUANTUM COMPUTATION 

Although simple logic operations among a few ion qubits have been demonstrated, a 
viable quantum computer must include a way to scale to very large numbers of qubits 

The transformation looks like the desired CNOT operation followed by a n/2 phase shift (i = einI2 1 on 
the 12) state of the motion qubit. This phase shift can be removed by shifting the phase of the relevant 
laser oscillator for the next operation on the motion qubit. 
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1.25 GHz 

t3.4 MHz 

FIGURE 3. Schematic of the trapped ion levels and CNOT gate operation. Shown here are the trapped 
ion motional levels (separated in energy by h x 3.4 MHz, where h is Planck's constant) and internal spin 
states I T )  and IJ). The motional states act as the control qubit and the internal states as the target qubit 
for the gate. The control qubit is composed of the ground and second excited motional states (n = 0,2) 
along the trap axis. The CNOT gate is operated by driving the carrier transition, which couples spin states 
with the same n. The laser-atom interaction is tuned so that an ion in the 10) state returns to its initial spin 
state while an ion in the (2) state toggles its spin state when the gate is driven. In the figure, filled circles 
represent two possible input ion eigenstates and open circles show the corresponding output state after the 
CNOT gate is applied. 

and operations. As the number of ion qubits in a trap increases, several difficulties are 
encountered. For example, the addition of each ion adds three vibrational modes. It soon 
becomes nearly impossible to spectrally isolate the desired vibrational mode unless the 
speed of operations is slowed to an undesirable level [lo, 261. Furthermore, since error 
correction will most likely be incorporated into any large processor, it will be desirable 
to measure and reset ancillary qubits without disturbing the coherence of logical qubits. 
Since ion qubits are typically measured by means'of state-dependent laser scattering, the 
scattered light from ancillary qubits held in a common trap may disturb the coherence 
of the logical qubits. 

For these and other reasons, it appears that a scalable ion-trap quantum computer 
system must incorporate arrays of interconnected traps, each holding a relatively small 
number of ions. The information carriers between traps might be photons [27, 28, 291, 
or ions that are moved between traps in the array. In the latter case, a "head" ion held in a 
movable trap could carry the information by moving from site-to-site as in the proposal 
of Ref. [30]. Similarly, as has been proposed at NIST, we could shuttle ions around in 
an array of interconnected traps [lo, 311. In this last scheme, the idea is to transfer ions 
between nodes in the array by applying time-dependent potentials to "control" electrode 
segments. To perform logic operations between selected ions, these ions are transferred 
into an "accumulator" trap. Before the gate operation is performed, it may be necessary 
to re-cool the ions without disturbing their internal states. This could be accomplished 
by sympathetically cooling the qubit ions with another ion species [lo]. Subsequently, 
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these ions are moved to memory locations or other accumulators. This strategy always 
maintains a relatively small number of motional modes that must be considered and 
minimizes the problems of ion~laser-beam addressing using focused laser beams. Such 
arrays also enable highly parallel processing and readout of ancillary qubits in separate 
trapping regions so that the logical ions are shielded from the scattered laser light. Some - 
initial steps towards this scheme have been reported in Ref. [32]. 

FUNDAMENTAL TESTS, QUANTUM MEASUREMENT 
APPLICATIONS 

The ability to coherently manipulate entangled quantum states, at least on a small scale, 
has enabled some demonstrations and tests of quantum mechanical principles that would 
have otherwise remained as gedanken experiments. For trapped ions, nonclassical mo- 
tional states have been engineered by use of the basic elements of quantum computation 
[6, 111 and their properties determined through tomographic methods [33]. Schrodinger- 
cat states have been generated [34] and the scaling of their decoherence based on the size 
of the cat state has been verified [35,36]. A scheme for generation of arbitrary motional 
states has recently been demonstrated on a single ion [37]. Entanglement of two and 
four separate ions has been generated deterministically ("on demand") [21, 381 with- 
out the need for post-selection, as in experiments using parametric down-conversion 
of photons. This enabled the first experiment showing a violation of Bell's inequalities 
(on massive particles) while defeating the "detection loophole" [39]. Treated as a small 
quantum processor, the trapped ion system can simulate the dynamics of other systems 
such as nonlinear optical beam splitter's [40]. An exciting possibility is that these studies 
might eventually uncover some as-yet-unseen fundamental source of decoherence (see, 
for example, Ref. [41]). 

One goal of the NIST experiments has been to use entanglement ("spin-squeezing") 
to increase the signal-to-noise ratio in spectroscopy and atomic clocks [8, 421. An 
experiment on two ions has recently shown such squeezing [43] and, although not yet of 
practical use, the squeezing that was obtained led to a signal-to-noise ratio higher than. 

'could possibly be attained without entanglement on the same number of ions. Simple 
quantum processing might also be used to aid in quantum measurement readout with 
potential applications to mass spectroscopy [#I and frequency standards [45]. 



136 An Isolated Atomic Particle 

,. . ACKNOWLEDGEMENTS 
,(,. 

The NIST work discussed in this paper resulted from the efforts of many colleagues. 
Recent work is beear; carried out in collaboration with NIST staff members Dietrich 
Leibfried and Wayne Itano, postdoctoral research associates Brian DeMarco, Volker 
Meyer, Mary Rowe, Murray Barrett, Tobias Schatz, and John Chiaverini; guest re- 
searchers Arnit Ben-Kish and Brana Jelenkovii; and University of Colorado graduate 
students Joe Britton, Chris Langer, Till Rosenband, and John Jost. The author thanks - 
Brian DeMarco and Tobias Schatz for helpful comments on the manuscript. This work 
was supported by the U. S. National Security Agency (NSA) and Advanced Research 
and Development Activity (ARDA) under Contract No. MOD-7171.00, and the U. S. 
Office of Naval Research (ONR). The article is a contribution of NIST, an agency of the 
U.S. government, and not subject to U.S. copyright. 

REFERENCES 

H. Dehmelt, Science 247,539 (1990). 
J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74,4091 (1995). 
D. P. DiVincenzo, Phys. Rev. A 51,1015 (1995). 
A. Barenco et ad., Phys. Rev. A 52,3457 (1995). 
D. P. DiVincenzo, in Scalable Quantum Computers, edited by S. L. Braunstein and H. K. Lo (Wiley- 
VCH, Berlin, 2001), pp. 1-13. 
C. Roos et ad., Phys. Rev. Lett. 83,4713 (1999). 
J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,565 (2001). 
D. J. Wineland et al., Phys. Rev. A 46, R6797 (1992). 
F. Mintert and C. Wunderlich, Phys. Rev. Lett. 87,257904 (2001). 
D. J. Wineland et al., J. Res. Nat. Inst. Stand. Tech. 103,259 (1998). 
D. M. Meekhof et al., Phys. Rev, Lett. 76,1796 (1996). 
F. Diedrich et al., Phys. Rev. Lett. 62,403 (1989). 
C. Monroe et al., Phys. Rev. Lett. 75, (1995). 
C. F. Roos et al., Phys. Rev. Lett. 85,5547 (2000). 
H. Dehmelt, Ann. Phys. Fr. 10,777 (1985). 
R. Blatt and P. Zoller, Eur. J. Phys. 9,250 (1988). 
C. Monroe et al., Phys. Rev. Lett. 75,4714 (1995). 
A. Sorensen and K. Molmer, Phys. Rev. Lett. 82, 1971 (1999). 
A. Sorensen and K. Molmer, Phys. Rev. A 62,02231 (2000). 
E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59,2539 (1999). 
C. A. Sackett et al., Nature 404, 256 (2000). 
D. Kielpinski et al., Science 291, 1013 (2001). 
C. Monroe et al., Phys. Rev. A 55, R2489 (1997). 
B. DeMarco et al., quant-phl0208180, Phys. Rev. Lett., to be published . 
C. Sackett, Quant. Inform. Comp. 1,57 (2001). 
A. M. Steane and D. M. Lucas, in Scalable Quantum Computers, edited by S. L. Braunstein, H. K. 
Lo, and P. Kok (Wiley-VCH, Berlin, 2000), pp. 69-88. 



Trapped-ion quantum information processing 137 

27. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78,3221 (1997). 
28. T. Pellizzari, Phys. Rev. Lett. 79, 5242 (1997). 
29. R. G. DeVoe, Phys. Rev. A 58,910 (1998). 
30. J. I. Cirac and P. Zoller, Nature 404, 579 (2000). 
31. D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417,709 (2002). 
32. M. A. Rowe et al., Quant. Inform. Comp. 2,257 (2002). 
33. D. Leibfried et al., Phys. Rev. Lett. 77,4281 (1996). 
34. C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996). 
35. C. J. Myatt et al., Nature 403, 269 (2000). 
36. Q. A. Turchette et al., Phys. Rev. A 62,053807 (2000). I 

37. A. Ben-Kish et al., quant-ph/0208181, Phys. Rev. Lett., to be published . 
38. Q. A. Turchette et al., Phys. Rev. Lett. 81, 1525 (1998). 
39. M. A. Rowe et al., Nature 409,791 (2001). 
40. D. Leibfried et al., Phys. Rev. Lett. 89, 247901 (2002). 
41. A. J. Leggett, Physics World 12,73 (1999). 
42. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). 
43. V. Meyer et al., Phys. Rev. Lett. 86,5870 (2001). 
44. D. J. Heinzen and D. J. Wineland, Phys. Rev. A 42,2977 (1990). 
45. D. J. Wineland et al., in Proc. 6th Symposium Frequency Standards and Metrology, edited by P. Gill 

(World Scientific, Singapore, 2002), pp. 361-368. / 


