AN APPLICATION OF STATISTICAL SMOOTHING TECHNIQUES ON VLF SIGNALS FOR COMPARISON OF TIME BETWEEN USNO AND NBS

Alain Guétriot
Bureau International de l'Heure
Paris, France

Lynne S. Higbie
National Bureau of Standards
Boulder, Colorado 80302

Jean Lavanceau
U. S. Naval Observatory
Washington, D. C. 20390

and

David W. Allan
National Bureau of Standards
Boulder, Colorado 80302

Summary

Recent developments have provided a method for obtaining submicrosecond time comparisons over continental distances. The method was applied to a time comparison between the master clocks at the United States Naval Observatory (USNO) and at the National Bureau of Standards (NBS) in Boulder, Colorado.

There were the following developments. First, if two signals show a reasonable degree of correlation in their fluctuations, then one may derive an optimum linear combination of the two with a mean square error less than for either signal individually. The two signals studied were the transmissions on 21.4 kHz from NSS in Annapolis, Maryland, and on 20.0 kHz from WWVL in Fort Collins, Colorado. It is necessary that receivers be located for both signals at the locations of the controlling clocks. Evidence of positive correlation was shown. The positive cross correlation probably was due to the near reciprocal path and the very close transmission frequencies.

Second, the phase fluctuations due to the propagation medium were consistent with a spectral density of the random phase noise proportional to $|f|^{-2}$, commonly called flicker of phase noise. This persisted for Fourier frequencies from one cycle per day down to one cycle per several weeks. The fluctuations on the linear combination of the two signals still behaved as flicker of phase noise but at a lower level.

The phase or time fluctuations of the master clocks however followed a spectral density law proportional to $|f|^{-3}$, flicker of frequency noise, for frequencies lower than one cycle per day.

Third, an optimum linear filter (Wiener filter) giving the minimum mean square error estimate (MMSEE) of the signal has been determined for a random walk of phase signal (spectral density proportional to $|f|^{-2}$) imbedded in white noise (spectral density proportional to $|f|^{0}$). The same filter was shown to be still optimum for spectral densities proportional to $|f|^{-3}$ for the signal and $|f|^{-1}$ for the noise.

Application of the above filter to the appropriate linear combination, defined through correlation properties, of NSS and WWVL signals showed an improvement of 15 dB in the rms day-to-day phase fluctuations. The day-to-day rms time deviations were about 70 ns on the final results. The output estimate of the filter, compared with portable clock measurements, gave a disparity of the order of the final output noise.

The experiment provided an opportunity to determine if there is an effect of mass on frequency and within the uncertainties of the experiment a null result was obtained.

- 248 -