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Decoherence and decay of motional quantum states of a trapped atom
coupled to engineered reservoirs

Q. A. Turchette,* C. J. Myatt,† B. E. King,‡ C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe,§ and D. J. Wineland
Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303

~Received 28 February 2000; published 16 October 2000!

We present results from an experimental study of the decoherence and decay of quantum states of a trapped
atomic ion’s harmonic motion interacting with several types ofengineeredreservoirs. We experimentally
simulate three types of reservoirs: a high-temperature amplitude reservoir, a zero-temperature amplitude res-
ervoir, and a high-temperature phase reservoir. Interaction with these environments causes the ion’s motional
state to decay or heat, and in the case of superposition states, to lose coherence. We report measurements of the
decoherence of superpositions of coherent states and two-Fock-state superpositions into these reservoirs, as
well as the decay and heating of Fock states. We confirm the theoretically well-known scaling laws that predict
that the decoherence rate of superposition states scales with the square of the ‘‘size’’ of the state.

PACS number~s!: 42.50.2p, 03.67.Lx, 03.65.2w, 32.80.Pj
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I. INTRODUCTION

The decoherence and decay of quantum states couple
a variety of reservoirs have been investigated extensivel
theory @1–8#. The model in these studies is typically a sy
tem harmonic oscillator coupled to a bath of environm
harmonic oscillators. One of the most interesting results
been the realization that macroscopic superposition state
cay at extremely fast rates. As an illustration, conside
charged harmonic-oscillator system in a superposition of
herent statesc}ua1&1ua2& coupled to the noisy electric
field E of the environment. The interaction potential isV
52qx•E, wherex is the position andq is the charge of the
particle. Regardless of the temperature of the reserv
^E2&Þ0, so that the system is always subject to some le
of noise from the environment. For a superposition of coh
ent states coupled to a reservoir of fluctuating fields, a sim
scaling law may be stated@3#: the rate of decoherence scal
as the square of the separation of the wave packets,uDau2

5ua12a2u2. In an idealized case, the superposition is c
ated, the amplitude reservoir is coupled to the system fo
time t, and the coupling is then turned off. The remaini
coherenceC between the two wave packets, expressed
instance as the magnitude of the off-diagonal component
the system density matrix, is

C~ t !5C~0!expF2uDau2
g

2
t G , ~1!

whereg is a coupling constant between the reservoir and
system. For the same interaction, the energyH of the system
decays like

H~ t !5H~0!exp@2gt#, ~2!
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at a rate independent of the size of the initial state. For
perpositions of macroscopic-sized wave packets, the qu
tum coherence may be obliterated in a time over which
energy of the system does not change appreciably.

Significant attention has been paid to the role of decoh
ence in the classical/quantum correspondence and in fu
mental issues of physics. Recently, decoherence has
been studied in a more pragmatic role: as a primary impe
ment to quantum computing. Quantum computation relies
entanglement of large quantum states to perform effic
calculations. Such states, separated by large distances in
bert space, will be very susceptible to the detrimental effe
of decoherence. Any system will interact with its enviro
ment, so the nature of the interaction and the time scales
which it acts are of critical import in implementations o
quantum information processing. Since trapped ions ar
leading technology for investigations in quantum computin
a study of decoherence in an ion trap quantum comp
system@9#, as presented here, is particularly relevant.

Over the past several years, techniques have been
scribed to generate mesoscopic superpositions, ca
‘‘Schrödinger cats,’’ of motional states of trapped ions@10#
and of photon states in cavity quantum electrodynamics@11#.
In both cases decoherence through coupling to ambient
ervoirs was observed, and sensitivity to the size of the su
position was demonstrated@10,11#. In more recent work with
trapped ions@12#, we extended the investigations beyon
ambient reservoirs and ‘‘engineered’’ the form, bandwid
and strength of coupling to the reservoir. We observed
quantitative scaling laws of the decoherence of superp
tions of coherent states and superpositions of Fock states
a variety of reservoirs for a range of parameters. This pa
is a more detailed discussion of the experiments of Ref.@12#
with additional theoretical development and additional da

The paper is arranged as follows. In Sec. II we review
theory of the damping of a harmonic oscillator coupled
several types of reservoirs. In particular, we derive spec
formulas for the time evolution of the density matrix fo
several types of system-reservoir interactions. In Sec. III
discuss the experimental apparatus and techniques, an
Sec. IV we analyze the data.

n,
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II. THEORETICAL SUMMARY

A. Damping of harmonic oscillators

1. Thermal amplitude reservoir

We begin by reminding the reader of some formal resu
in the theory of damping of harmonic oscillators coupled
two types of baths. In this section we consider the case
which the reservoir is a bath of oscillators, and the coupl
is to the position of the oscillator via the interaction Ham
tonian

HI5\(
i

~G i b̂i â
†1G i* b̂i

†â!, ~3!

whereG i is the coupling rate of thei th bath oscillator to the
system,b̂i is the lowering operator of this reservoir oscill
tor, andâ is the lowering operator of the system oscillato
This is known as an amplitude coupling. If furthermore, t
reservoir oscillators are in thermal equilibrium at tempe
ture T, then the system exchanges energy with the reser
in a process leading to overall thermal equilibrium. The tim
evolution of this process is described by the following mas
equation for the system density matrix formed by trac
over the reservoir degrees of freedom@5#:

ṙ~ t !5
g

2
~ n̄11!~2ârâ†2â†âr2râ†â!

1
g

2
n̄~2â†râ2ââ†r2rââ†!, ~4!

whereg is the system decay rate andn̄ is the average num
ber of quanta in the reservoir at the resonance frequenc
the system oscillatorv0:

n̄5
e2\v0 /kBT

12e2\v0 /kBT
~5!

andkB is Boltzmann’s constant. The zero-temperature res
voir (n̄50) is a special case of the thermal amplitude res
voir in which the inescapable quantum noise dominates
classical thermal noise of fluctuating oscillators.

a. Amplitude damping, Fock states.The solution of Eq.
~4! is nontrivial, and has been discussed at some length in
literature~which is reviewed in Ref.@8#!. We first consider
its solution in a Fock-state basis. In this basis, the decom
sition of r(t) is given by

r~ t !5(
n,m

rnm~ t !un&^mu. ~6!

Based on calculations presented in Ref.@13#, we state the
solution to Eq.~4! with the expansion of Eq.~6! as:
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rnm~ t !5
1

11N~ t ! (
j 50

min(n,m) S N~ t !

11N~ t ! D
j S e2gt/2

11N~ t ! D
n1m22 j

3(
l 50

` S 12
e2gt

11N~ t ! D
l

3AS n1 l 2 j

n2 j D S m1 l 2 j

m2 j D S n

j D S m

j D
3rn1 l 2 j ,m1 l 2 j~0!, ~7!

wherernm(0) is the initial density matrix and

N~ t !5n̄~12e2gt! ~8!

can be interpreted as the average number of quanta in
systemat time t for an initial ground-state system@r(0)
5u0&^0u#. The form of Eq.~7! is qualitatively illuminating:
the evolution of a given density-matrix element depends o
on neighbors along its own diagonal. We note that this c
culation has been performed in Refs.@13# and@14#. We used
Ref. @13# to derive Eq.~7!; in this reference the final form
@Ref. @13#, Eq. ~37!# seems to be written incorrectly, thoug
the correct result can be derived from earlier equations
Ref. @14# the result is written in terms of theQ function, and
agrees with Ref.@13#, and therefore not with our result.

In some cases, we are interested in the time evolution
the diagonal elements only, which are given by:

rnn~ t !5
1

11N~ t ! (
j 50

n S N~ t !

11N~ t ! D
j S e2gt/2

11N~ t ! D
2n22 j

~9!

3(
l 50

` S 12
e2gt

11N~ t ! D
l S n1 l 2 j

n2 j D
3S n

j D rn1 l 2 j ,n1 l 2 j~0!. ~10!

As stated above, the zero-temperature reservoir is a
cial case of the amplitude reservoir. We write the solution
this case as:

rnm~ t !5e2(n1m)gt/2(
l 50

`

~12e2gt! l

3AS n1 l

n D S m1 l

m D rn1 l ,m1 l~0!. ~11!

For the diagonals only,

rnn~ t !5e2ngt(
l 50

`

~12e2gt! l S n1 l

n D rn1 l ,n1 l~0!. ~12!

b. Amplitude damping, coherent states.In this paragraph
we consider the solution of Eq.~4! in a situation appropriate
to coherent-state evolution. We follow exactly the results
Ref. @4#. For coherent states the density matrix is expand
as:
7-2
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DECOHERENCE AND DECAY OF MOTIONAL QUANTUM . . . PHYSICAL REVIEW A62 053807
r~ t !5E d2md2nP~m,n* !
un&^mu
^num&

, ~13!

whereP(m,n* ) is the positive-P representation@5–7#. The
solution to Eq.~4! is written @4#

r~ t !5E d2md2nP0~m,n* !

3^num&2e2gt/112N(t) D̂~m̄ !rT~ t !D̂†~ n̄ !, ~14!

whereP0(m,n* ) describes the initial system density matr
through Eq.~13!,

m̄5
e2gt/2

112N~ t !
$@~11N~ t !#m1N~ t !n%, ~15!

n̄5
e2gt/2

112N~ t !
$@11N~ t !#n1N~ t !m%, ~16!

andrT(t) is a thermal state density matrix withN(t) quanta:

rT~ t !5
1

11N~ t ! (
m50

` F N~ t !

11N~ t !G
m

um&^mu. ~17!

N(t) is defined in Eq.~8!. D̂ is the displacement operato
D̂(a)u0&5ua&. The form of this solution makes it difficult to
see the simple result for the off-diagonal elements of
density matrix as presented in the Introduction. The app
priate experimental measurement will reveal it when we
ply this formal result below.

2. Phase reservoir

Here we consider a reservoir whose coupling preser
the energy of the system, with interaction Hamiltonian

HI5\(
i

~G i b̂i â
†â1G i* b̂i

†â†â!. ~18!

This is known as a phase-damping reservoir.
For the system-reservoir interaction described by Eq.~18!

and a reservoir in thermal equilibrium at a temperature c
responding to a mean occupation numbern̄ @as in Eq.~5!#,
the master equation is given by@6#:

ṙ~ t !5
k

2
@2â†ârâ†â2~ â†â!2r2r~ â†â!2#. ~19!

Here k5K(2n̄11), is the system decay rate withK the
coupling to the reservoir of oscillators.

a. Phase damping, Fock states.For initial Fock states, the
solution of Eq.~19! is straightforward. Using the expansio
of Eq. ~6!,

ṙnm52
k

2
~n2m!2rnm , ~20!

with solution
05380
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rnm~ t !5e2(k/2)(n2m)2trmn~0!. ~21!

Here it is clear that the off-diagonal density-matrix eleme
decay exponentially at a rate proportional to the square
their distance from the diagonal.

b. Phase damping, coherent states.For the coherent state
basis, the solution of Eq.~19! is rather complicated. We will
forego its solution in favor of the technique presented in
next section.

B. Interferometry

This section presents an experimentally motivated
proach to calculating the decay of quantum coherences. H
the off-diagonal matrix elements are measured as the con
of an ion interferometry experiment. This section is adap
from Ref. @15#.

1. Ion states and transitions

First we review a few details necessary to understand
ion interferometer analysis. For the purposes of this sect
a trapped ion has an external degree of freedom that
perfect one-dimensional~1D! harmonic oscillator~along ẑ)
of frequencyv. The internal degree of freedom is assum
to be a perfect two-state system, the states of which we la
in analogy with a spin-1/2 system byu↓& andu↑&. The states
u↓& and u↑& are coupled to the motional harmonic-oscillat
statesun& via a classical optical laser field. The interactio
Hamiltonian has resonant couplings between internal st
us& (us&5u↓& or u↑&) and motional statesun& whose matrix
elements are@16,17#

^s8,n8uĤI us,n&5\V^s8,n8us1eih(â1â†)

1s2e2 ih(â1â†)us,n&, ~22!

wheres1 (s2) is the atomic raising~lowering! operator,â†

(â) is the harmonic-oscillator creation~annihilation! opera-
tor, V is the laser-atom coupling strength, or Rabi frequen
andh5dk z0 is the Lamb-Dicke parameter, wheredk is the
ẑ component of the applied field wave vector andz0

5A\/2mv is the harmonic-oscillator characteristic leng
@16#.

The excitation spectrum of the ion consists of a carr
transition (u↓&un&↔u↑&un&) and motional sideband trans
tions (u↓&un&↔u↑&um&nÞm). The sideband transition fre
quencies differ from that of the carrier by a frequency
(n2m)v, whereun2mu is the order~first, second, etc.! of
the sideband. With resolved sideband cooling@18# and opti-
cal pumping we prepare the ion in theu↓&u0& state before
each repetition of the experiment.

At the end of any experiment, there is one observable:
probability that the ion is found in theu↓& state, denoted by
P↓ . The measurement is not sensitive to the motional s
of the ion, so a trace over the motion is required to calcul
this probability. The final density matrix at the end of a
7-3
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Q. A. TURCHETTEet al. PHYSICAL REVIEW A 62 053807
experiment is writtenr f , and in general is not separab
between spin and motion parts@19#. The detection signal is
given by

P↓5^↓uTrMr f u↓&5(
n

^nu^↓ur f u↓&un&. ~23!

For pure statesr f5uc f&^c f u, this reduces to

P↓5(
n

u^↓u^nuc f&u2. ~24!

In experiments in which a coherence is measured, we
ploy a type of Ramsey interferometry. Generically, the p
cedure is to embed the coupling to the reservoir between
initial and final ‘‘beam splitters’’ of a Ramsey interferom
eter. The beam splitters create and undo a motional quan
state. As the coherence of the quantum state is degraded~due
to interaction with the reservoir! the contrast of the Ramse
fringes decreases, giving a measure of the remaining co
ence.

2. Amplitude reservoirs

a. Schrödinger cat interferometer and amplitude rese
voir. The first type of interferometer that we employ uses
Schrödinger cat state@10#

uc&5
1

A2
~ u↓&ua↓&1u↑&ua↑&), ~25!

where u↑& and u↓& are internal states of the ion, andua↓,↑&
are coherent states of the ion’s motion in the harmonic w
of the trap. As will be seen, the action of an amplitude r
ervoir on this Schro¨dinger cat interferometer clearly illus
trates the scaling of the decoherence as a function of the
of the superposition.

A diagram of the Schro¨dinger cat interferometer is pre
sented in Fig. 1. Initially the ion is prepared in the sta
uc&5u↓&u0&. Next, we generate the spin superpositionuc&
5(u↓&1u↑&)u0&/A2, as shown in panel 1. The motional s
perposition is created by applying a spin-dependent opt
dipole force that approximates the coherent displacement
erators@10,19# D(a↓) andD(a↑) acting on the statesu↓& and
u↑&. The resulting state~with constant phase factors su
pressed!, shown in panel 2, is that of Eq.~25!. These two
operations constitute the first ‘‘beam splitter,’’ or Rams
zone of the interferometer. During the Ramsey waiting tim
the amplitude reservoir@with coupling shown in Eq.~3!# is
applied, by placing noisy fields on the trap electrodes~this
will be discussed in Sec. III C 1 below!. The application of
the amplitude reservoir for a fixed time results in a rand
displacementb that displaces both spin states equally. Sin

D~l!uk&5e2 i Im[l* k] ul1k&, ~26!

where uk& and ul1k& are coherent states, after applicati
of the operatorD(b) to the wave function from Eq.~25!
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uc&5
1

A2
~ u↓&ua↓1b&1ei Im[bDa* ] u↑&ua↑1b&), ~27!

where Da5a↑2a↓ and an overall phase factor has be
removed. The motional superposition is reversed by apply
D(2a↓) andD(2a↑), resulting in

uc&5
1

A2
~ u↓&1e2i Im[bDa* ] u↑&)ub&. ~28!

A final p/2 pulse transforms the spins as

u↓&→
1

A2
~ u↓&1e2 idu↑&), ~29!

u↑&→
1

A2
~ u↑&2eidu↓&), ~30!

and yields the state

uc&5
1

2
@~11ei (d12 Im[bDa* ]) !u↓&

1~e2i Im[bDa* ]2eid!u↑&] ub&, ~31!

whered is the Ramsey phase, i.e., the phase difference
tween the initial and finalp/2 spin flips. These last two step
constitute the second, recombining beam splitter of the in
ferometer.

In a single experiment the probability that the ion is in t
u↓& state is

FIG. 1. Pictorial representation of the Schrodinger-cat interf
ometer with coupling to an amplitude reservoir. The coherent st
are represented by minimum uncertainty circles in phase sp
while the different spin states are indicated by the hatching. In pa
1, a spin superpositionuc&5(u↓&1u↑&)u0&/A2 is created with ap/2
pulse on the carrier transition. The cat stateuc&5(u↓&ua↓&
1u↑&ua↑&)/A2 is completed with a spin dependent dipole force,
shown in panel 2. The effects of coupling to an engineered am
tude reservoir are shown in panel 3. A random displacement byb in
panel 3 displaces both spin states equally, but with different ph
factors. After the reversal of the initial displacement in panel 4
motion may again be factored out, but leaving a relative phase s
2 Im @bDa* # between the spin components. An ensemble aver
overb leads to a loss of contrast~decoherence! that scales with the
size of the superpositionuDau.
7-4
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DECOHERENCE AND DECAY OF MOTIONAL QUANTUM . . . PHYSICAL REVIEW A62 053807
P↓~b!5u^↓uc&u25
1

2
@11cos~d12 Im@bDa* # !#.

~32!

If b were fixed on each repetition of the experiment, as
Ramsey phased is swept, the signal would be a perfect c
sine with phase dictated by the displacementb. The deco-
herence~and loss of contrast in this picture! enters, because
b is a random variable that fluctuates to a different value
each repetition of the experiment, giving rise to a rando
phase shift of the fringe that averages the contrast away f
unity. In the experiment, we forceb to be a Gaussian dis
tributed random variable, as, for example, realized by a
resistor coupled to the trap electrodes. We take both Rb
and Imb to have a standard deviations. An ensemble aver-
age ofP↓(b) yields the form of the Ramsey fringes:

P↓5
1

2
@11e22uDau2s2

cosd#. ~33!

We see that the contrast of the fringes is exponentially s
sitive to ~the square of! the ‘‘size’’ uDau of the superposi-
tion. This scaling@3,7,20# is one of the key results that i
demonstrated experimentally in a later section.

(b) Fock state interferometer and amplitude reservoir.A
second type of interferometer generates a superpositio
two Fock states with the first beam splitter using the te
nique described in Ref.@17#. For example, consider the in
terferometer that generates the superposition (u0&1u2&)/A2
and then recombines the two parts of the wave function
produce interference fringes. Starting from the stateu↓&u0&, a
p/2 pulse on the first blue sideband generates the stateuc&
5(u↓&u0&1u↑&u1&)/A2. A p pulse, tuned to the first red
sideband, drives the transitionu↑&u1&→u↓&u2& while leaving
the population in theu↓&u0& state unperturbed. This comb
nation of pulses generates the superposition

uc&5
1

A2
u↓&~ u0&1u2&). ~34!

The second beam splitter of the interferometer is realized
reversing the above procedure—driving ap pulse on the first
red sideband followed by ap/2 pulse on the first blue side
band. When the phase of the secondp/2 pulse is swept, the
spin state at the end of the experiment oscillates betweenu↓&
and u↑&.

For the experiments reported here, we use two pulse
generate the beam splitters in the Fock state interferom
For the first beam splitter, the first pulse is ap/2 pulse on the
n8th order blue sideband, generating the state

uc&5
1

A2
~ u↓&u0&1u↑&un8&). ~35!

A second pulse selectively drives only one of the spin co
ponents, resulting in the Fock state superposition
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uc&5
1

A2
us&~ um&1un&), ~36!

whereus& denotes one of the spin statesu↓& or u↑&. The four
pairs of Fock states generated in the experiments, along
the pulses used to generate the superpositions, are show
Table I.

The Fock state interferometer can be coupled to an
plitude reservoir. For simplicity, we restrict ourselves
Fock state superpositions of the form

uc&5
1

A2
u↓&~ u0&1um&). ~37!

It is an extended exercise to calculate results for the en
interferometer in the manner of the preceding case~coherent
states in amplitude reservoir!. The complication is twofold:
First, displacing Fock states leads to cumbersome exp
sions. Second, there is a problem with the beam splitters:
pulses of the second beam splitter arep and p/2 pulses
strictly for the transitions u↓&um&↔u↑&um21& and
u↓&u0&↔u↑&um21&, respectively. Thus applying thes
pulses to an ion in a motional state that has changed from
original form does not result in full spatial overlap. It turn
out that while the calculation is complicated, the details
not important to the actual experiment, which is perform
only for smallm, and in the limitgt!1. Rather than presen
the full calculation, we will merely state a simple resu
based on the master-equation approach. For states of the
shown in Eq.~37!, the time evolution of the relevant density
matrix elements predicted by Eq.~7! reduces to the simple
form

r0,m'
1

2~11n̄gt !11m
~38!

for gt!1. The measured contrast is simply twice this mat
element. For the range ofm and n̄gt studied in the experi-
ment, this expression differs by less than 5% from an ex
treatment of the imperfect spatial overlap.

TABLE I. The stimulated Raman pulses required for the fi
beam splitter of the Fock state interferometer where the initial s
is alwaysu↓&u0&. To reverse the superposition in the second be
splitter, first thep pulse is applied, followed by thep/2 pulse with
a phase added with respect to the firstp/2. RSB and BSB stand for
red sideband and blue sideband, respectively.

p/2 pulse p pulse State

carrier 1st RSB u↓&(u0&1u1&)/A2
1st BSB 1st RSB u↓&(u0&1u2&)/A2
2nd BSB 1st RSB u↓&(u0&1u3&)/A2
1st BSB 2nd BSB u↑&(u1&1u2&)/A2
7-5
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3. Phase reservoirs

(a) Schrödinger cat interferometer and phase reservoir.A
second reservoir that we apply is a phase reservoir. A ph
reservoir is realized by adiabatically changing the trap f
quency for a period of time and then restoring the origi
trap frequency. If the deviation of the trap frequency
dv(t), then the phase shift of the ion oscillation in timeT is

f5E
0

T

dv~ t ! dt. ~39!

The potentials required to change the trap frequency are
plied to the trap electrodes during the Ramsey time betw
the beam splitter pulses~see Sec. III C 2!.

The effect of a phase reservoir on a Schro¨dinger cat state
is diagrammed in Fig. 2. The generation of the Schro¨dinger
cat stateuc&5(u↓&ua↓&1u↑&ua↑&)/A2 is accomplished as
discussed previously. A phase shift of the ion oscillation
the random variablef introduces complex phase factors
the coherent states,

uc&5
1

A2
~ u↓&ua↓eif&1u↑&ua↑eif&). ~40!

Due to these phase factorseif, the motional superposition i
not correctly reversed, as shown in Fig. 2, panel 4. The s
ond beam splitter consists of the displacementsD(2a↓) and
D(2a↑) followed by a secondp/2 pulse on the carrier
yielding

uc&5
1

2
@ei ua↓u2sin f~ u↓&1eidu↑&)ua↓~eif21!&

1ei ua↑u2sin f~ u↓&2eidu↑&)ua↑~eif21!&]. ~41!

FIG. 2. Pictorial representation of the Schrodinger-cat inter
ometer with coupling to a phase reservoir. The coherent states
represented by minimum uncertainty circles in phase space, w
the different spin states are indicated by the hatching. In panel
spin superpositionuc&5(u↓&1u↑&)u0&/A2 is created with ap/2
pulse on the carrier transition. The cat stateuc&5(u↓&ua↓&
1u↑&ua↑&)/A2 is completed with a spin dependent dipole force,
shown in panel 2. Coupling to a phase reservoir is depicted in p
3. The random-phase shift in panel 3 prevents the correct rever
of the initial creation of the cat, resulting in a loss of contrast due
both the phase shiftf as well as the reduced spatial overlap.
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In a single run of the experiment, the probability to find t
ion in the u↓& state is

P↓~f!5u^↓uc&u25
1

2
$12exp@2uDau2~12cosf!#

3cos@d1~ ua↓u22ua↑u2!sinf

12~12cosf!Im a↓* a↑#%. ~42!

The phase shiftf is taken to be a Gaussian distribute
random variable with standard deviations. The average of
P↓(f) is

P↓5
1

2 H 12
1

A2ps2E2`

`

expS 2
f2

2s2
2uDau2~12cosf!D

3cos@~ ua↓u22ua↑u2!sinf#

3cos@d12~12cosf!Im a↓* a↑#dfJ , ~43!

where the odd part of the integrand vanishes. We note tha
general there is a phase shift to the fringes even though
distribution off is symmetric. In general this integral doe
not simplify. However, in the case of experimental intere
a↓}a↑ ~specifically, a↓522a↑) in which case Ima↓* a↑
50. We further make the small-angle approximation in t
integrand, which is valid ifs2!1, when the terme2f2/2s2

dominates; or, if uDau@1 and s<p, when the term
e2uDau2(12cosf) dominates. In these regimes, the integral c
be evaluated analytically to yield the signal

P↓5
1

2 H 12
cosd

A11uDau2s2
expF2~ ua↓u22ua↑u2!2s2

2~11uDau2s2!
G J .

~44!

This approximate expression provides a good guide to
behavior and can be used for a simplified comparison to
data. We note that in the experimentally accessible regim
uDau;1 –4 ands<2, Eq. ~44! is accurate to about 10%
even though the small angle approximation is not stric
valid.

(b) Fock state interferometer and phase reservoir.We
start in the state@ un&1um&] u↓&/A2. We again denote the ion
oscillation phase shift byf, and the phase shifted superp
sition is

uc&5
1

A2
u↓&~e2 i mfum&1e2 i nfun&). ~45!

In the second beam splitter a2p pulse again entangles th
spins with the motion, as

uc&5
1

A2
~e2 i mfu↓&u0&1e2 i nfu↑&un8&). ~46!

A final p/2 pulse generates the state
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uc&5
1

2
@~e2 i mf2ei (d2nf)!u↓&u0&

1~e2 i nf1ei (d2mf)!u↑&un8&]. ~47!

The projection ontou↓& yields

P↓~f!5u^↓uc&u25
1

2
$11cos@d1~n2m!f#%. ~48!

Again, the phase shift introduced between the beam s
ter pulses results in a shift of the fringes. The random-ph
shifts f are assumed to be Gaussian distributed with s
dard deviations, and the ensemble average ofP↓(f) is

P↓5
1

2
@11e2(n2m)2s2/2cosd#. ~49!

The decoherence scales exponentially with the square o
difference in the Fock state indicesn2m, so that ‘‘larger’’
superpositions lose coherence exponentially faster. Com
the scaling of the decay of the fringe contrast as a function
n2m in Eq. ~49! with the decay of the off-diagonal elemen
of the density matrixrmn given in Eq.~21!. The results are
equivalent.~See Fig. 3.!

C. Connection of averaged interferometer approach
and master equation

It is reasonable to ask in what sense the interferom
experiments of Sec. II B directly probe the relevant o
diagonal matrix elements as calculated in Sec. II A. In
case of Fock states interacting with the phase reservoir~Secs.
II A 2 and II B 3!, the connection is quite simple, in othe
cases, the connection is not as straightforward.

FIG. 3. Pictorial representation of the action of a phase reser
on a Fock state interferometer. Here we consider the interferom
that generates the stateuc&5u↓&(u0&1u2&)/A2. A p/2 pulse on the
first blue sideband generates the stateuc&5(u↓&u0&1u↑&u1&)/A2
depicted in panel 1, where the different spin states are indicate
the shading. Ap pulse tuned to the first red sideband drives t
transition u↑&u1&→u↓&u2& and generates the desired superpositi
The random motional phase shiftf in panel 3 adds a relative phas
factor, uc&5u↓&(u0&1e22ifu2&)/A2, where the phase is scaled b
the difference in indices of the Fock states~2 in this case!. A second
p pulse generates the stateuc&5(u↓&u0&1e22ifu↑&u1&)/A2 ~panel
4!. The result of the finalp/2 pulse depends on the phasef. Ran-
dom fluctuations inf result in decreased contrast of the Rams
fringes.
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1. Spin coherence

In this section we argue that the contrast of the interf
ence fringes is a measure of the coherence of the comb
spin and motional quantum state, and that the spin part
be negligible or can be removed. To address this issue,
consider the interferometer experiment in the case of
added noise. We take the example of the cat state inte
ometer discussed in Sec. II B and write the cat state of
system after the firstp/2 and displacement pulses~assumed
to be short! as a density matrix@the wave function forC
51 is given in Eq. 25#:

r5
1

2
@ ua↓&u↓&^↓u^a↓u1ua↑&u↑&^↑u^a↑u

1Cua↓&u↓&^↑u^a↑u1C* ua↑&u↑&^↓u^a↓u#, ~50!

where C5CsCm quantifies the coherence that has contrib
tions from both the spin (Cs) and motion (Cm). This separa-
tion of the contrast into a product of spin and motion con
butions is valid for reservoirs in which the spin and moti
are not coupled, such as the amplitude, natural, and ph
reservoirs. Moreover, separate experiments verify that
spin is not disturbed by or during the time of application
our engineered phase, amplitude, and zero-temperature
ervoirs, so that in these experiments the fringe contrast
simple probe of the change in motional coherence. The o
reservoir experiments in which the spin decoherence is
negligible are the natural reservoir experiments, since for
of our applied reservoirs the time of application is short. F
the natural reservoir experiments, we are forced to sim
wait a timet for the ambient noise to act on the system. No
that the separation of coherences is valid if the spin und
goes only phase decay, with no random spin-flip transitio
which is verified in our experiments. To within experiment
errors, we can adequately characterize spin decoherenc
exponential,Cs5exp(2gst).

In the second part of the cat state interferometer, the s
ond displacement is applied, undoing the first displacem
leaving

r5
1

2
@ u0&u↓&^↓u^0u1u0&u↑&^↑u^0u

1Cu0&u↓&^↑u^0u1C* u0&u↑&^↓u^0u#. ~51!

The finalp/2-pulse with phased transforms the spins as i
Eqs.~30!, and the detection ofu↓& with trace over the motion
leaves:

P↓5
12Re~C!cosd

2
. ~52!

Thus the contrast of the Ramsey fringes depends directly
the coherence.

2. Cats, amplitude noise

The interferometer calculations presented in Sec. II B p
dict the outcome of particular experiments. The mast
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equation solutions in Sec. II A do not. In this section, w
take the solution of the master equation, in terms of the t
evolution of a density matrix and derive a prediction for
interferometer experiment. The result is shown to be equ
lent to the average-over-classical-variables approach in
II B. We do this for the Schro¨dinger cat interferometer sub
ject to amplitude noise. The solution to the master equa
was given in Sec. II A 1. It is a straightforward matter to a
the spin part to this solution, which must be done for t
interferometer calculation. Starting from Eq.~14!, we divide
the initial density matrix@written as an initialP function
P0(m,n* )# into four parts, corresponding to the initial sta
uc&5(u↓&ua↓&1u↑&ua↑&)/A2:

P0~m,n* !5P0
(1)~m,n* !1P0

(2)~m,n* !1P0
(3)~m,n* !

1P0
(4)~m,n* ! ~53!

with

P0
(1)~m,n* !5

1

2
d~m2a↓!d~n2a↓!u↓&^↓u, ~54!

P0
(2)~m,n* !5

1

2
d~m2a↑!d~n2a↑!u↑&^↑u, ~55!

P0
(3)~m,n* !5

1

2
^a↑ua↓&d~m2a↓!d~n2a↑!u↓&^↑u,

~56!

P0
(4)~m,n* !5@P0

(3)~m,n* !#†. ~57!

From Eq.~14! this leads to four contributions tor(t)

r~ t !5r (1)~ t !1r (2)~ t !1r (3)~ t !1r (4)~ t ! ~58!

with

r (1)~ t !5
1

2
D~ ā↓!rT~ t !D †~ ā↓!u↓&^↓u, ~59!

r (2)~ t !5
1

2
D~ ā↑!rT~ t !D †~ ā↑!u↑&^↑u, ~60!

r (3)~ t !

5
1

2
^a↑ua↓&12@e2gt/112N(t)#D~ ā↓!rT~ t !D †~ ā↑!u↓&^↑u,

~61!

r (4)~ t !5@r (3)~ t !#†, ~62!

whereā↓,↑ are defined as in Eqs.~15! and~16!. To complete
the experiment, we apply a second displacement, whic
given by the operator

u↓&^↓uD~a↓e2 iu!1u↑&^↑uD~a↑e2 iu!, ~63!

whereu is the phase of the second displacement with resp
to that of the first. We then apply the finalp/2 Ramsey pulse
05380
e
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that transforms the spins as in Eq.~30! and measure the
probability that the ion is in the spin-down state, as discus
in the context of Eq.~23!. Thus we are interested only in th
component ofr given byr↓[^↓ur f u↓&, wherer f is the den-
sity matrix after the final displacement and Ramsey puls
Furthermore, since we do not measure the motional stat
trace over the motional degrees of freedom is required:

P↓~ t !5Trnr↓~ t !5(
n

^nur↓~ t !un&. ~64!

The quantityr↓ is given by

r↓~ t !5r↓
(1)~ t !1r↓

(2)~ t !1r↓
(3)~ t !1r↓

(4)~ t ! ~65!

with

r↓
(1)~ t !5

1

4
D~a↓e2 iu!D~ ā↓!rT~ t !D †~ ā↓!D †~a↓e2 iu!,

~66!

r↓
(2)~ t !5

1

4
D~a↑e2 iu!D~ ā↑!rT~ t !D †~ ā↑!D †~a↑e2 iu!,

~67!

r↓
(3)~ t !52

1

4
eid^a↑ua↓&12@e2gt/112N(t)#D~a↓e2 iu!

3D~ ā↓!rT~ t !D †~ ā↑!D †~a↑e2 iu!, ~68!

r↓
(4)~ t !5@r↓

(3)~ t !#†. ~69!

In what follows, we assume thata↓,↑ are real. Performing
the trace, we find that Trnr↓

(1)5Trnr↓
(2)51/4 and that

Trnr↓
(3,4) gives rise to the interference. Using the identity

D~k!D~l!5e
1
2 (kl* 2k* l)D~k1l!, ~70!

substituting forrT from Eq. ~17! and using the closure rela
tion (mum&^mu51,

Trnr↓
(3)~ t !5

1

11N~ t !
ei (a↑2a↓)(ā↓1ā↑)sin u

3(
m

S N~ t !

11N~ t ! D
m

Lm~ ubu2!e2
1
2 ubu2

,

~71!

where b5a↑e2 iu1ā↑2a↓e2 iu2ā↓ and L is a Laguerre
polynomial which comes from ^muD(k)um&
5exp(2uku2/2)Lm(uku2). Using (memLm(x)5(1
2e)21exp@2ex/(12e)# and further simplifying,

P↓~ t !5
1

2
2

1

2
e2(a↓2a↑)2[11n̄(12e2gt)1e2gt/2cosu]

3cos@d1e2gt/2~a↑
22a↓

2!sinu#. ~72!

For all of our experiments we can consider the hig
temperature, short-time limits:n̄@1 andgt!1. In this limit,
7-8
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P↓~ t !5
1

2
$12e2(a↓2a↑)2[11n̄gt1cosu]

3cos@d1~12gt/2!~a↑
22a↓

2!sinu#%. ~73!

Normally, the second displacement is the reverse of the
(u5p) and the Ramsey fringes in Eq.~33! are recovered
with the associationn̄gt→2s2. The scaling with the squar
of the size of the initial state is evident. The constant term
the exponential measures a residual overlap between the
tial state and the final state, present even in the infinite t
limit.

Similar procedures to this for other types of initial stat
and reservoirs yield results that agree with those from
interferometer averaging over random displacements/ph
approach given in Sec. II B.

III. EXPERIMENT

A. Ion trap

We use a miniaturized version of the linear Paul trap@21#.
A diagram of the trap structure is shown in Fig. 4. It consi
of two alumina wafers separated by 200mm with alumina
spacers~not shown!. Each wafer has a slot 2 mm long b
200mm wide. Gold is deposited onto the edges of the slo
form electrodes. One side of the slot is the rf electrode,
the other side is divided into three segments to which diff
ent static potentials are applied to make a static well al
the z axis. The segmented electrodes are formed by cut
two side slots of width 20mm. The side slots are separate
by 200 mm, forming two ‘‘endcaps’’ and one ‘‘middle’’
electrode. When the wafers are sandwiched together with
spacers, the four interior edges of the main slots approxim
the four wires of a linear quadrupole trap. The microfab
cated structure described here allows miniaturization of
linear trap and correspondingly high-trap strength.

The linear trap is mounted at the end of an rf quart
wave coaxial resonator that supplies the required rf volt
@22#. The trap and coaxial resonator are contained within
UHV enclosure, as in Ref.@22#. The two rf electrodes are

FIG. 4. Schematic diagram of the electrodes of the linear t
~not to scale!. The trap electrodes are formed by evaporating g
onto alumina substrates. The outer segmented electrodes ar

endcaps, while the long unbroken electrodes carry rf. The axialẑ)
direction is parallel to the rf electrode. The two separate trap wa
are separated by 200mm with alumina spacers~not shown!.
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connected to the tip of the coaxial center conductor. Each
the static-potential segments are connected to U
feedthroughs through a pair of 200 kHz RC low-pass filt
in series. The coaxial resonator is 30 cm long and partia
filled with alumina to lower its resonance frequency
VT/2p5113 MHz. With 8 W of rf power, the radial secula
frequencies are approximately 13 MHz. The axial potentia
controlled by the static potentials applied to the segmen
electrodes. Positive potentials are applied to the endcap
confine positive ions in the middle of the trap. For the da
presented in this paper, we restrict our attention to the a
mode of motion. With 30 V applied to the endcap segme
and the middle segments and rf electrodes held at s
ground potential, the axial frequency isvz/2p511.3 MHz.

B. Raman transitions and cooling the ion

The level structure of9Be1 is shown in Fig. 5. We selec
two states from the ground-state hyperfine manifold: theuF
52,mF522& state, which we labelu↓&, and theuF51,mF
521& state, which we labelu↑&. The ion is Doppler cooled
by applying circularly polarized light detuned;8 MHz be-
low the strongly-allowed (G/2p519 MHz! cycling transi-
tion 2s 2S1/2u2,22&→2p 2P3/2u3,23& ~beam D2 of Fig. 5!.
Due to imperfects2 polarization the ion optically pumps to
the u1,21& state with a probability;131024. To prevent a
loss of cooling from these decay events, we apply laser li
resonant with the transition 2s 2S1/2u1,21&→2p 2P1/2u2,
22&. This transition is labeled D1 in Fig. 5. After Dopple
cooling, the mean occupation number of the axial mode
motion is ^n&'1.

We efficiently detect~Fig. 6! the u↓& internal state of the
ion by applying Doppler beam D2 with no D1 light@18#. The
fluorescence collection system has af /1.2 aperture, and the
light is transferred onto the photocathode of a photomu
plier tube ~PMT!. The PMT quantum efficiency is'30%.
After all losses at windows and filters, the overall scatter
photon detection efficiency is measured to be'1.531023.
For detection, the laser is at the same detuning as for D
pler cooling and the intensity is kept well below saturati
I;0.1I sat. During a 200-ms-detection period, we collect a

p
d
the

rs

FIG. 5. Simplified level diagram of9Be1 ~not to scale!. The
transitions labeled D are: D1: optical pumping~also called red Dop-
pler!, D2: detection/cooling, D3: repumping. The transitions labe
R are the two arms of the two-photon stimulated-Raman transit
D is the detuning between the 2p 2P1/2 and the Raman virtual leve
andv0/2p51.25 GHz is the 2s 2S1/2 hyperfine splitting. The fine-
structure splitting of the P state is 197 GHz. The transition wa
length from the S to P state is 313 nm.
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average of 10 photons if the ion is in theu↓& state, and 0.1
photons if it is in theu↑& state. The photon distributions ar
Poissonian. By averaging the number of photons detecte
successive repetitions of a given experiment and normaliz
to the count rate when the ion is prepared in a control
periment in theu↓& state~by simple optical pumping!, we
determine the probabilityP↓ .

In previous experiments using miniature spherical qu
rupole ion traps~see e.g., Ref.@24#!, ion internal state dis-
crimination was limited by sidebands on the 2s 2S1/2F51
→2p 2P1/2, F52 transition due to ion micromotion at fre
quency VT . Thus a laser tuned to transition D2 wou
weakly drive an ion in theu↑& state. The miniature linear tra
addresses the issue of micromotion in two ways. First, th
is negligible micromotion associated with the confinem
along the axis of the trap. Second, the close proximity of
static-potential electrodes permits accurate cancellation
stray static fields, resulting in negligible sidebands on
transitions from micromotion. This permits state discrimin
tion of 97% in a single experiment. This is shown in Fig.
Even in the absence of micromotion, detection efficiency
limited by off-resonant optical pumping of theu↑& state by
the detection laser@23#.

We drive coherent stimulated Raman transitions with
pair of laser beams~such as R1 and R2 shown in Fig. 5!
detunedD/2p'10 to 20 GHz from the 2s 2S1/2→2p 2P1/2
transition nearl5313 nm. The Raman beams are deriv
from a single dye laser beam that is frequency doubled,
the difference frequency between the two Raman beam

FIG. 6. Detection efficiency. The graphs show histograms
photons collected in a 200ms interval for 2000 repetitions of the
experiment for the two initial statesu↓& and u↑&. Note that if a
discriminator were placed at the bin associated withn53 photons,
then, on a per experiment basis, the state of the ion would be
distinguishable with a 97% quantum efficiency.
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generated with several acousto-optic modulators in ser
We employ three types of Raman transitions, distinguish
by beam geometry and difference frequency@16,25#. The
beam geometry sets the projection of photon momen

onto the axis of the trap (ẑ), characterized by the wave vec

tor differencedk5(k12k2)• ẑ. The coupling of this photon
momentum to the motion of the ion is parametrized by
Lamb-Dicke parameterh5dk z0, where z05A\/2mv'7
nm is the harmonic-oscillator characteristic length for ax
motion.

The three types of Raman transitions are as follows.~i!
Copropagating beams (dk'0) drive a motion-independen
‘‘spin-flip’’ transition, u↑&un&↔u↓&un&. The frequency differ-
ence between the Raman beams is set equal to the frequ
difference between the states,v05vh f1vZ , where
vh f/2p'1.25 GHz is the hyperfine splitting andvZ/2p
'12 MHz is the Zeeman splitting due to an applied ma
netic fielduBu'0.57 mT.~ii ! Beams oriented 45° to the tra
axis and 90° to each other result in a wave vector differe
pointing along the trap axis withdk52A2p/l and couple to
the axial motion. For the conditions of this experiment,h
'0.20. These beams at difference frequenciesv01vDn,
couple the statesu↓&un& andu↑&un1Dn&. In the Lamb-Dicke
limit, ( h2^n&!1), the strength of the sideband coupling
proportional toh uDnu. The Raman beams in cases~i! and~ii !
are linearly polarized, with one beam polarized parallel
the quantization axis (Dm50) and the other polarized per
pendicular (Dm561). Note that only thes2 component of
the latter beam is required to drive the Raman transition,
the use of linear polarized light reduces the Stark shifts re
tive to the case of using circularly polarized light.~iii ! Beams
oriented as in~ii !, with difference frequency set equal to th
axial secular motion frequencyv approximate the harmonic
oscillator displacement operatorD(a), defined by the rela-
tion D(a)u0&5ua&, andua& is a coherent state. In the Lamb
Dicke limit, the displacementuau5hVDt is proportional to
the duration of the laser pulset and the Rabi frequencyVD ,
andu is set by the phase and polarization of the applied la
fields. In this case, the two Raman beams are linearly po
ized such that the polarization vectors are mutually ortho
nal to both each other and to the quantization axis. T
cancels Stark shifts to a high degree and results in the
spin states being simultaneously displaced in opposite di
tions such thata↑52a↓/2.

The ion is first prepared in the ground state of moti
with resolved sideband Raman cooling@18#. Raman cooling
consists of repeatedly driving the first red-Raman sideb
of the axial-motion-sensitive transition, case~ii ! with Dn
521, followed by optical pumping to theu↓& state after
each Raman pulse. The optical pumping is achieved by
plying beams D1 and D3~see Fig. 5!. The rate at which the
ion undergoes the red sideband Raman transition depend
the initial state of motion asV rsb}An. The duration of the
successive Raman pulses is progressively lengthened, s
to successively drivep pulses on theni→ni21,ni21→ni
22, etc., transitions, whereni is the total number of cooling
pulses. The final pulse of this sequence is selected to dri
p pulse on theu↓&u1&→u↑&u0& transition. After each Raman

f

7-10



e

te
t.

DECOHERENCE AND DECAY OF MOTIONAL QUANTUM . . . PHYSICAL REVIEW A62 053807
FIG. 7. Calibration of displacement amplitud
for ~a! uniform electric-field drive and~b! laser
drive. They axis is in terms of the coherent-sta
amplitudea, determined as described in the tex
g,
at

h
m

pl
of
a
is

a
a

al

-
g
e
e
-

m
a

ib

ing
-

en

is
pe

p-
t of

f an
in

to a
he
is-
re-

und

he

he
tep.
the

eat
lting
bi
e in

s is
pulse, we drive theD1 andD3 transitions for 5ms, optically
pumping any population in theu↑& state, or the (2,21) state
to the u↓& state. Typically, after 6 cycles of Raman coolin
the ion has a probability of 95% to be in the ground st
u↓&u0&.

C. Ion interferometry: techniques

In the experiments reported here, we measure the co
ence of quantum superpositions with single-atom interfero
etry, analogous to that used in our previous work@10# and
discussed in Sec. II B. The motional state of the ion is s
into a superposition of two parts. The ‘‘beam splitters’’
our interferometers consist of a pair of stimulated Ram
pulses. We employ two types of interferometers, both d
cussed in Sec. II B.

1. Ion interferometry: Cat states

The Schro¨dinger-cat interferometer starts with the usu
ground-state (u↓&u0&) preparation. The first pulse is then
p/2 pulse on the motion-independent transition~i!, with
drive time typicallyTp/2'0.3 ms, which generates an equ
spin superposition,u↓&u0&→(u↓&1u↑&)u0&/A2 as indicated
schematically in Fig. 1, panel~1!.

We drive Raman transition~iii ! to excite the motion asso
ciated with each spin state into a coherent state, resultin
the state of Eq.~25!. We call this the displacement puls
@Fig. 1, panel~2!#. We vary the length of the Raman driv
pulse in order to varyua↓u andua↑u. We independently mea
sure ua↓u and ua↑u in the following manner@17# @which is
also discussed in the context of Eqs.~85! and ~86!, below#.
The ion is prepared in a coherent state, and then Ra
transition~ii !, tuned to the first blue sideband, is driven for
variable timetp . After this ‘‘probe’’ Raman transition, we
determine the probabilityP↓(tp). The resulting curve may be
decomposed into sums of sinusoids that correspond toDn
51 transitions between Fock states. The Fock state distr
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tion is then fit to that of a coherent state, thereby extract
uau @17#. The values ofua↓u and ua↑u are measured sepa
rately, by preparing the ion in either theu↓&u0& state or in the
u↑&u0& state, applying the coherent drive pulse, and th
probing and detecting as just described. Curves ofua↓,↑u vs
the lengtht of the displacement pulse are shown in Fig. 7~b!.
The ratioua↓u/ua↑u52.060.1, averaged over the data set,
consistent with the expected value of 2. The slo
duDau/dt5hV is consistent with the expected value.

The Schro¨dinger-cat interferometer is completed by a
plying a second coherent displacement pulse 180° ou
phase from the first displacement pulse@Fig. 1, panel~4!#.
The phase of the displacement is set by the phase o
oscillator that drives an acousto-optic modulator that is
one of the Raman beams. All phases are referenced
master oscillator by phase locking to that oscillator. If t
motion was unperturbed during the time between the d
placement pulses, then the inverse displacement would
store the motion associated with each spin state to the gro
state of motion. The wave function would return touc&
5(u↓&1u↑&)u0&/A2. A secondp/2 pulse on the motion-
independent spin-flip transition, with phased relative to the
first p/2 pulse, interferes with the spin components. T
probability P↓(d) varies sinusoidally withd. To record
P↓(d), we step the frequency of the oscillator controlling t
p/2 pulses and bin the fluorescence counts at each s
Here, d is the accumulated phase difference caused by
frequency difference between the oscillator frequencyn and
n0 as in normal Ramsey spectroscopy. We typically rep
the experiment 100 times at each step. Note that the resu
fringe spacing is much smaller than the width of the Ra
pedestal, meaning that the predominant effect is a chang
phase, without introducing significant inaccuracy in thep/2
pulse. We typically record three oscillations ofP↓ . The
fringes are fit with a sinusoidA1B cos(v2v0)T, whereT is
the time between spin pulses. The contrast of the fringe
7-11
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defined asB/A. For the basic interferometer just describe
with no perturbations of the motion between the ‘‘bea
splitter’’ pulses, the contrast is typically 0.6–0.8. This co
trast differs from unity for several reasons.~1! Errors in the
p/2 spin-flip pulses, primarily due to laser power fluctu
tions. ~2! Fluctuating magnetic fields that reduce the sp
coherence through fluctuating Zeeman shifts.~3! Motional
heating during and between the displacement pulses,
further small contributions due to inaccuracies in revers
the initial displacement pulse. These effects are expecte
be random and should not influence the additional deco
ence caused by the applied reservoir~see Sec. II C!.

2. Interferometry: Fock state interferometer

The Fock state interferometer beam splitters combin
p/2 pulse with ap pulse on transitions of either type~i! or
~ii !, as shown in Table I. As an example, consider the g
eration of the superpositionu↓&(u0&1u2&)/A2. A p/2-pulse
on the first blue sideband, transition type~ii ! with Dn511
and duration Tp/2'1 ms, drives the transitionu↓&u0&
→(u↓&u0&1u↑&u1&)/A2. A p pulse on the first red sideband
transition type~ii ! with Dn521 and durationTp'1.5 ms,
drives the transitionu↑&u1&→u↓&u2&. This second pulse doe
not affect the population in theu↓&u0& state. The result of
these two pulses is the desired stateuc&5u↓&(u0&1u2&)/A2.
The second beam splitter recombines the two parts of
wave function by driving a secondp pulse on the red side
band followed by ap/2 pulse on the blue sideband. B
sweeping the frequency of the blue sideband oscillator
generate Ramsey fringes in the probabilityP↓ . Contrast
~without coupling to the reservoir! is limited by the same
mechanisms as in the Schro¨dinger-cat interferometer.

D. Engineering reservoirs: techniques

1. High-temperature amplitude reservoir

As discussed in the Introduction, the motion of a trapp
ion couples to environmental electric fieldsE through the
potentialU52qx•E, wherex is the position of the ion rela
tive to its equilibrium position~proportional to the amplitude
of motion! and q is the charge of the ion. IfE is due to a
reservoir of fluctuating field modes, thenE}( iei(b̂i1b̂i

†),

where b̂i , b̂i
† are the lowering and raising operators of t

field modes~as in Sec. II A 1!. A classical coherent drive~for
which E is a narrow-band sine-wave! applied to the trap
electrodes at the ion axial motional frequencyv results in a
displacement of the motional state proportional to the s
and duration of the applied field. This is shown in Fig. 7~a!
for two different durations of the applied field. We simula
the effects of the high-temperature amplitude reservoir
cussed in Sec. II A 1 by applyingrandom electric fields
along the axis of the trap, whose spectrum is centered on
ion axial motion frequencyv.

To generate the required axial fields, we apply a poten
to one of the endcap electrodes. This generates both an
field and a small radial field. We ignore the effect of t
radial field since we are insensitive to motion in the rad
direction. This field also modulates the axial potential a
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gives rise to an accompanying~random! phase shift; how-
ever, for the experimental conditions this phase shift is n
ligible. We start with a 10 MHz bandwidth noise source th
rolls off at 6 dB/octave starting at 10 MHz. We filter th
noise such that the resulting noise spectrum has 3 dB po
at 9 MHz and 11.5 MHz, and the noise rolls off at 6 d
octave above and below these points. This spectral nois
applied to the trap electrodes through a network ofRC low-
pass filters designed to prevent such fields from reaching
static trap electrodes. The filters effectively limit ambie
noise from reaching the electrodes, but large deliberately
plied fields can still be effective. The noise is applied f
3 ms between the Ramsey zones. The total time for the R
sey experiment~the time between thep/2 spin-pulses! is
aboutT520 ms and is held fixed. For these filters, trap g
ometry and application time, it can be shown that this type
drive correctly simulates an infinite-bandwidth, amplitud
only reservoir.

2. Phase reservoir

A phase reservoir, as described in Sec. II A 2, is simula
by random variations in the trap frequencyv, changing the
phase of the ion oscillation without changing its energy. W
realize this coupling experimentally by adiabatically mod
lating the trap frequency. The random potential fluctuatio
are filtered through a low-pass network with a cutoff fr
quency well belowv to maintain adiabaticity and to avoi
any power at the trap secular frequency, which may ca
amplitude noise. The potential fluctuations are applied to
of the middle electrodes, which is symmetric with respect
the axial direction, so as to produce field gradients and m
mize any applied uniform axial fields further reducing t
possibility of changing the motional energy. Applying a p
tential to just one middle electrode does result in a rad
field, but as before, we isolate the axial motion and ign
any radial motion.

In the phase reservoir, the ion follows the change in t
frequency in the sense that there is no change in the en
of the trap motion, however the phase is either advance
retarded relative to the unperturbed motion. We start wit
10 MHz pseudorandom noise source and filter the noise,
ating a spectrum that is flat between 1 kHz and 100 kHz w
a roll-off of 12 dB/octave above 100 kHz and 6 dB/octa
below 1 kHz. The phase deviation of the ion motion is r
lated to the voltage deviation on the electrodes. The t
axial frequency is related to the voltage difference betwe
the endcap and middle segments by the relationvz}AV0.
The deviation of the trap frequency is given bydv/vz
'dV/4V0 since only one electrode is driven. The phase s
of the ion motion is the integral of the frequency deviati
over the time of the noise pulseTn , df[*0

Tndvzdt

5*0
Tnvz(dV/4V0)dt. Typically Tn510 ms. We cannot di-

rectly measure the voltage on the trap electrodes since s
of the filters between our noise generator and the electro
are within the vacuum enclosure. However, on a mock up
the trap electrodes and the associated filters, we measure
voltage deviations with an integrating circuit. These me
surements verified that the phase deviations are Gaus
7-12
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FIG. 8. ~Color! Heating of the
motional state. Att50 the ion is
prepared in a state near the groun
stateu0&. As time passes, the ion
heats out of the ground state, a
measured by the energy in the mo
tional state, which is proportiona
to the average occupation numb
^n&.
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distributed, with a width that varies with the applied noi
voltage, and that negligible voltage noise is added at the
secular frequency. In separate experiments, we verified
the change in motional energy was negligible during the
plication of the phase reservoir.

3. Natural reservoir

The third type of reservoir is not engineered, but is t
ambient, or ‘‘natural’’ noise in our trap. We have previous
observed heating in miniaturized Paul traps@26#. We have
further determined that this ambient noise is dominated
uniform field fluctuations rather than field-gradient fluctu
tions @27#. We do not currently have an explanation of t
heating mechanism. However, thermal or Johnson no
background gas collisions, and several other sources are
small to explain the heating rate. We do know that this a
bient noise source adds energy to the ion~amplitude noise!,
and that the state of the ion evolves into a thermal state w
steadily increasing temperature. The suspected cause is
tuating patch potentials at the trap electrodes, a problem
is exacerbated by the small size of our trap@26#. To observe
the effects of this heating on quantum coherences, we sim
run the Ramsey interferometer experiment with varying ti
between the Ramsey pulses.

We can also observe the effect of the heating on the
ergy of the motional state. We find that due to our unkno
environmental source of noisy electric fields, the ion he
from the ground state at a rate linear in time with]^n&/]t
;5.761 quanta per ms. Shown in Fig. 8 are data for
mean quantum number in the motion as a function of de
time. That is, the ground state is prepared and the ave
quantum number is measured after a fixed delay timet. At
each point the motional state is thermal as determined by
method of Refs.@17# and @26#.

4. Zero-temperature reservoir

The fourth type of engineered reservoir was a ze
temperature reservoir realized by laser cooling. Some th
retical results for this reservoir were mentioned briefly
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Sec. II A 1a. The experimental scheme is outlined in Fig
and follows a proposal by Poyatoset al. @28#. The goal is to
simulate decay of the statesu↓&un& into aT50 reservoir. To
do this, we simultaneously drive on the first red sideba
transitionsu↓&un&→u↑&un21& at a Rabi frequencyV rsb and
the red-Doppler~D1 from Fig. 5! from u↑& to theP1/2 level at
a rate VD(!G). This is effectively a continuous Rama

FIG. 9. Engineering aT50 reservoir with laser cooling: sche
matic diagram of the levels. The top panel shows the full thr
~internal! level system~dressed by the motional states!, while the
bottom panel shows the equivalent two-level system. The red D
pler beam with resonant Rabi frequencyVD is used to give theu↑&
state an effective linewidthg[geff'VD

2 /G. Simultaneously the red
sideband~rsb! is driven coherently at rateV rsb to drive population
out of theu↓& state. The sum of the two applied fields simulates
variable bandwidth zero temperature reservoir.
7-13
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Q. A. TURCHETTEet al. PHYSICAL REVIEW A 62 053807
cooling process~in contrast to the stepwise Raman cooli
process described at the end of Sec. III B! which eventually
relaxes the system to a state in which all population is in
ground stateu0&u↓& @29,30#. The u↑& level is given an effec-
tive decay rategeff;VD

2 /G. We begin by preparing an initia
state u↓&(u0&1u2&)/A2. The point of the experiment is t
follow the time evolution of the coherence of this sta
(r0↓,2↓ as we label the relevant off-diagonal element of t
density matrix! as it decoheres during the cooling proce
To gain a qualitative understanding of the experiment we
consider a reduced problem, as follows.

We are simulating aT50 reservoir by simultaneousl
driving ~resonantly! on the red sideband and red-Doppl
transitions. The red-Doppler drive gives theu↑& state an ef-
fective linewidthgeff ~see Fig. 9!. The system density matrix
obeys the following time evolution:

ṙ5 i @r,H#1
geff

2
@2s2rs12s1s2r2rs1s2# ~74!

with interaction-picture Hamiltonian

H5g~a†s21as1!, ~75!

where g[V rsb is the Rabi rate of the red sideband dri
~assumed real! ands1 (s2) is the raising~lowering! opera-
tor of the atom. Here we have neglected the effects of re
heating, valid forh2!1. This is simply the master equatio
for a driven, decaying two-state atom dressed by couplin
a harmonic-oscillator system@familiar to cavity QED as the
Jaynes-Cummings model@31# with atomic ~but no cavity!
decay#. We consider the experiment in which we make
initial state

c05u↓&~ u0&1um&)/A2 ~76!

and we measure the coherence that we callrm↓,0↓ . Equation
~74! leads to:

ṙm↓,0↓52 iAmgrm21↑,0↓ , ~77!

ṙm21↑,0↓52 iAmgrm↓,0↓2
geff

2
rm21↑,0↓ . ~78!

The solution to this set of differential equations@with initial
conditions specified by Eq.~76!# is

rm21↑,0↓5
2 iAmg

2~l12l2!
@el1t2el2t#, ~79!

rm↓,0↓5
1

2~l12l2! F S l11
geff

2 Del1t2S l21
geff

2 Del2tG
~80!

with

l652
geff

4
6

1

2
Ageff

2

4
24mg2. ~81!
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Consider two limiting cases. In the firstg@geff , so thatl6

have an imaginary part. Here the time evolution of the c
herence is an exponentially decaying cosine, reflecting
fact that the coherent drive is faster than the decay rate:

rm↓,0↓~ t !→e2gefft/4

2
cos~Amgt!. ~82!

In the second caseg!geff , so thatl6 are strictly real. In
this case,

rm↓,0↓~ t !→1

2
expS 2m

2g2

geff
t D , ~83!

and we have simple exponential decay of the off-diago
density-matrix element. It is instructive to compare this
the T50 limit of the amplitude reservoir presented in Se
II A 1a. From Eq.~11!, with rom(0)51/2

r0m5
1

2
expS 2m

g

2
t D . ~84!

With the identificationg/2→2g2/geff , Eqs.~83! and~84! are
identical. This is the anticipated result, since the effect
linewidth of the u↑& state is simply the square of the Ra
frequency divided by the bare decay rate, and in the cas
the red sideband the Rabi frequency scales asgAm.

IV. DATA

To reiterate, the experiments consist of a Ramsey t
interferometer experiment in which the ion is coupled to o
of the engineered reservoirs between the initial and fi
‘‘beam splitter’’ pulses. The experiment proceeds as follow
The ion is first Doppler cooled and then Raman cooled, p
paring the ion in theu↓&u0& state. The state preparatio
pulses are then applied to generate the desired superpos
~first beam splitter!. A period of time elapses during whic
the ion is coupled to the reservoir. After this time, we reve
the sequence of pulses used in state preparation~second
beam splitter!. The resulting internal state of the ion depen
on the frequency and phase of the oscillators used in
preparation and reversal pulse sequences. The ion inte
state is detected as described in Sec. III B. The contras
the resulting Ramsey fringes is a measure of the motio
state coherence, which decreases with increasing interac
with the reservoir, either in time or in strength~applied volt-
age noise!.

A. Schrödinger-cat decoherence

1. Cat states, applied amplitude noise

The effect of coupling the Schro¨dinger-cat interferomete
to the engineered amplitude reservoir is shown in Fig.
The reservoir is simulated by driving particular trap ele
trodes with a noisy potentialV near the trap secular fre
quency as discussed in Sec. III D 1. The amplitude reser
7-14
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DECOHERENCE AND DECAY OF MOTIONAL QUANTUM . . . PHYSICAL REVIEW A62 053807
is coupled to the ion for 3ms between the beam splitte
pulses of the interferometer. The variances2 of b ~Sec.
II B 2a! is proportional to the mean-squared voltage no
^V2&. Figure 10 shows a plot of the interference fringe co
trast as a function of the applied mean-squared volta
scaled by the squared ‘‘size’’ of the cat stateuDau2. Decay
curves were recorded for a variety of superposition si
uDau, and all the data agree with a single exponential, a
Eq. ~33!. The initial contrast for each value ofuDau is nor-
malized to unity at̂ V2&50.

2. Cat states, natural noise

The natural noise that gives rise to the heating descri
in Sec. III D 3 causes decoherence. For this experiment,
simply wait for some amount of time between the Rams
zones and measure the fringe contrast as a function of
time. The results are shown in Fig. 11. As in the previo
case, the results are consistent with a single exponential.
time, the decay constant has meaning relative to anothe
perimental quantity: it should be the same as that meas
for the heating. For example, the mean quantum numbe
the system is given by Eq.~8!, from whichg is interpreted as
the heating rate of Sec. III D 3. The decay constant relev
to the decoherence measured in Fig. 11 is given by Eq.~73!,
with the same coupling constantg appearing. The measure
numbers forg agree reasonably well. We find a decay rate
g/2p55.761 quanta/ms from the heating data~Fig. 8! and
g/2p57.560.7 quanta/ms from the decoherence data~Fig.
11!. Discrepancies can easily arise due to variations in h
ing rate from day to day and other systematic errors that
not included in the error quoted ong, such as miscalibration
of the size of the coherent statesDa. In addition, there is
some spin decoherence during the 80ms of Ramsey time
used for the longest data points~see the discussion of Se
II C!. The contrast is normalized to unity att50.

FIG. 10. Decay of Schro¨dinger-cat state coherences with appli
amplitude noise. Note the universal scaling of the states to an
ponential with decay constant proportional touDau2. The reservoir
was applied for 3ms.
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3. Cat states, phase noise

Results from coupling of the Schro¨dinger-cat interferom-
eter to the engineered phase reservoir are shown in Fig
The theory has only one free parameter, which is a scalin
convert voltage noise to phase deviation~see below for a
discussion of this!. The theory curves are from Eq.~44!, all
with the same scaling parameter. Note that there is no sim
universal scaling law for the functional form of the decohe
ence as there is in the case of Schro¨dinger cats subject to
amplitude noise. The contrasts at^V2&50 are normalized to
unity. The phase noise reservoir is applied for;10 ms.

x-

FIG. 11. Decay of Schro¨dinger-cat state coherences in natu
amplitude noise. Note again the universal scaling of the states t
exponential with decay constant proportional touDau2, and that the
decay constant is the same as that derived from the heating da
Fig. 8. This is discussed further in the text.

FIG. 12. Decay of Schro¨dinger-cat state coherences in an a
plied phase noise reservoir. Several sizes of cats are shown.
reservoir was applied for 20ms.
7-15
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B. Decoherence of superpositions of Fock states
and decay of Fock states

1. Fock states, phase noise

Coupling the Fock state interferometer to phase noise
sults in the simple behavior predicted by Eq.~21!. This is
confirmed in the data of Fig. 13 in which the fringe contra
of the interferometer is measured for different values of
applied phase noise reservoir. The data for different ini
Fock state superpositions are scaled by the squared ‘‘s
(Dn)2 of the superposition in order to show the univers
scaling law of Eq.~21!. The scaling of thex axis of the graph
is a free parameter in the theory. In principle, the size of
noise measured in radians could be known from the varia
of the applied noisêV2&. However, in practice, unknown
geometrical factors in converting voltage on a subset of
trap electrodes to change in trap secular frequency, prev
a direct comparison. A rough estimate, nonetheless, giv
correspondence of aboutp radians of phase noise at 0.1 V2,
which is in rough agreement with the fit parameters from
data. The voltage noise was applied for a 10ms interval.

2. Fock states, amplitude noise: decoherence and decay

The coupling of superpositions of two Fock states to
amplitude reservoir is particularly relevant to quantum lo
with trapped ions: Fock state superpositions are gener
during quantum logic gates, and the natural decoherenc
due to coupling to a hot thermal amplitude reservoir. De
herence of superpositions of Fock states and heating~decay!
of Fock states limit the fidelity of quantum operations.

a. Decoherence.To simplify analysis, we restricted ou
attention to superpositions of the form (u0&1un&)/A2 in
which Eq.~38! in Sec. II B 2b applies to a good approxim
tion. Data forn51,2, and 3 are shown in Fig. 14, where t
amplitude reservoir is the natural noise on the trap electro
discussed in Sec. III D 3. Using Eq.~38! the fitsFn for states
(u0&1un&)/A2 are given byFn5exp(2gst)/(11snt)

11n with

FIG. 13. Decay of Fock state coherences in applied phase n
Note the universal scaling of the states to an exponential with de
constant proportional touDnu2. The reservoir was applied for 10ms.
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sn the scaling factor forced to be the same for alln. The
exponential decay accounts for the loss of spin cohere
due, for example, to fluctuating magnetic fields, withgs/2p
;0.01ms21. The best overall fit to the data givessn55/ms,
which is consistent with the decay rates quoted in S
IV A 2.

b. Decay of populations; purity and entropy.In order to
study this case more completely, we performed meas
ments directly on the populations~diagonal elements of the
system density matrix!. Starting from a Fock stateun&, we
applied the amplitude reservoir and observed the evolu
of the system. The procedure was as follows. We gener
the stateun& @17#, waited a timet, during which the Fock
state un& would evolve to a distribution over Fock state
$un8&%. We then drove transitions on the blue sideband~bsb!
for various Raman probe timestp . Following this,P↓ was
measured from the fluorescence signal. The resulting sig
has contributions from all possible transitionsu↓&un8&
→u↑&un811&, each of which is at a well-defined frequenc
The bsb curve thus generated is described by:

P↓~ tp!5
1

2
1(

n

1

2
Pn@cos~2V j t p!e2gntp# ~85!

with the Rabi frequency given by

Vn5u^nue2 ih(a1a†)un11&u5V0e2h2/2~n11!21/2hL n
1~h2!,

~86!

whereL are Laguerre polynomials. The phenomenologi
decay rategn52(n11)0.7g0 is used to model decay in th
data due to Raman beam intensity fluctuations and o
sources@17#. We perform a singular value decompositio
~svd! @32# on the data to extract the populationsPn of the
variousun&-states at the end of the reservoir application tim
t. The time evolution of the populations is shown in Fig.

e.
ay

FIG. 14. Decay of Fock state coherences in natural amplit
noise. The theory curves are to the functional form of Eq.~38! with
an additional exponential decay to account for spin decohere
The horizontal scaling is forced to be the same for the three sta
and the data are normalized to unit contrast att50.
7-16
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FIG. 15. ~Color! Decay of Fock states in a hot amplitude reservoir. Each graph shows the time evolution of the populationsPn in state
un& of the motional state for an experiment starting in the initial statec(0) indicated.@The initial states are not perfectly generated, as c
be seen byPn(0).# The populations are given in Eq.~10!, from which the solid lines are derived.
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for different initial starting statesc(0)5un0&. The theory
curves are given in Eq.~10! which describe the evolution o
the diagonals of the density matrix. From these data,
expected qualitative effects are evident. The theory for all
data of Fig. 15 has only a single free parameter, which is
scaling of thex axis. Additionally, we use the svd popula
tions from the initial experimental state for the initial state
the calculations@rnn(0) from Eq.~10!#.

An interesting way to further quantify the progression
05380
e
e
e

f

thermal equilibrium of the system is via the purity and e
tropy of the~mixed! states. The time evolution of the purit
is shown in Fig. 16 and of the entropy in Fig. 17. It should
noted that we use the terms entropy and purity in an appr
mate sense: the svd is in practice only useful ton'4, so we
assign a cutoff to the calculations on the data. Additiona
only the diagonal elementsPn[rnn are used. This is valid
for initial Fock states and thermal states~to which the ground
state evolves under the amplitude reservoir! since the coher-
7-17
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FIG. 16. Evolution of purity for initial Fock
states in hot amplitude reservoir. Each gra
shows the time evolution of the purity of the mo
tional state for an experiment starting in the in
tial state indicated. The purity is defined in E
~87!, from which the solid curves are derived
The dotted lines are an untruncated theo
whereas the solid lines are truncated at a ma
mum value ofn5nmax.
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ences are absent. However, imperfections in state prepar
could lead to unwanted coherences in the experime
states. In practice, we assume that such effects are smal
we have not experimentally verified this assumption. So
of the discrepancies between theory and data may result
this. The definitions under these constraints are, for the
rity,

P~ t ![Tr r2~ t !. (
n50

nmax

Pn
2~ t ! ~87!

and for the entropy,

S~ t ![Tr r~ t !ln r~ t !. (
n50

nmax

Pn~ t !ln Pn~ t !, ~88!

wherenmax is the value ofn at which the series is truncated
As stated above, since preparation of individual Fock sta
is not perfect, it is necessary to take into account the imp
fections in the initial-state populations, especially as the
tial state gets large. To match the data to the theory,
initial diagonal elements of the density matrix are measu
and used as an initial condition in the theory curves. T
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theory that is compared to the data is also truncated atnmax.
This has only a minor effect on the purity calculation, b
does change the qualitative result of the entropy, which fo
limited basis set saturates much more quickly and to a lo
value than it otherwise would. The predicted entropy a
purity curves~with no truncation, that is, asnmax→`! are
shown as the dotted lines in their respective figures.

C. Zero-temperature reservoir

a. Decoherence.Here we discuss the effect of th
variable-bandwidth zero-temperature reservoir presente
Sec. III D 4 on a superposition of Fock states. As before,
prepare the superposition state, apply the reservoir, and u
the state preparation forming a Ramsey interferomete
measure the coherence. In this case, the only state consid
was the superposition stateu↓&@ u0&1u2&]/A2.

We distinguish the two limiting cases discussed in S
III D 4. In the first, the effective decay rategeff is much
faster than the coherent Rabi rateV rsb. This regime leads to
exponential decay of the coherence and is a simulation
broad bandwidthT50 reservoir. In the other, the effectiv
decay rate is slow compared to the coherent Rabi rate. H
the system is driven coherently before appreciable decay
7-18
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DECOHERENCE AND DECAY OF MOTIONAL QUANTUM . . . PHYSICAL REVIEW A62 053807
FIG. 17. Evolution of entropy for initial Fock
states in hot amplitude reservoir. Each gra
shows the time evolution of the entropy of th
motional state for an experiment starting in th
initial state indicated. The entropy is defined
Eq. ~88!, from which the solid curves are derived
The dotted lines are an untruncated theo
whereas the solid lines are truncated at a ma
mum value ofn5nmax.
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in. Thus the coherent drive@on the red side band~rsb!# is
capable of completing several Rabi oscillations of the sp
The evolution of fringe contrast shows that the cohere
goes to zero~as ap pulse transfers most of the populatio
out of u↓&u2& into u↑&u1& and therefore destroys all coheren
betweenu2& and u0&) but then comes back~with opposite
sign! as a reservoir pulse with area greater thanp is applied.
During this time, the coherence is decaying due to diss
tion on u↑&. The evolution between the two regimes is sho
in Fig. 18. Note that the first graph has almost no dec
Here the red Doppler was absent (geff}VD50) so that the
residual decay is dominated by natural heating and Rabi
quency fluctuations. In the subsequent graphs, either
strength of the red Doppler laser, or the Rabi frequency
the rsb drive, or both were changed in such a way as
increase the ratio of dissipation to coherent drive,geff /V rsb.

The experiment has an additional parameter that mus
accounted for. The application of the red Doppler be
causes a Stark shift of the levelu↑&. In the data of Fig. 18 this
effect was corrected for during the experiment simply
changing the detuning of the Raman beams to compen
for the level shift; this must be done anew for each value
V rsb. It is more convenient to perform the experiment n
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compensating for the Stark shiftD. The theory for this is
only slightly more complicated than that associated with E
~80!, which can be generalized to:

rm↓,0↓5
1

2
exp~2gefft/4!Fcos

VRt

2
2 i

D̃

VR
sin

VRt

2
G , ~89!

D̃5D1
igeff

2
, ~90!

VR5A4mg21D̃2. ~91!

A progression of increasinggeff /VR with Stark-shift detun-
ings is shown in Fig. 19.

b. Decay.For completeness, we also consider the de
subject to the zero temperature reservoir of the diagonal
the density matrix~with no detunings,D50). We measure
the time evolution of these populations starting from an i
tial state ofc(0)5u↓&u2&. The predicted time evolution is
given by Eq.~12!. The data are shown in Fig. 20. One w
immediately notice the negative ‘‘populations.’’ This resu
from population left in theu↑& state after the continuou
7-19
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Q. A. TURCHETTEet al. PHYSICAL REVIEW A 62 053807
FIG. 18. Decay of Fock state
coherences coupled to an eng
neeredT50 reservoir. The points
in each graph are the contrast of
Ramsey fringe that measures th
coherence between theu0& andu2&
motional states as the timet of
continuous Raman cooling (T50
reservoir! is varied. The graphs
have progressively larger ratios o
r[geff /g: ~a! r 50.23,~b! r 51.1,
~c! r 52.3, and ~d! r 58. The
Stark-induced detunings are co
rected experimentally, that is, th
position of the RSB and its drive
laser are made coincident. Th
theory curves are fits to Eq.~80!,
from which r is quoted.

FIG. 19. Decay of Fock state
coherences in T50 reservoir.
Same as Fig. 18, except the Star
induced detunings are not cor
rected experimentally, but are ac
counted for in the theory curves
which are fits to Eq.~89!. From
the fits, geff /g5(0.1,0.7,1.3,2.7,
2.2) andD/g5(0,0.5,0.4,1,2) for
graphs ~a!–~e!, respectively. See
the text for a discussion.
053807-20



l

DECOHERENCE AND DECAY OF MOTIONAL QUANTUM . . . PHYSICAL REVIEW A62 053807
FIG. 20. ~Color! Decay of Fock state populations in aT50 reservoir starting fromc(0)5u2&. The strength of the red Doppler~which
provides dissipation! is increased starting from the upper graph. Theory curves are from Eq.~12! with a modification to account for residua
population left inu↑& at the end of the continuous cooling cycle. See the text for a discussion.
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Raman cooling. For weak enough red Doppler power,
optical pumping does not entirely depump theu↑& state. This
appears as a negative contribution to the flopping state an
sis seen in the first two panels of Fig. 20@see Eq.~85!#.

V. CONCLUSION

We have presented a detailed study of the interaction
several types of quantum states with several types of e
05380
e

ly-

of
i-

neered reservoirs. The results compare favorably with th
retical predictions, and for several cases, we have confirm
predicted scalings for a range of experimental conditions
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