U.S.A. National Committee Report, Fifteenth URSI General Assembly, Munich, September 1966: Commission 1, Radio Measurement Methods and Standards

Progress in Radio Measurement Methods and Standards

John M. Richardson, Editor

W. Beatty, George Birnbaum, H. E. Bussey, Seymour B. Cohn, E. A. Gerber, George E. Hudson, R. C. Mockler, M. C. Selby, R. A. Sykes, and Bruno O. Weinschel

(Received May 31, 1966)

1. High-Precision Atomic Frequency Standards

Atomic frequency and time interval standards had advanced to such a high level of performance that in October 1964, the International Committee of Weights and Measures designated the \(F = 4, m_f = 0 \) \(\rightarrow \) \(F = 3, m_f = 0 \) transition in the ground state of Cs\(^133\) temporarily for the physical measurement of time. They assigned the value

\[9,192,631,770 \text{ Hz} \]

To this transition. Thus the physical basis for time measurement has changed from an astronomical unit to an atomic unit of time [Bureau International des Poids et Mesures, 1964].

During the period 1963 through 1965 the accuracy capability of the United States Frequency Standard has improved from 1 part in \(10^{12} \) (one standard deviation, \(\sigma \)) to 1 part in \(10^{14} \) \((1\sigma) \). The accuracy of the hydrogen maser is considered to be about 3 parts in \(10^5 \), due mostly to uncertainties arising from the wallshift. The most recent value for the hyperfine structure separation in hydrogen is

\[1,420,405,751,7860 \pm 0.0046 \text{ Hz} \]

[Beehler, Halford, Harrach, Allan, Glaze, Snider, Barnes, Vessot, Peters, Vanier, Cutler, and Bodily, 1966].

Recent experiments and theory on the transition process in atomic beam devices have suggested new methods of testing for accuracy. Preliminary results indicate that an accuracy of 1 part in \(10^{12} \) is possible with cesium beams, with guarded optimism, of course [Harrach, 1965; Harrach and Shirley, private communication, 1965].

Much improved commercial cesium beam standards are more compact, more reliable, and more

2. High-Precision Quartz Frequency Standards

Over the past few years, many thorough investigations have been made to improve the long and short-term stability of precision quartz crystal controlled oscillators. Improvements in holders, temperature control, relief of stress, and lattice perfection have given improved stability.
Tremendous progress has been made in calculating the various modes of motion in crystal plates and determining their amplitude distribution [Mindlin and Lee, 1965]. The results of these studies are closely tied to many of the problems we have today, e.g., the suppression of unwanted responses in crystal units by contouring or by control of electrodes for “energy trapping” [Shockley, Curran, and Koneval, 1963]. It has become possible to confine the energy of vibration principally to the electroded portion, so that the mounting structure cannot adversely influence the vibration of the plate [Curran and Koneval, 1964, 1965; Spencer, 1965].

Material success has been achieved in the use of X-rays to study strain and displacement in vibrating crystal plates. This technique also shows imperfections in the material which result in lattice distortions. Any motion resulting in a curvature of the lattice can easily be detected by the topographic X-ray method, and figure 1 illustrates the degree of sensitivity that may be obtained. This figure shows the various modes of motion of a 3.2 MHz contoured thickness-shear vibrator with their relative responses.

Practical oscillators appear to have three main sources of noise contributing to frequency fluctuations [Cutler, 1964; Hafner, 1964; Edson, 1965]:

1. Thermal and shot noise within the oscillator itself which actually perturbs the oscillation;
2. Additive noise associated with accessory circuits which does not perturb the oscillation, but merely adds to the signal;
3. Fluctuations of the oscillator frequency due to either the crystal unit or circuit parameter changes.

3. Scientific Aspects of Universal and/or Atomic Time and Frequency Transmissions

The relative trend and uncertainties of Universal Time (UT) with respect to Atomic Time (AT) bear directly upon studies of variations in the rate of rotation of the earth, indirectly upon the question of the relative uniformity of the astronomical ephemeris time scale (ET), and upon their technological usage in engineering and scientific laboratories.

The last 3 years have seen increased and improved surveillance and study of characteristics of various time and frequency signal systems for broadcast purposes. Recently it has been demonstrated experimentally on WWVB broadcasts that a system employing nonoffset chips achieves this requirement.

4. Standards

A supersensitive complex-insensitive clock with asking accuracies of 36X minimum theoretical figure of 2 dB [2

![Figure 1. Responses and distribution of strain in contoured 3.2 MHz crystal vibrator.](image)
employing nonoffset carrier frequencies and seconds intervals, but utilizing occasional adjustments toward UT of the emitted seconds ticks by 200 ms every 2 or 3 months, satisfies the day-to-day requirements for ship navigation.

The general long-term parabolic trend of UT with respect to ET noted by Brouwer [1952] adequately rectifies the trends over some short periods, but not so well for an intermediate period over the last 145 years. This trend does not remove certain large or small excursions, some of which may have periodic components, and some certainly exhibit a random fluctuating behavior marked on occasion by erratic changes.

One of the most significant technological advances in time signal dissemination via radio emission has been the use of phase control techniques. This has resulted in a greater frequency stability as well. All NBS radio transmissions now employ this method. Thus the epochs of time ticks from WWV, WWVH, and WWVB are directly related to the U.S. standard scale of time.

National and international synchronization of transmissions has been improved carrying highly stable clocks between stations (see sec. 1). Two experiments have been conducted which may herald the birth of a new era in international time synchronization techniques. These have utilized satellites Telstar and Relay II as relay devices for high-frequency time signals. These supplement earlier studies of the international comparison of standards via radio emission. Several studies have been made confirming the stable propagation characteristics of VLF and LF emissions for time and frequency signals. A continuing effort is being made to employ two carriers in the dissemination of time signals at LF, and very promising results are being obtained in a combined NBS-NASA study.

4. Standards and Measurements at 30 kHz to 1 GHz

A supersensitive detector was developed for a complex-insertion-ratio measurement system having accuracies of about ±0.005 dB/10 dB at 30 MHz; signals of 30 × 10⁻ⁱ² V were detected as against a minimum theoretical value of 30 × 10⁻¹² V rms at a noise figure of 2 dB [Allred and Lawton, 1964]. A modified twin-T bridge was developed capable, for the first time, of measuring resistances of 100 to 10,000 ohms at 2 MHz in terms of capacitance increments with accuracies of ±0.05 percent and at reduced accuracies to 15 MHz [Huntley, 1965]. A set of Q-factor standards has been made available for frequencies to 45 MHz based on accumulated data and experience over 5 years; accuracies of ±2 percent were obtained for Q’s of 100 to 240 at 15 MHz, and

± 7 to 9 percent for Q’s to 600 at higher frequencies [Jones, 1964]. A unique adjustable characteristic-impedance coaxial line was developed for more efficient use of the time-domain reflectometry techniques for impedance measurements [Cruz and Brooke, 1965a,b]. The decrement method was successfully used to measure Q’s greater than 100,000 of cryogenic circuits at frequencies to 300 MHz [Hartwig, 1963].

A novel T junction has been developed to enable calibrations and intercomparisons of voltmeters of any practicable input impedances (with VSWR’s ranging from 1 to 200) at frequencies 1 GHz and higher from microvols to 100 V and higher with superior accuracy; effects of standing waves and higher modes are essentially eliminated; a fraction of the power is required for calibration purposes as compared with terminated systems, which is particularly advantageous at relatively high voltages [Selby, 1965]. To overcome d-c polarization effects in high-voltage-insulation tests, 1-μs pulses were employed with peaks to 30 kV, and 1-μA currents were measured to 5 percent by charge-storing techniques [Watson and Sharbaugh, 1964].

A miniaturized dipole antenna-receiver combination was developed to measure 0.1 to 1000 V/m, 150 kHz to 30 MHz, complex near-zone fields with an accuracy of ±2 dB; the receiver, a calibrating oscillator, battery supply, and attenuator are located inside the 13-in. long by 1% in. diameter cylindrical dipole; a semiconducting plastic transmission line feeds the information from the antenna to a remote readout unit [Greene, 1965]. A prototype 3-MHz model of precision thermal noise-power comparators for a range equivalent to 75° to 30,000° K at accuracies of 0.2 to 1 percent has been described; it measures the noise-spectral density in a 7.5 kHz band and eliminates high-speed switching by employing a coaxial magic T, a CW generator, two separate amplifiers and frequency channels feeding an analog multiplier, and a product-averaging RC network [Arthur, Allred, and Cannon, 1964].

5. Standards and Measurements at 1 to 300 GHz

Developments are reported in the following fields: power, noise, reflection coefficient, phase shift, attenuation, and field strength.

With regard to bolometric power measurements, the following developments were reported: evaluation of substitution error in dual-element mounts [Engen, 1964b], replacement of dual elements by a center-tapped thermistor bead [Aslan, 1965], tuned reflectometer types of power meters [Engen, 1964a], swept-frequency measurements of mount efficiencies [Pramann, 1965], efficiency measurements at 2 and 5.4 mm [Szente, Miller, and Mallory, 1963;
Miller, Mallory, and Szente, 1963], accurate calibrations of coaxial mounts with reference to standard mounts in rectangular waveguide [Engen, 1965].

Power in multimode waveguides was measured [Schiffman, Young, and Larrick, 1965].

Pyroelectric effect detectors [Steier and Yamashita, 1963], a ferro-electric bolometer [Cohn and Rodgers, 1964], and microwave radiometers [Williams and Chang, 1963; Fujimoto, 1964] were developed for use at millimeter and submillimeter wavelengths.

Improvements were reported in waveguide mounts for gas-discharge types of standard noise sources [Miller, Daywitt, and Campbell, 1964], and in their calibration techniques [Wells, Daywitt, and Miller, 1964]. Mismatch errors in noise performance measurements were analyzed [Brady, 1964]. Noise sources cooled by liquid helium were calibrated [Stelzried, 1965].

With respect to coaxial line standards, the use of air-filled lines was discussed [Sanderson, 1964; Weinschel, 1964], and a line of variable characteristic impedance was developed to calibrate time-domain reflectometers [Cruz and Brooke, 1965a, b].

Techniques were developed in which a sliding load is mechanically coupled to a slotted line’s probe [Weinschel, Sorger, Raff, and Ebert, 1964; Beatty, 1965a; Sanderson, 1965a].

The NBS standard phase shifter and measurement system in WR–90 (IEC–R 100) waveguide was described [Ellerbruch, 1965]. A differential type of standard phase shifter was devised [Beatty, 1964a] and analyzed [Ellerbruch, 1964].

With regard to standard attenuators, true in-line coupler fixed standards were devised [Larson, 1964], additional sources of error in rotary-vane attenuators were investigated [Larson, 1963, 1965b], and a table of attenuation versus vane angle was published [Larson, 1965a].

Analysis of insertion loss concepts [Beatty, 1963, 1964b] was applied [Beatty, 1964c] to attenuation measurements. The modulated subcarrier method was analyzed [Little, 1964]. Methods were devised [Stelzried and Petty, 1964; Beatty, 1965b; Smith and Sokolowski, 1965] to measure small losses.

Attenuations of groove guides [Tischer and Someroski, 1964; Rudy, 1965], and beam waveguides [Beyer and Scheibe, 1963; Valenzuela, 1963; and Simonich and Ishii, 1965] were measured. Prisms were used as standard attenuators [Taub and Hindin, 1963; Fellers and Taylor, 1964] at millimeter and submillimeter wavelengths.

Accurate measurements were made at 4.08 GHz of the gain of standard horns [Chu and Semplak, 1965]. The Fresnel gain concept was examined [Soejima, 1963]. At 8.6 GHz, the effect of lossy earth on antenna gain was determined [Coe and Curtis, 1964; Curtis, 1964]. Anechoic chambers were evaluated [Buckley, 1963]. Antenna gain was determined from measurements of scattering cross section [Garbacz, 1964]. Modulated scatterers were used to measure field strength [Harrington, 1963; Izuka, 1963; Vural and Cheng, 1964; King, 1965]. Scattering cross sections of metal spheres were measured [Blore, 1963].

6. Precision Coaxial Connectors

Precision coaxial measurements suffered from mismatch errors and lack of repeatability of connectors. Several designs of precision coaxial connectors are now available. They were standardized by the IEEE Subcommittee on Precision Coaxial Connectors, as related by Fossan [1964]. These connectors were tested in several laboratories for the committee, including Alford Mfg. Co., Amphenol, General Radio Co., National Bureau of Standards, Rohde and Schwarz, and Weinschel Engineering.

By definition, a GPC, or General Precision Connector (fig. 2), includes a dielectric support. An LPC, or Laboratory Precision Connector, uses air dielectric. An LPC is employed for the most accurate measurements with air sections per Sanderson [1964].

Because of the low VSWR of precision coaxial connectors, impedance measurement devices had to be improved. Three methods are used: the tuned reflectometer, the slotted line, and the time-domain reflectometer.

All three methods use auxiliary precision air line sections as reference standards. The reflectometer uses both a sliding load and a sliding short within a precision air line section [Beatty, Engen, and Anson, 1960; Beatty and Anson, 1962; Little and Wakefield, 1965]. A slotted-line substitution technique [Sanderson, 1961, 1962; Zorzy, 1963a] uses a half-wavelength section, while Sanderson [1964] prefers a quarter wavelength. Weinschel et al. [1964] use a coupled sliding load. The time-domain reflectometer [Cruz and Brooke, 1965b] is calibrated by air line sections. A useful impedance standard is a coaxial transmission line with perfect dimensions. The lower frequency limit due to skin

7. Sweep

Greater quantit

FIGURE 2. Assembly and exploded view of 14-mm General Precision Connector.

Mixer detector utilizes a nonlinear, at a different free

The prism detector uses one RF signals are processed to pro to (1) RF phase

\[\text{\(RF \)}\]
6. Measurement Methods and Standards, Commission 1

...due to skin effect is computed by Weinschel [1964].

Design considerations are reviewed by Sladek [1965]. Zorzy [1963b] describes a slotted line with a 5 mm GPC covering the frequency range of 300 MHz to 9 GHz. Sanderson [1965b] describes a slotted line recorder system.

7. Swept-Frequency Techniques

Greater quantity, precision, bandwidth, and stringency of parameter control have forced the development of accurate swept-frequency techniques with parameter display on oscilloscope or recorder in order to handle the increased data. This survey concentrates on progress in the field of swept measurements from 30 MHz to the upper limit of microwave applications. The primary quantities measured are amplitude and phase. In terms of these, other parameters may be displayed—for example, loss, gain, power, phase shift, reflection coefficient, VSWR, impedance, etc. Two types of detection are used in swept-frequency instruments: video detection, and mixer detection.

Video detectors are capable of providing swept amplitude information, but not phase information. Improved accuracy in video-detection instruments has followed from advances in leveled swept oscillators, connectors, pads, detectors, etc. Higher-directivity couplers yield more accurate reflection coefficient measurements. Progress has been made in extending the dynamic range of video detectors up to 60 dB by compensated output circuitry.

Mixer detection in swept-frequency instruments utilizes a nonlinear device into which two RF signals at different frequencies are introduced, the output signal being at the difference frequency. The leading type of swept mixer system is now the homodyne, which uses one RF signal source from which the two RF signals are derived. The mixer output signals are processed to produce d-c analog voltages proportional to (1) RF phase independent of amplitude, (2) RF amplitude independent of phase, and (3) quadrature components of the RF test signal. The latter yields either the transmission or reflection coefficient in polar coordinates, or impedance on a chart. Homodyne instruments now provide accurate single-sweep measurements of phase, amplitude, and impedance in full waveguide bands and in coaxial bands up to 5:1. Other recent improvements include linear 360° phase readout, higher accuracy, faster sweep rates, and simplified operation. In addition to specialized instruments for phase and impedance, multifunction instrument's permit selection of phase, amplitude, or impedance displays by means of a function switch.

8. Measurements of Electromagnetic Properties of Materials

Sources, other than journals, for dielectric and magnetic activities include the index of magnetism, available from the American Institute of Physics, and the annual Magnetic Materials Digest. The NAS-NRC Committee [1965] issues an annual digest of the literature on dielectrics, and also an Annual Report, Conference on Electrical Insulation. A different Electrical Insulation Conference Proceedings, mostly on insulation, is issued by the IEEE.

Magnetic measurements. A knowledge of what quantities are important greatly influences magnetic studies and applications. The Morgenhal-Schloemann parallel pumping method has become well understood for measuring spin-wave line width and for elastic spin-wave coupling [Eshbach, 1963]. Excitation methods and dispersion relations for various spin, elastic, and magnetostatic waves are important for microwave delay lines [Kaufman and Soohoo, 1965]. Spin-wave coupling to the uniform precession, which arises mainly from rough surfaces and from polycrystallinity, is important in ferrimagnetic devices. Spin-wave coupling knowledge was advanced theoretically by Motizuki, Sparks, and Seiden [1965] and by Sparks' new book. A new method of measuring this coupling was presented [Risley and Bussey, 1964].

Low-frequency permeability measurements were reviewed [Harrington and Rasmussen, 1965]. Line width, permittivity, and magnetization measurement methods for ferrite polycrystals are specified [ASTM, 1963].

Small ferrimagnetic (and ferroelectric) material resonators have unloaded Q's and external Q's which enter into line width or loss measurements and into filter uses [Matthaei, 1965].

Measurements performed by three national standards laboratories were intercompared [Bussey et al., 1964]. High-temperature measurements were made on many dielectrics [Westphal, 1963]. Ellipsometry techniques, applicable in millimeter waves, were covered by a conference [Passaglia, Stromberg, and Kruger, 1964]. Conductivity measurements on semiconductors were often obtained by microwave dielectric measurements, and Houlding [1965] surveyed recent measurements of the Q of varactors.

Low loss tangents were measured by a convenient immersion technique for polyethylene [Hazen, 1965].
Two-fluid dielectric immersion in a guarded ring capacitor observed by a ratio transformer gave highly accurate dielectric measurements [Harris and Scott, 1963]. Errors due to conductance of a foreign surface layer on a dielectric were analyzed by Frenkel [1964]. Optical effects in materials, especially those related to devices, were measured. A new effect was predicted [Brown, Shtrikman, and Treves, 1963]. Modulation was reviewed by Anderson [1965].

A variational theory of the impedance of waveguide junctions was given [Kerns, 1963]. The junction may contain anisotropic materials.

9. Laser Standards and Measurements

The phototube, calibrated against a standard source of radiation, was the first method used for measuring laser power and energy, the latter by a time integration of the photocurrent [Maiman et al., 1961]. To limit the radiation incident on the phototube, a variety of calibrated attenuators have been used: neutral density filters [Glick, 1962, 1963], integrating sphere [Schiel, 1963], a coarse diffraction grating [Gerharz, 1964, 1965], and a diffuse reflector whose distance from laser to reflector or reflector to photocell may be controlled [Leite and Porto, 1963]. A variety of methods for energy measurements have appeared: a carbon cone [Li and Sims, 1962; Calviello, 1963] and a blackened metal cone [Koozekanani et al., 1962] simulating blackbody absorbers whose temperature changes are measured, respectively, by thermistors and bolometers; a liquid calorimeter [Damon and Flynn, 1963]; and a bolometer consisting of a bundle of 1000 ft of fine enameled wire [Baker, 1965].

The deflection of a ballistic torsion pendulum due to the linear momentum of radiation has been used to measure the high energy of a pulsed laser beam [Stimler, Slawsky, and Grantham, 1964]. No accuracy is cited in the above-mentioned papers except for the estimate of 10 percent by Li and Sims [1962]. However, Jennings [private communication, 1966] has recently designed a liquid calorimeter whose accuracy and precision are given as approximately 1 percent.

All work on frequency stabilization has thus far been done with the He-Ne gas laser operating in a single mode. Although good short-time frequency stability (8×10^{-14} over a few tens of milliseconds) was achieved in free-running oscillators [Iasea, Javan, and Townes, 1963], an automatic feedback control system must be used to obtain long-term stability and frequency resatability. Shimoda and Javan [1965] obtained about 1 part in 10^9 by heterodyning two 1.15-μ lasers using a control system based on modulating a resonator mirror position piezoelectrically. Bennett et al. [1964] obtained about 1 part in 10^9 over a period of 8 hours on the 3.39-μ transition by modulating the dispersion of the medium by varying the plasma discharge and hence the inversion density. A shift in the oscillation frequency due to this modulation can be overcome by modulating instead one of the Ne levels by optical pumping [Boyne, Birky, and Schweitzer, 1965].

Because gas lasers are finding wide application as light sources for interferometric length measurements [Morokuma et al., 1963; McNish, 1964: Mielenz et al., 1964], a knowledge of the laser wavelength in terms of the fundamental standard of length is necessary. Comparing interferometrically the wavelength of the $3s_2-2p_4$ Ne line of the He-Ne laser with standard lamps, Mielenz et al. [1964, 1965] obtained the following results:

$$\lambda_{He-Ne} = 6329.9145 \pm 0.0002 \text{ Å (with 91 percent Ne } ^{20} \text{ and 9 percent Ne } ^{22} \text{)}$$

$$\lambda_{He-Ne} = 6329.9147 \pm 0.0003 \text{ Å (with Ne } ^{20} \text{)}$$

Byer et al. [1965] have studied under high resolution a pulsed Hg laser whose oscillation spectrum is similar to many modes. However, the clear definition of the Doppler profile about 1/2 that in the He-Ne laser defines the center wavelength to 3 significant digits without requiring stabilization of cavity length. It was found that

$$\lambda_{He-Ne} = 6515.1650 \pm 5 \times 10^{-4} \text{ Å (Hg) }$$

The laser is clearly useful as a secondary standard of length. As work in this area matures, it is possible that the laser itself may be used to establish an independent standard of length.

10. References

percent Ne20 and 3 He.

In high resolution, simultaneously and with the He-Ne laser, the accuracy is better than that of the He-Ne laser in the same geometry. It was possible to establish a frame of reference for the He-Ne laser, using a He-Ne laser with the same geometry.}

Eshbach, J. R. (1963), Spin wave propagation and magnetoelectric interaction in YIG, J. Appl. Phys. 34, No. 4, 1298–1304.

Harrrach, R. J. (1965), Radiation field dependent frequency shifts of atomic beam resonances, Ph.D. thesis, Department of Physics, Univ. of Colorado, Boulder, Colo., 1–112.

Hartwig, W. H. (1963), Novel test techniques measure Q in cryogenic resonant circuits, Electronics 36, No. 8, 43–47.

Sanderson, A. E. (1965a), How to measure source impedance with a slotted line, IEEE EEE, 11, No. 3, 35–10.

