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Trapped-Ion Quantum Simulator: Experimental Application to Nonlinear Interferometers
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We show how an experimentally realized set of operations on a single trapped ion is sufficient to
simulate a wide class of Hamiltonians of a spin-1=2 particle in an external potential. This system is also
able to simulate other physical dynamics. As a demonstration, we simulate the action of two nth order
nonlinear optical beam splitters comprising an interferometer sensitive to phase shift in one of the
interferometer beam paths. The sensitivity in determining these phase shifts increases linearly with n,
and the simulation demonstrates that the use of nonlinear beam splitters (n � 2; 3) enhances this
sensitivity compared to the standard quantum limit imposed by a linear beam splitter (n � 1).
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s � 1=2 particle of mass � in an arbitrary potential, one
must be able to prepare an arbitrary input state

with energy difference �h!0 and the external motional
levels of the ion [14]. For our purpose, it is sufficient to
One of the motivations behind Feynman’s proposal for
a quantum computer [1] was the possibility that one
quantum system could efficiently simulate the behavior
of other quantum systems. This idea was verified by Lloyd
[2] and further explored by Lloyd and Braunstein [3] for a
conjugate pair of variables such as position and momen-
tum of a quantum particle. Following this suggestion, we
show below that coherent manipulation of the quantized
motional and internal states of a single trapped ion using
laser pulses can simulate the more general quantum dy-
namics of a single spin-1=2 particle in an arbitrary ex-
ternal potential. Previously, harmonic and anharmonic
oscillators have been simulated in nuclear magnetic reso-
nance experiments [4].

In addition to demonstrating the basic building blocks
for simulating such arbitrary dynamics, we experimen-
tally simulated the action of optical Mach-Zehnder
interferometers with linear and nonlinear second- and
third-order beam splitters on number states. Interferome-
ters with linear beam splitters and nonclassical input
states have engendered considerable interest, since their
noise limits for phase estimation can lie below the stan-
dard quantum limit for linear interferometers with coher-
ent input modes [5–8] as has been demonstrated in
experiments [9]. A number of optics experiments have
exploited the second-order process of spontaneous para-
metric down-conversion [10], which can be regarded as a
nonlinear beam splitter. By cascading this process, a
fourth-order interaction has also recently been realized
[11]. One difficulty in these experiments is the exponen-
tial decrease in efficiency as the order increases, neces-
sitating data postselection and long integration times. In
the simulations reported here, nonlinear interactions
were implemented with high efficiency, eliminating the
need for data postselection and thereby requiring rela-
tively short integration times.

To realize a quantum computer for simulating a spin
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j��ms; z�i �
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�c#nj#ijni � c"nj"ijni�; (1)

where the particle’s position wave function is expanded in
energy eigenstates jni of a suitable harmonic oscillator,
and jmsi (ms 2 f#; "g) represent the spin eigenstates in a
suitable basis. We have recently demonstrated a method to
generate arbitrary states of the type in Eq. (1) in an ion
trap [12,13]. The computer should then evolve the state
according to an arbitrary Hamiltonian
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nm�� � �nm�z�

� ��nm�a
y�nam � ��

nm�a
y�man�; (2)

where we require only that the potential V�z;ms� can be
expanded as a power series in the harmonic oscillator
ladder operators a and ay and be approximated to arbi-
trary precision by a finite number of terms with maxi-
mum order N. The ms are a set of observables in a general
two-level Hilbert space that can all be mapped to a linear
combination of the identity I and the Pauli matrices �j.
The operators �� are defined as �� � �x � i�y, all
�nm; �nm are complex numbers, and all 
nm; �nm are
real numbers.

In our realization of an analog quantum computer, we
consider the Hamiltonian of a trapped atom of mass �,
harmonically bound with a trap frequency !z and inter-
acting with two running-wave light fields having a fre-
quency difference �! and a phase difference ’ at the
position of the ion. Both light fields are assumed to be de-
tuned from an excited electronic level so they can induce
stimulated-Raman transitions between combinations of
two long-lived internal electronic ground-state levels
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consider the motion along one axis in the trap. After
applying a rotating wave approximation and adiabatic
elimination of the near resonant excited state [14], and
switching to an interaction picture of the ion’s motion, the
resonant interaction for Raman beam detuning �! �
�!0 � l!z (� � f0; 1g, l integer) can be written in the
Lamb-Dicke limit [�2h�a� ay�2i � 1] as [15,16]

H�l � �h
ei�����
�

�
 l;jlj

�i�a�jlj

jlj!

� �1�  l;jlj�
�i�ay�jlj

jlj!

�
�H:c: (3)

The coupling strength 
 is assumed to be small enough to
resonantly excite only the lth spectral component. The
Lamb-Dicke parameter � � �kz0 is the product of the z
projection of the wave vector difference �k of the two
light fields and the spatial extent of the ground-state wave
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function z0 �
���������������������
�h=�2m!z�

p
. For � � 1 the internal state

changes during the stimulated-Raman transition and the
interaction couples j #ijni $ j "ijn� li, while for � � 0
only motional states jni $ jn� li are coupled with a
strength independent of the internal state [17].

Following Lloyd and Braunstein [3,18], by nesting and
concatenating sequences of H�l operations according to
the relation

e��i= �h�H te��i= �h�H0 te�i= �h�H te�i= �h�H
0 t � e�1= �h

2��H;H0� t2

�O� t3�; (4)

the set of operators fH01; H02; H03; H10; H11; H12; H13g is
sufficient to efficiently generate arbitrary Hamiltonians.
This conclusion is straightforward for the spin, since
f��; ��; �zg are a complete basis of that algebra. For
interactions that involve only the motion (� � 0), it fol-
lows from the fact that

�H02; H03� / if
aya2 � 
��ay�2ag � lower orders (5)

and
�
aya2 �
��ay�2a;��ay�nam����ay�man� � �2m�n��
��ay�man�1 �
���ay�nam�1 �H:c:�� lower orders; (6)
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FIG. 1 (color online). Principle of the Mach-Zehnder inter-
ferometer. Modes �a and �b are superposed on the first beam
splitter. After the beam splitter has acted, the modes �a0 , �b0

are propagated along separate paths to a second beam splitter.
Mode �b0 may undergo a variable phase shift induced by the
phase shifter �. Modes �a00 and �b00 emerge after the second
beam splitter and one of the modes is put onto a detector.
Varying � will lead to a sinusoidal behavior of the intensity on
the detector (fringes).
so one can build up arbitrary orders in the effective
Hamiltonian by recursive use of Eq. (4). Similar argu-
ments hold for the set of fH1lg interactions, and by com-
bining both types of interactions, the series expansion of
the Hamiltonian in Eq. (2) can eventually be constructed.

Most of these interactions have been demonstrated
in previous ion-trap experiments. H10 is usually called
the carrier interaction, H01 and H02 are coherent and
squeeze drives, respectively, and H11; H12 are first and
second blue sideband [19,20]. The third-order interactions
H03; H13 have not been previously demonstrated. One of
the experiments discussed below uses two H13 pulses,
therefore demonstrating the feasibility of generating H03

as well [21].
As a demonstration of quantum simulation using

a single trapped atom, we employ the interactions H11,
H12, and H13 to efficiently simulate a certain class of nth
order optical beam splitters described by Hamiltonians

Bn � �h
n�a�by�n � ay�b�n�: (7)

Here a and b are the usual harmonic oscillator lowering
operators for the two quantized light modes, 
n is the
coupling strength, and we simulate the special case where
the number of photons in mode a is 0 or 1 and n � 1, 2,
or 3. Two such beam splitters can be used to construct a
Mach-Zehnder interferometer as sketched in Fig. 1. The
order n � 1 corresponds to the commonly used linear
beam splitter that is typically realized by a partially
transparent mirror in experiments. Such interferometers
can measure the relative phase of the two paths of the
light fields that are split on the first beam splitter and
recombined on the second. The phase can be varied by
changing a phase shifting element (the box labeled � in
Fig. 1) and detected (modulo 2') by observing the inter-
ference fringes of the recombined fields. We restrict our
attention to a pure number state jn � 1ia impinging on
the first beam splitter from mode a and a vacuum state
jn � 0ib from mode b. After propagating the input state
through the first beam splitter with 
n adjusted to give
equal amplitude along the two paths in the output super-
position, the state becomes
247901-2



FIG. 2. Interference fringes for simulated interferometers
(a) of order n � 1 (integration time per data point was
0.50 s); (b) n � 2 (0.53 s); and (c) n � 3 (0.63 s). hna00 i is the
probability to find the ion in j1ia00 , while t is the time for which
the trap frequency was shifted by �!z, directly proportional to
the phase shift � � �!zt. The frequency of the fringes in-
creases linearly with order n. C is the observed contrast of the
fringes.
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j1iaj0ib !
1���
2

p �j1ia0 j0ib0 � j0ia0 jnib0 �: (8)

Phase shifters in optical interferometers alter a classical-
like coherent state j
i to one that is shifted to j
ei�i. In
the context of Fig. 1 this phase shift corresponds to jni !
ein�jni for a number state, leading to

1���
2

p �j1ia0 j0ib0 � j0ia0 jnib0 � !
1���
2

p �j1ia0 j0ib0

� ein�j0ia0 jnib0 �: (9)

The second beam splitter recombines the two field modes
leading to an average probability of

hn̂na00 i �
1
2�1� cos�n��� (10)

for detecting one photon in the output arm with the
detector in Fig. 1.

We have experimentally simulated the nonlinear
beam splitter of Eq. (7) using a single trapped 9Be� ion.
The operator a is replaced by ��, the raising operator
between two hyperfine states jF � 2; mF � �2i � j1ia
and jF � 1; mF � �1i � j0ia in the 2S1=2 ground-state
manifold. These operators (and also their respective
Hermitian conjugates) are not strictly equivalent, but
their action is the same as long as we restrict our attention
to situations that never leave the fj0ia; j1iag subspace. The
simulated linear and nonlinear interferometers fulfill this
restriction, as long as the input state is j1iaj0ib. The
optical mode with lowering operator b is replaced by
the equivalent harmonic oscillator mode of motion along
one axis in the trap, with number states jni.

Our experimental system has been described in detail
elsewhere [19,20,22]. We trapped a single 9Be� ion in a
linear trap [23] with motional frequency !z � 2'
3.63 MHz (Lamb-Dicke parameter � � 0:35) and cooled
it to the ground state of motion. The trap had a heating
rate of 1 quantum per 6 ms [23] that was a small pertur-
bation for the duration of our experiments ( 
 260 �s).
After cooling, the ion was prepared in the j1iaj0ib state by
optical pumping. Starting from this state we used Raman
transitions to drive a '=2 pulse on the ion’s nth blue
sideband [HI / ���by�n � H:c:], creating the state
�j1ia0 j0ib0 � j0ia0 jnib0 �=

���
2

p
. For different orders n the

'=2 pulse time scales as
�����
n!

p
=�n [14]. The observed

'=2 times of �4:0; 17:3115� �s do not scale exactly as
the theoretical prediction due to different laser intensities
used for the different values of n. A phase shift � �
�!zt was then introduced by switching the potential of
the trap endcaps to a different value for time t, thus
changing the motional frequency by a fixed amount
�!z. After a second '=2 pulse on the nth sideband, we
measured the probability hna00 i for the ion to be in j1ia00 .
The interference fringes created by sweeping t are shown
in Fig. 2. The final state of the ion oscillated approxi-
247901-3
mately between j1ia00 and j0ia00 as t was varied, with
frequency n�!z.

In interferometric measurements, we want to maxi-
mize our sensitivity to changes of � around some nomi-
nal value. We therefore want to minimize

 � �
�n̂na00

j@hn̂na00 i=@�j
; (11)

where �ÂA �

�������������������������
hÂA2i � hÂAi2

q
is a measure of the fluctua-

tions between measurements of an operator ÂA.
Equation (11) applies to our simulator with � � �!zt.
In our experiments,

hn̂na00 i � �C=2��1� cos�n���; (12)

where C is the contrast of the observed fringes. Ideally,
C � 1 [Eq. (10)] but is observed to be <1 due to imper-
fect state preparation and detection and fluctuations in the
ambient magnetic field and the trap frequency. The sensi-
tivity of the interferometer is maximized when the slope
of hn̂na00 i with respect to �, @hn̂na00 i=@� is maximized, that
is, for values of� where n� � 'k=2, k an odd integer.We
characterize the fluctuations �na00 with the two-sample
Allan variance, commonly used to characterize fre-
quency stability [24]. In the present context, a series
of M (total) measurements of n̂na00 � j1ia00 h1ja00 is divided
into bins of Nb measurements averaged according to

hn̂na00 ii � 1=Nb

X�i�1�Nb�1

j�iNb

�n̂na00 �j; (13)

where 2<Nb <M=2 and �n̂na00 �j is the jth measurement
of n̂na00 . The Allan variance characterizing fluctuations
247901-3
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FIG. 3. Noise-to-signal ratios  ��Nb� for the n � 1 linear
interferometer (solid squares), n � 2 nonlinear interferometer
(solid circles), and n � 3 nonlinear interferometer (open
circles) vs the number of measurements Nb. The solid line is
the theoretical limit for the linear (n � 1) interferometer,
assuming perfect contrast and detection efficiency.
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between measurements is given by

��n̂na00
�Nb��

2 �
1

2�Nb � 1�

XNb�1

i�1

�hn̂na00 ii�1 � hn̂na00 ii�2: (14)

Making the identification �n̂na00
�Nb� � �na00 , in Fig. 3,

we plot  � vs Nb. The solid curve is the theoretical
standard quantum limit for a linear interferometer with
perfect contrast and unity detection efficiency, given by
�na00=

������
Nb

p
where ��na00 �2 is the variance due to projection

noise [25]; �na00 � 0:5 at the points of maximum slope in
our fringes. The simulation of the linear interferometer
shows only a small amount of excess noise over the
theoretical limit, due mainly to the C � 0:92 contrast
of the fringes, while the nonlinear interferometer simu-
lations have a noise-to-signal ratio below the linear in-
terferometer standard limit. The potential gain in slope
for n � 3 is almost exactly canceled by the loss in fringe
contrast, so the noise-to-signal ratio for n � 2 and n � 3
is about the same.

In conclusion, we have shown how coherent
stimulated-Raman transitions on a single trapped atom
can be used to simulate a wide class of Hamiltonians of a
spin-1=2 particle in an arbitrary external potential. This
system can also be used to simulate other physical dy-
namics. As a demonstration, we have experimentally
simulated the behavior of nth order nonlinear optical
beam splitters acting in a restricted Hilbert space. Our
simulation demonstrates how interferometer sensitivity
improves with the order of the beam splitter. As a prac-
tical matter, the 2nd- and 3rd-order beam splitters dem-
onstrated here give increased sensitivity for diagnosing
motional frequency fluctuations in the trapped-ion sys-
tem. With anticipated improvements in motional state
247901-4
coherence [23], it should be possible to simulate more
complicated Hamiltonians.
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