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A General Mechanical Model for Ifl“ Spectral 
Density Random Noise with Special 

Reference to Flicker Noise l/lfl 
DONALD 

A bstract-Any class of reasonable timedependent perturbations occur- 
ring at random, under certain internal constraints, generates random noise 
having a spectral density varying as  PI“ over M arbitrarily large range of 
spectral frequencyfonly for - 2 I a 10. A class is the set of all perturbations 
which are equivalent under some individual independent scaling of amplitude, 
s c a l y  of time, and t r w l a t i m  of time. A subclass is characterized by p(r) 
and A (r). P(7) is the lifetime probability density. A’(?) is a mean square 
amplitude of perturbations having lifetime 5. For a given class, If 1’ and 
If\“ are the frequency-smoothed laws in the limits of infinite and zero fre- 
quencies, respectively. Any reasonable perturbation has a, 5 - 2 and a. 2 0 .  
To generate random noise having an If 1. law over an arbitrarily large range 
off from a subclass chosen from any class characterized by a, and ao, it is 
necessary that a, 1 a I ao. For a ,  <a  < ao, it is necessary and sdlicient 
that such subclasses satisfy the condition, P ( T ) A ’ ( T ) ~ B ~ - ‘ - ~  with B con- 
stant, over a suitable range of r, and that P(r)AZ(r) not be larger than 

outside the range. This general mechanical model is of immediate Br-“ -3  

value in the formulation and criticism of specific physical models of )fp 
noise, including flicker noise, and in computer simulation of If J“ noise. 

I. INTRODUCTION 
A .  The Importance of Flicker Noise in Precise Experiments 

N THE DESIGN of a precision measurement or of a 
standard for measurement, one of the aims is to mini- I mize the random noise of the system. It is often found 

that the random fluctuations are dominated by the lowest 
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frequency portion of the noise modulation spectrum. The 
spectral density of this noise is observed to increase without 
limit as its frequency decreases. A typical behavior is as 
Ma, with constant and equal to - 1.0, but c( varies from 
system to system, and it is not always constant; values of 
-0.8 to - 1.3 are common. In many cases this behavior is 
found to hold over many decades of In 
this paper the term “flicker noise” will be used in a strict 
sense for the prototype law I f  1 -  ’ and in a loose sense for 
the general behavior described above. When it was dis- 
covered in vacuum  tube^[^^.['^' this curious phenomenon 
was called “flicker effect.” Different names found in the 
literature for similar spectral behavior in other devices are 
“ l/f noise,” “excess noise,” “semiconductor noise,” “low- 
frequency noise,” “contact noise,” and “pink noise.” 

A measurement with results which are limited by random 
noise with an PI-’ law has a fixed precision which cannot 
be improved by increasing the length of each In 
contrast, for a measurement limited by white noise (spectral 
density law offo) any desired precision may be attained by 
increasing the duration z, of the experiments; the improve- 
ment accrues as &, as, for example, when thermal agita- 
tion is the limiting noise. The spot noise factor[’31 of a device 
displaying flicker noise is necessarily appreciably greater 
than unity below some particular modulation frequency 
and becomes progressively worse toward lower frequencies. 

For an example, consider the stability of quartz crystal 
oscillators, which are widely used as secondary frequency 
standards. Even the best quartz crystal oscillators are 
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limited by their3ick&qpYSeguenc\%luctuations to have an 
imprecision of4bout ~ t p i r r 1 0 ~ ~  or ~ o r s e . [ ' ~ ~ - [ ' ~ ~  
No improvement beymume t h ' m a r t s  in 1013 is possible 
by utilizing longer averaging times. If it were not for the 
flicker noise, the precision of ten-second-interval measure- 
ments of frequency would be better than one part in 
Such precision is needed by the author in a slave oscillator 
to be used with the atomic hydrogen maser frequency stan- 
dard. 

Flicker noise is ubiquitous. It is found not only in quartz 
crystal oscillators, but also in such things as vacuum tubes, 
field effect and bipolar transistors, semiconductor diodes, 
resistors, thermistors, carbon microphones, thin films, and 
light sources.~'1-[91,[''1,['41 The fluctuations of a membrane 
potential in a biological system have recently been reported 
to have a flicker noise s p e c t r ~ m . [ ' ~ ~ * [ ~ ~ ~  No electronic low- 
frequency amplifier has been found to be free of flicker 
noise. Yet in most devices its cause is not understood. It 
may be presumed that if the cause were understood, then 
the flicker noise could be reduced. It is hoped that the model 
presented here will help in the understanding and ultimate 
control of flicker noise. 

Although the case of a x  - 1 is common, there are some 
interesting processes found in nature where a is much more 
negative than - 1. For example, the fluctuations of the 
frequency of rotation of the earth["] are described by 
a x - 2, and the power spectral density of galactic radiation 
noise[221 is described by a x - 2.7. The consequences of the 
low-frequency divergence of fluctuation amplitude when 
a I - 1 are often not easily comprehended by someone 
accustomed only to white noise spectral density. The me- 
chanical model presented here can help one comprehend the 
divergence and its consequences. The model is applicable 
to the noise law Ifp for any value of a. 

B. The Problem of Generating I f  Noise 
Since flicker noise or other low-frequency divergent noise 

is often encountered in measurements, it is useful to be 
able to fashion models which can generate noise having 
the appropriate spectral density. The models should be 
physically plausible, and preferably they should be chosen 
to correspond as closely as possible to the physical process 
being measured. This paper describes a rather general model 
which can generate noise with a spectral density of Flu, 
any a, for a very broad range of physically plausible pro- 
cesses. 

We consider a system in which some process of interest 
is occurring, and in which the process is suffering many 
time-dependent perturbations in a random manner due to 
some unspecified agent or agents. The uniform portion of 
the process constitutes a signal, and the random fluctuations 
are the associated noise. We wish to answer at least two 
questions. 

Can such a superposition of time-dependent perturba- 
tions of a specified shape, occurring at random, give 
rise to an Ifp dependence of the noise spectral density 
with a constant over an arbitrarily large range of 
spectral frequency, f ?  

2) What conditions must be satisfied to obtain the 
law mu? 

To answer these questions, the discussion needs to be 
concerned only with the mathematical description of the 
time-dependent perturbations. Hence there is no reference 
to specific physical models. To avoid the possibility of the 
model thereby synthesized being nonphysical in principle, 
some constraints are imposed, e.g., certain infinities are 
excluded from consideration. We use the term mechanical 
model for a model which is physical in principle, although 
not necessarily encountered in reality. 

11. SYNTHESIS OF A MECHANICAL MODEL OF Ifla NOISE 

A .  Definitions 

Let H be the representation in the time domain (t) of a 
perturbation of the class S. The representation H(a, z) has 
lifetime z and squared amplitude a2. These quantities will 
be defined in this part of Section 11. A class is the set of all 
perturbations which are equivalent under some individual 
independent scaling of amplitude a, scaling of time t, and 
translation of time. Special consideration is given to 
reasonable perturbations. By definition a reasonable per- 
turbation 1) is everywhere finite, 2) has a finite time integral, 
3) has finite, nonzero energy, 4) has finite, nonzero lifetime, 
and 5) is a real function of time t .  These may be stated 
symbolically, as follows. 

- 00 < H < co, all t ,  (la) 

(1b) 

(IC) 

O < z < C O ,  (14  

H = H *  complex conjugate of H. (le) 

- 00 < J-+: H d t  < co, 

0 < s_i"H2dt < 00, 

and 

Throughout the following, the time t need not appear 
explicitly as an argument of H ,  and it will not be shown. 
Under scaling of amplitude, the representation has the 
property 

(2) 

Let F(w, z) denote the Fourier transform[231 of a-  ' H ( a ,  z), 

~ ( w ,  z) = a-l H(a, z)e-&'dt = F*(-w,  z), (3) 

(4) 

where f is cyclic frequency. Under scaling of frequency 
and time, the Fourier transform has the property 

a,H(a, z) = aH(a,, z). 

J-+: 
0 = 2 n f ,  

T O F ( 0 ,  z) = zF(wz/z,, 7,). ( 5 )  
The energy q of a perturbation is defined as 

+a, 

q(a, 7) = H2(a, z)dt = a ' s a ,  IF(w, z)12df. (6) J-+: 
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Under scaling, q has the property 

a;zoq(a, z) = a2zoq(ao, z) = a2zq(ao, T o ) .  

s - lI(2nr) 2 - m  

(7) 
The lifetime z of a perturbation is defined implicitly by 

(8) 

This definition of z is chosen so that lolm=2n1fIm=z-',  
where If I,,, is the median absolute frequency of the energy 
distribution. The utility of this definition may be seen later 
(in Section 11-B-C) when we consider the frequency range 
over which a particular noise law is valid. 

+ 1/(2nr)  . + m  

IF(o, z)12df = As IF(o, z)12df. 

The square of the amplitude is defined as 

I I I I 

Exponential Decay 
- 

0 - 1  ---+ 
I , I I 1 

(9) 
5 

For simplicity we set a i  and zo equal to unity. Hence 
q(ao, zo) equals unity, and we note 

q(a, z) = a%, (10) 

(1 1) 

Suppose a process is perturbed by a large number of time- 
dependent perturbations which form a subclass of the 
class &'. We define A2(z)  as the mean square amplitude of 
perturbations in the subclass having the same lifetime z, and 
we define P(z )  as the normalized probability of occurrence 
in the subclass of perturbations of lifetime z. We further 
suppose the perturbations occur randomly (as a Poisson 
process) with the finite average total rate of R perturbations 
per unit interval of time. Hence the rate at which perturba- 
tions of lifetime z occur is given by the product RP(z). 

The definitions given above establish a mathematical 
description of a general mechanical model for the genera- 
tion of random noise. Using these concepts in the situation 
described in the preceding paragraph, the equation for the 
two-sided spectral density S ( f )  of the noise is defined as 

IF(x, z0)l2dx = 2 7 1 ~ ~  = 271. s-+: 

S ( f )  = R P(z)A2(z)l F ( o ,  z)lzdz. (12) so+ 
This definition of the spectral density is consistent with that 
of Blackman and T ~ k e y . [ ~ ~ ]  The dimensionality of S ( f )  is 
the same as the dimensionality of the ratio H 2 / , f .  For pure 
real perturbations, Sy) is symmetrical about zero fre- 
quency. 

Appendix I illustrates by mathematical example some of 
the above concepts. Fig. 1 shows two members of the specific 
class of reasonable perturbations discussed in Appendix I. 
Fig. 2 shows the corresponding squared Fourier transforms. 

B. Generation of Flicker Noise, a= - 1 

Equation (12) for the spectral density is put in the form 

NOISE 253 

\I 
Iq;-4 10-2 ' I ' I  ' 102 1 ' IO' ' 

I W I  
Fig. 2. The square of the normalized Fourier transform of the two 

reasonable perturbations of Fig. 1 are plotted against o (frequency 
domain). See Appendix I .  

The dependence on z of P(z)A2(z)  is expressed as 

P(z)A2(z) z B z - 6 - 3 .  (14) 
In general, B and 6 may be functions of z, but our interest 
will focus on those situations in which B and 6 are indepen- 
dent of z over some finite range. Consider the case where, in 
the range E S Z S ~ ,  E>O.  

6 =  - 1 ,  
B = constant, 

P(z)A2(o) z BzY2, 
and P ( C ) A ~ ( ~ ) I B ~ - ~  for z outside of the range E to (. For 
the spectral range l-  ' << 1 0 1  <<E- ', 

Hence, 

S ( f )  Z 3RBlfl-l = +RP(l)A2(1)lf l - ' ,  (17) 
for frequencies in the arbitrarily large but finite range 

This result shows that a spectral density law of 1fI- l  can 
be obtained over an arbitrarily large frequency range from 
a subclass chosen from any class of reasonable perturbations. 
The suficient condition is that such subclass have the 

(2710- ' << I f 1  <<(2ne)-'. 
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property P(z)A'(z)z  (const.)zC2 within a suitable range of 
z, with P(z)AZ(z)l(const.)z-2 outside that range. It will 
be concluded in Section 111 that this is also the necessary 
condition for obtaining the If I - ' noise law from a subclass 
chosen from any class of reasonable perturbations. 

C. Extension to If 1' Noise, Any a 
In the case of general a the starting point is (12), which is 

exact. Some approximations follow. Possibly the approxi- 
mations are more crude than is necessary, but the author 
believes that they introduce no error into the conclusions. 
It is hoped that the simplicity of the treatment allows each 
conclusion and its significance to be quickly understood. 

Let G be a frequency-smoothed representation of the 
magnitude squared of the Fourier transform of a time- 
dependent perturbation. Consider the behavior of G at very 
high and at very low frequencies, and express it as 

lim G = (const.)[ f l a m ,  
lim G = (const.')/ f Iao. 

(18) 

(19) 
I f l b m  

I f l + O  

All perturbations of the same class have the same a, and 
the same a,. For perturbations of finite, nonzero energy q, 

a, < -1, (204 
a, > -1. (20b) 

It has been pointed out by van der Zie1[241 that these in- 
equalities apply to the net noise spectral density for any 
physical process having a bounded continuous autocovari- 
ance function. However, for any process suffering from 
reasonable perturbations, the exponents must satisfy the 
stronger constraints 

a, I -2, (2 1 a) 
a, 2 0. (21b) 

Appendix I1 has a brief discussion of a, and a,, and it in- 
cludes a demonstration of the above constraints. 

Consider all subclasses of reasonable perturbations for 
which a, and a, are the limiting exponents as defined above. 
The noise spectral density of each is given by (12). We make 
a substitution using (14), 

P(r)A2(z) z B T - * - ~ ,  

and further limit the consideration to all such subclasses 
for which B and 6 are approximately independent of T over 
the finite range E I z I c, E >O, with the additional constraint 
that P ( T ) A ~ ( ~ ) < B ~ - ' - ~  for all z outside the range E to c. 
For the range 

c-' << 10) << &C1, (22) 

rlolK 

The definite integral in (24) has the following properties 

J l w b  

where C,  C', and C" are constants, independent of o. Hence 
the frequency dependence of the noise spectral density is 

(const.)(f(ao, for 6 > a,; (26a) 

(const.")l f lam, for 6 < a,. (264 

S( f )  (const.')[ f I d ,  for a, < 6 < a,; (26b) 

Equations (25a<) are obtained in Appendix 111, where it 
is also shown that 

Hence, for a, < 6 < a,, the two-sided noise spectral density is 

Note that for the case of S= - 1, (28) is the same result as 

Equations (26a-c) give the interesting result that, for any 
smooth distribution of lifetimes of the perturbations, the 
exponent a of the frequency dependence of the noise spectral 
density cannot lie outside of the interval a, to a, over an 
arbitrarily large range of frequency for all subclasses char- 
acterized by a, and a,. Equation (26b) shows that under 
certain conditions, which are of interest, the exponent a 
is equal to 6. 

111. RESULTS 
We have found some interesting and useful answers to our 

questions. The concepts a, and a, are important when 
considering the general problem of creating noise with 
Ifl" spectral density. Not all classes of reasonable perturba- 
tions characterized by a, and a, can generate pp noise over 
an arbitrarily large range off unless there is a sufficiently 
broad, smooth distribution of lifetimes in the chosen sub- 
classes. An arbitrarily smooth distribution which is arbi- 
trarily broad gives rise to an arbitrarily smooth spectrum 
in which local peaks and valleys no longer exist even though 
they may be present in the individual luF(o, z)1' spectra 
which make up the superposition. In such a superposition, 
at sufficiently high frequencies the spectrum varies as maw, 
and at sufficiently low frequencies the spectrum varies as 
Hao. For any arbitrarily large range of intermediate fre- 
quencies, as the operative value of 6 is varied over its domain 
from an arbitrarily small value to an arbitrarily large value, 
the only values of a which arise from such distributions lie 
in the interval a ,<aIa , .  For the interval a,<a<a,, 
a and 6 have the one-to-one correspondence a = 6. 

Some conclusions are summarized in the following state- 
ments. 

1) To generate random noise having an Ma spectral den- 
sity over an arbitrarily large range off from a subclass of 
reasonable perturbations occurring at random, chosen from 

(17). 
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any class characterized by a, and ao, it is necessary that 
a,Ia<ao. 

2) To generate random noise having an 11" spectral 
density over the arbitrarily large range 

(29) 
from a subclass of reasonable perturbations occurring at 
random, chosen from any class characterized by a, and 
ao, for a in the more restricted interval am<a<ao, it is 
necessary and suficient that such subclass satisfy the condi- 
tion 

(2n[)-I << I f 1  << (2ne)-' 

P(z)A2(z) z Bz-a -3 ,  (30) 
with B constant, over the range E I z I [, and that P(z)A2(z) 
5 Bz-'-~ for z outside the range E to [. 

3) Any reasonable perturbation has a, 2 - 2 and a. 2 0. 
At least one class of reasonable perturbations exists which 
has a,= -2 and ao=O (see Appendix I). Indeed, an un- 
limited number of such classes exist. 
4) It follows from statements l), 2), and 3) that the only 

values of a for which ( f l "  noise, over an arbitrarily large 
range o f f ,  can be generated by a subclass chosen from any 
class of reasonable perturbations are in the interval - 2 I a 
5 0. This interval of a is centered on the flicker law, a = - 1. 

5 )  For the smoothed random noise spectral density due to 
a subclass of reasonable perturbations occurring at random, 
chosen from any class characterized by a, and ao, the law 
I f  l a m >  holds at sufficiently high frequencies. The law I f  l a m  
also holds for the spectral density in the frequency range 
(2n[)-'<<lf(<<(2n~)-~ if, for E < Z I [ ,  

P(z)AZ(z) z B z - 6 - 3 ,  

6 < a m ,  

B = constant, 

and also if, for z < E, P(z)A2(z) I Bz-'=i- '. Similarly, for such 
a subclass, the smoothed law holds at sufficiently low 
frequencies. The law /f lu" also holds for the spectral density 
in the frequency range (2n[)-'<< I f 1  <<(2ne)-' if, for 
E l Z I i ,  

P(z)AZ(z) z B z - 6 - 3 ,  

6 > a,, 

B = constant, 

and also if, for z > c, P(z)A2(z)<  BzPao-  '. 
It is helpful to chart the logarithm of the spectral density 

versus the logarithm of the frequency when considering 
the above results. 

IV. DISCUSSION 
This general method of generating an PI" spectral density 

gives special attention to the factor P(z )A2(z )  of (12). A 
second method exists, in which the special attention is 
given instead to the shape of each of the time-dependent 
 perturbation^.[^^^^^^^] This second method is severely re- 
stricted in its choice of classes of perturbations which can 
generate pp noise for any specific value of a. In this second 
method, a physical explanation of a flicker noise spectrum 

extending over more t..an a couple of decades of frequency 
requires postulating the existence of specially shaped, time- 
dependent perturbations which are rarely, or never, found. 
On the other hand, the random perturbations found to be 
affecting physical processes often do have broad distribu- 
tions of their lifetime square-amplitude product, one of the 
necessary conditions for the proper application of the first 
method. The diffusion process is a prime example of a 
physical process which gives rise to broad distributions of 
 lifetime^.[^^^-['^] The first person to point out that a dis- 
tribution of z might be important appears to have been 
B e r n a m ~ n t ~ ~ ~ ]  in 1937. Since then, many investigators have 
invoked particular distributions of z in attempts to explain 

The effects of noise on the action of an instrument can be 
simulated on a computer. With this general mechanical 
model, noise spectral density of any desired law, or combi- 
nation of laws, can be accurately and efficiently generated 
by a simple computer program.['*] This mechanical model, 
besides being general, is more efficient than a mathematical 
model proposed recently by Barnes and AllanrZ6] for simu- 
lating flicker noise with a computer. 

The model as presented deals with certain portions of the 
total spectrum. To give an approximate description of the 
entire spectral domain, the model can be applied succes- 
sively to each portion of the spectrum and to each operative 
class, as necessary. 

It is apparent that the experimental observation, per se, 
of a noise law of lfp, - 2 I a I 0, gives no information con- 
cerning the identity of the class (or classes) of reasonable 
perturbations which is operative. The corresponding state- 
ment is not true for other values of a, and the further from 
this range is the observed a, the more restricted is the set of 
classes of reasonable perturbations which might be opera- 
tive. 

From a physical viewpoint, the restrictions which have 
been placed on reasonable perturbations are not severe. 
Many random noise processes of physical importance may 
be represented by reasonable perturbations, and to them 
the results of this paper are applicable without modifica- 
tion. In some cases it is helpful to consider a time derivative 
or a running time integral of a process, instead of the process 
itself, if the perturbations involved are thereby converted 
into reasonable perturbations. The present results are also 
applicable to many random physical processes where each 
member of the ensemble of perturbing agents is most con- 
veniently regarded as being of infinite liefetime,[31 provided 
that the principle of ergodicity can be used. 

The present results are of immediate value in allowing 
one to evaluate and criticize proposed physical models of 
pp noise. The present results also can give insight into the 
problem of devising models which may explain noise spectra 
observed in specific physical situations. For example, a new 
mechanism, hypothetical and untested but physically 
plausible, for the flicker of frequency of quartz crystals 
has been devised.r391 It is emphasized that, to develop a 
physical model for flicker noise, the crucial problem is to 
find the physical circumstances which cause the product 

flicker noise. (1 1 - [3 l  .t241 7 1 .I301 - t321 .t341- I 3  7 1 
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P(z)A2(z)  to vary approximately as z - a - 3 ;  the shape or 
class of the perturbation is probably irrelevant. That it is 
the product P(z)AZ(z)  which is the pertinent factor seems not 
to have been appreciated in previous discussions of flicker 
noise.I'l- I ~ l . I ~ ~ I ~ I ~ ~ 1 ~ I ~ ~ l ~ I 3 3 1 -  I 371  

APPENDIX 1 
An example of a specific class will help to clarify the H 

representation and some of the concepts associated with it. 
Consider the class of all perturbations each of which is 
represented in the time domain by a step change followed 
by exponential decay back to the origin (see Figs. 1 and 2). 

H(a, t) = 0, ti:  T.  

This requires the frequency-smoothed behavior, (19), which 
defines ao, to have the constraint 

lim G tim (const.)(f(Q~) < a. (32) 
f + O  f - 0  

Hence, cto 2 0  for reasonable perturbations. 
It follows from the square-integrability of reasonable 

perturbations (IC) that a, must be less than - 1  for all 
classes, while Appendix 1 shows that a, equals -2 for at 
least one class. We will now show that there are no reason- 
able perturbations with a, greater than - 2. 

By analogy with the Wiener-Khinchin theorem,[401 
IF(w, 1)12 is the Fourier transform of the autocovariance 
function for H(1, 1). If H(1, 1) is a reasonable perturbation, 
then the autocovariance function is everywhere continuous, 
and the first derivative with respect to time of the auto- 
covariance function is everywhere finite. Hence 

Equation (34) must hold for all 'Z, including in the limit as 
T goes to zero. 

We approximate the magnitude squared of the normal- 
ized Fourier transform of a reasonable perturbation with 

IF(x, 1)12 z Klxlao (35) 

for 1x1 I 1, and for 1x1 2 1 we use the approximation 

IF(x, 1)12 z Klxlaq, (36) 
where K is a constant, and O< K < 00. Equations (35) and 
(36) are used in the integral in (34), which is considered in 
three parts, and each part is evaluated in the limit as T 
goes to zero. 

+ (2 + j;xam+' sinxdx)($) a, + 2  I < 00, (38) 

a, + 3 

By (39) we see that a, I - 2 for reasonable perturbations. 

turbation H ,  if and only if 
It is interesting to note that ao=O for a reasonable per- 

J-+:H(u, z)dt # 0, 

a condition which describes a shot noise perturbation, for 
example. For a reasonable perturbation H ,  a, = - 2 if and 
only if H has at least one finite discontinuity. Arbitrarily 
large positive values of a. may be realized by interposing 
an arbitrarily large number of high-pass filters between the 
perturbing agents and the process of interest. Independently, 
arbitrarily large negative values of a, may be realized by 
interposing an arbitrarily large number of low-pass filters 
between the perturbing agents and the process of interest. 

APPENDIX I11 
As in Appendix 11, we approximate the magnitude 

squared of the normalized Fourier transform of a reasonable 
perturbation with 

IF(x, 1)l' z Klxlao (40) 

IF(x, 1)12 z Klxlam. (41) 

for 1x1 < 1, and for 1x1 2 1 we use the approximation 

The common coefficient K is a constant, and it is evaluated 
by equating 

Hence, 

(43) 
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Using (24), with (22) valid, The logarithmic dependence on 1 ~ 1  which appears in (52) 

where 

Using (40) and (41), 

For 6#ao and Gfa,, 

Because we are considering only reasonable perturbations 
for which a, < ao, then, for the range of o given by (22), and 
for a, < 6 <a,, Z(o) can be approximated by 

Similarly, for 6 > a,, 

Similarly, for 6 <a,, 

For 6 =a,, by (46), 

For 6=a,, by (46), 

and (54) is expected. I t  is not a spurious consequence of the 
approximations. 

ACKNOWLEDGMENT 
The author appreciates many discussions with associates 

at the National Bureau of Standards and the encourage- 
ment and invaliiable help of Dr. J. A Barnes. in particular. 

REFERENCES 
[ I 1  A. van der Ziel, Nolsr. Englewood C‘lil%, N. J.: Prentice-1-MI, 1954. 
[’I - , Fluctuation Phenonwnn in Sr,micc~r?ductors. New York : 

Academic Press, 1959. 
1 3 ]  A. L. McWhorter, “ I  // noise and related surface effects in germani- 

um,” M.I.T. Lincoln Lab., Lexington, Mass.. Tech. Rept. 80. May 1955 
(identical to M.I.T. Sc.D. dissertation ot’ same title). See also “Ifnoise and 
germanium surface prqperties,” in Semiconduc/or Surfiice Physics, R. H. 
Kingston, Ed. Philadelphia, Pa. : linivcrsity of Pennsylvania Press, 1957. 
pp. 207--228. 

I41 R. E. Burgess et d . .  Vuhw und (’irc,ui/ N(J~.w. A Survey of Existing 
Knowledge and Outstanding Problems, Radio Research Special Rept. 20. 
London: His Maiestv’s Stationerv Office. 1951. 

1 5 ]  B. G.  Bosih a i d  W. A. Gambling, “Noise in reflex klystrons and 
backward-wave oscillators,” J .  Brit. IRE, vol. 24, pp. 389403, November 
1962. 

[61 S. T. Eng, “A new low I / /  noise mixer diode: Experiments, theory 
and performance,” Soiid-,Ytute Electronics, vol. 8,  pp. 59-77, January 1965. 

[‘I A. H. Hoffait and R. D. Thornton, “Limitations of transistor dc 
amplifiers.” Proc. IEEE, vol. 52, pp. 179-184, February 1964. 

[” H. C. J.  van Burik and A. C. E. Wessels, “Heterodyne spectral 
noiseanalyzer,” Reo. Sci. Instr., vol. 34. pp. 798--8Ol, July 1963. 

1 9 ]  J. B. Johnson, “The Schottky effect in low frequency circuits,” 
Phys. Rev., vol. 26, pp. 71L85. July 1925. 

[ l 0 l  W. Schottky, “Small-shot effect and flicker effect,” Phys. Reo., 
vol. 28, pp. 75-103, July 1926. 

[ “ I  M. P. Klein and G.  W. Barton, Jr., “Enhancement of signal-to- 
noise ratio by continuous averaging: Application to magnetic resonance,” 
Rei:. Sei. Inslr., vol. 34, pp. 754  759, July 1963. 

[ ” I  R. H. Dicke, “The measurement of thermal radiation at micro- 
wave frequencies,” Rw. Sci. Instr., vol. 17, pp. 268-275, July 1946. 

H. A. Haus, chairman, “IRE standards on methods of measuring 
noise in linear twoports, 1959,” Proc. IRE, vol. 48, pp. 60-48, January 
1960: and “Representation of noise in linear twoports,” ihid , pp. 69-74. 

[ I4]  W. R. Attkinson, L. Fey, and J.  Newman, “Spectrum analysis of 
extremely low frequency variations of quartz oscillators.” Proc. IEEE 
(Correspondence), vol. 51, p. 379, February 1963. 

L. S. Cutler and C. L. Searle, “Some aspects of the theory and 
measurement of frequency fluctuations in frequency standards,” Proc. 
IEEE, vol. 54, pp. 136- 154, February 1966. 

[ I6]  J. A. Barnes, “Atomic timekeeping and the statistics of precision 
signal generators,” Proc. IEEE, v d .  54, pp. 207 220. February 1966. 

D. W. Allan. “Statistics of atomic frequency standards,” Proc. 
IEEE, vol. 54, pp. 221-230, February 1966. 

(48) 

(49) 

(50) 

(51) 
‘ I8] J. A. Barnes, private communication. 
r L 9 ]  H. E. Derksen and A. A. Verveen, “Fluctuations of resting neural 

membrane potential,” Science, vol. IS I ,  pp. 1388- 1399, March 18, 1966. 
[’01 H. E. Derksen, “Axon membrane voltage fluctuations,” Actu 

Physiol. Pharmacol. Neerl., vol. 13. pp. 373 466, 1965. 
‘ ” I  D. Brouwer, “A study of the changes in the rate of rotation of the 

earth,” Astron. J . ,  vol. 57, pp. 125-146, September 1952. See also J. A. 
Barnes and D. W. Allan, “An approach to the prediction of coordinated 
universal time,” Frequency, vol. 5 ,  pp. I5S20, November -December 1967. 

i 2 2 1  H. V. Cottony and J. R. Johler, “Cosmic radio noise intensities 
in the VHF band,” Proc. IRE,  vol. 40, pp. 1053-1060, September 1952. 

R. B. Blackman and J. W. Tukey. The Meusurement qf Power 
Spectra. New York: Dover, 1959. 

[241 A. van der Ziel, “On the noise spectra of semi-conductor noise and 
of flicker-effect,” Physicu. vol. 16, pp. 359-372, April 1950. 

H.  Schonfeld, “Beitrag Zuni l/,/lGesetz beim Rauschen von Halb- 
leitern,” Zeit. ,far Nuturfi)rsch., vol. loa. pp. 291-300, April 1955. 

[”I J. A. Barnes and D. W. Allan. “A statistical model of flicker 

(52) 

(53)  

(54) 



258 PROCEEDINGS OF THE IEEE, VOL. 56, NO. 3, MARCH 1968 

noise,” Proc. IEEE, vol. 54, pp. 176178, February 1966. 
[’’I J. M. Richardson, “The linear theory of fluctuations arising from 

diffusional mechanisms-An attempt at a theory of contact noise,” Bell 
Sys. Tech. J . ,  vol. 29, pp. 117-141, January 1950. 

[”I  G. G. MacFarlane, “A theory of contact noise in semiconductors,” 
Proc. Phys. Soc. (London), vol. 63B, pp. 807-814, October 1950. 

1291 R. E. Burgess, “Contact noise in semiconductors,” Proc. Phys. 
Soc. (London), vol. 66B, pp. 334-335, April 1953. 

[301 K. M. van Vliet and A. van der Ziel, “On the noise generated by 
diffusion mechanisms,” Physica, vol. 24, pp. 415421, 1958. 

1311 M. Lax and P. Mengert, “Influence of trapping, diffusion and 
recombination on carrier concentration fluctuations,” J .  Phys. Chem. 
Solids, vol. 14, pp. 248-267, July 1960. 

[321 K. M. van Vliet and J. R. Fassett, “Fluctuations due to electronic 
transitions and transport in solids,” in Fluctuation Phenomena in Soli&, 
R. E. Burgess, Ed. New York: Academic Press, 1965, pp. 267-354. 

(331  J. Bernamont, “Fluctuations in the resistance of thin films,’’ Proc. 

[341 F. K. du Pre, “A suggestion regarding the spectral density of flicker 

l3’l D. A. Bell, Electrical Noise. Princeton, N. J.: Van Nostrand, 1960. 
[361 W. R. Bennett, Electrical Noise. New York: McGraw-Hill, 1960. 
I3’I B. Mandelbrot, “Some noises with llfspectrum, a bridge between 

direct current and white noise,” IEEE Trans. Instrumentation and Measure- 
ment, vol. IT-13, pp. 289-298, April 1967. 

13’] L. Fey, J. A. Barnes, and D. W. Allan, “An analysis of a low in- 
formation rate time control unit,” Proc. 20th Ann. Symp. on Frequency 
Control, pp. 629-635,1966. 

PhyS. SOC., VOI. 49 (SUPPI.), pp. 138-139, July 1937. 

noise,” Phys. Rev. Lett.,  vol. 78, p. 615, June 1950. 

[391 D. Halford, to be published. 
1401 W. B. Davenport, Jr., and W. L. Root, An Introduction io the 

Theory of Random Signals and Noise. New York: McGraw-Hill, 1958, p. 
106. 


