
Abstract

The development of a quantum computer based on a system of trapped atomic ions is described,
following the proposal of Cirac and Zoller. Initial results on a two-bit quantum logic gate are pres-
ented, and select experimental issues in scaling the system to larger numbers of ions and gates are
treated.

PACS numbers: 32.80.Qk, 42.50.Vk, 89.80.�h
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I. Introduction

In its simplest form, a quantum computer is a collection of N two-level quantum systems
(quantum bits) which can be prepared in an arbitrary entangled quantum state spanning all
2N basis states [1, 2]. A quantum computer, unlike its classical counterpart, can thus store
and simultaneously process superpositions of numbers. Once a measurement is performed
on the quantum computer, the superposition collapses to a single number, which in some
cases can jointly depend on all of the numbers previously stored. This gives the potential
for massive parallelism in particular algorithms [3], most notably an algorithm which fac-
torizes numbers efficiently [2, 4]. Apart from applications to this and other algorithms [5],
creating multi-particle entangled states is of great interest in its own right, from the stand-
point of quantum measurements [6] and, for example, for improved signal-to-noise ratio in
spectroscopy [7, 8].

Unfortunately, there are very few physical systems which are amenable to the task of
quantum computation. This is because a quantum computer must (i) interact very weakly
with the environment to preserve coherence of the superpositions, and (ii) interact very
strongly with other quantum bits to facilitate the construction of quantum logic gates neces-
sary for computing. In addition to these seemingly conflicting requirements, the quantum
bits must be able to be controlled and manipulated in a coherent fashion and be read out
with high efficiency.

In 1995, Cirac and Zoller showed that a collection of trapped and cooled atomic ions
can satisfy these requirements and form an attractive quantum computer architecture [9]. In
their proposal, each quantum bit is derived from a pair of internal energy levels of an
individual atomic ion. By using laser beams, the quantum bits are coupled to one another
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by virtue of the quantized collective motion of the ions in the trap, mediated by the Cou-
lomb interaction. A reduced version of their scheme was implemented in an experiment on
a single trapped ion [10].

This paper concentrates on the trapped ion quantum computer architecture, and
covers some of the experimental details involved in conducting simple logic opera-
tions between small numbers of trapped ions. Following a brief introduction to ion
traps and the interaction between internal and motional states of trapped ions in
section II, preliminary experiments involving one ion are reviewed in section III, and
particular technical problems in the extension of this scheme to N > 1 ions are dis-
cussed. Section IV considers the problems of addressing individual ions in a string
with lasers and the cross-coupling of the 3N quantized modes of motion, and section
V characterizes some expected sources of decoherence. The topics covered here are
by no means exhaustive, but may give an indication of some of the key problems
which may lie ahead in the near future. We have attempted a more complete investi-
gation of the problems in Ref. [11]. For more reviews of the trapped ions quantum
computer, see Refs. [12, 13]. Other notable physical systems proposed for quantum
computation not covered here include cavity-QED [14] and bulk spin nuclear mag-
netic resonance [15].

II. Background

A. Internal states and detection

Ions can be confined for days in an ultra-high-vacuum environment with minimal pertur-
bations to their internal atomic structure, and collisions with background gas can be ne-
glected. Even though the ions interact strongly through their mutual Coulomb interaction,
the fact that the ions are localized necessarily means that the time-averaged value of the
electric field they experience is zero; therefore electric field perturbations are small. Mag-
netic field perturbations to internal structure are important; however, the coherence time
for superposition states of two internal levels can be very long by operating at fields
where the energy separation between levels is at an extremum with respect to field. For
example, a coherence time exceeding 10 minutes between a pair of 9Be� ground state
hyperfine levels has been observed [16]. It is also possible to employ a ground and
excited (metastable) electronic state of a trapped ion as a quantum bit [9]. This option
seems difficult at the present time, primarily because the energy splitting is typically in
the optical region, requiring extremely high laser frequency stability to drive coherent
transitions.

Figure 1a shows a reduced energy level diagram of a single 9Be� ion. Although
many other ion species would also be suitable for quantum computation, we will
concentrate on 9Be+ here for concreteness and to make a connection to the experi-
ments at NIST [10, 17]. We will primarily be interested in two electronic states, the
2S1/2�F � 2; mF � 2� and 2S1=2�F � 1; mF � 1� hyperfine ground states (denoted by
j#i, and j"i, respectively), separated in energy by �hw0. These long-lived ªspinº states
will form the basis for a quantum bit. Detection of the spin states can be accom-
plished using the technique of quantum jumps [18]. By tuning a polarized laser
beam to the j#i ! 2 P3=2 transition near 313 nm (Fig. 1a), many photons are scat-
tered if the atom is in the j#i spin state (a ªcyclingº transition), but essentially no
photons are scattered if the atom is in the j"i spin state. If a modest number of
these photons are detected, the efficiency of our ability to discriminate between these
two states approaches 100%.
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B. Ion traps and motional states

In Fig. 2, we show a schematic diagram of a linear Paul trap [19], consisting of four elec-
trode rods. The linear trap is similar to a quadrupole mass filter [20] which is plugged at
the ends with static electric potentials. A potential V0 cos WT t is applied between diagonally
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Fig 1: (a) Electronic (internal) energy levels (not to scale) of a 9Be� ion. The
2S1=2�F � 2; mF � 2� and 2S1=2�F � 1; mF � 1� hyperfine ground states (denoted by j#i
and j"i respectively), separated in frequency by w0=2p � 1.250 GHz, form the basis of a
quantum bit. Detection of the internal state is accomplished by illuminating the ion with a
s�-polarized ªdetectionº beam near 313 nm, which drives the cycling
2S1=2�F � 2; mF � 2� ! 2P3=2�F � 3; mF � 3� transition, and observing the scattered
fluorescence. The excited P state has radiative linewidth g=2p � 19:4 MHz. (b) Energy
levels of a trapped 9Be� ion, including the motional states of a single mode of harmonic
motion, depicted by ladders of vibrational states separated in frequency by the mode fre-
quency wz. Two ªRamanº beams, both detuned D� w0, wz; g ( from the excited 2P1/2

state, provide a coherent two-photon coupling between states jni j#i and jn0i j"i by setting
the difference frequency wL to match the desired transition frequency. As shown, the Raman
beams are tuned to the first red sideband of the j#i ! j"i transition (wL � w0 ÿ wz:).



opposite rods, which are fixed in a quadrupolar configuration, as indicated in Fig. 2. To
provide confinement along the axial z direction, static potentials U0 are applied to the end
segments of the rods as indicated. We assume that the rod segments along the z direction
are coupled together with capacitors (not shown) so that the rf potential is constant as a
function of z. Near the axis of the trap this creates a potential of the form

F ' V0

2
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� �
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where R is equal to the distance from the axis to the surface of the electrode and d is a
characteristic axial dimension of the static electrodes. This gives rise to harmonic pondero-
motive potentials [21] in the radial (x and y) directions accompanied by static harmonic
confinement in the axial �z� direction resulting in an effective 3D harmonic confining po-
tential U�r� � 1
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where wp � qV0=�21=2WT mR2� describes the ponderomotive portion of the potential, and q
and m are the charge and mass of the ion, respectively. In these expressions, it is assumed
that wp � WT , a condition known as the ªpseudopotential approximationº [21].

Figure 2 also shows an image of a ªstringº of 199Hg� ions which are confined near the z
axis of the trap described in Ref. [22]. This was achieved by making wx; wy � wz, thereby
forcing the ions to the axis of the trap. The spacings between individual ions in this string
are governed by a balance of the force along the z direction and the mutual Coulomb
repulsion of the ions. Example parameters are given in the figure caption.

Of the 3N normal modes of small oscillation in a linear trap, we are primarily inter-
ested in the N modes associated with axial motion. A remarkable feature of the linear
ion trap is that the axial modes frequencies are nearly independent of N, offering the
possibility that mode interference might be small, even for large numbers of ions [9]. For
two ions, the axial normal mode frequencies are at wz and

��������
3wz
p

; for three ions they are
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Fig. 2: The upper part of the fig-
ure shows a schematic diagram of
the electrode configuration for a
linear Paul-rf trap (rod spacing
'1 mm). The lower part of the
figure shows an image of a string
of 199Hg

�
ions, illuminated with

194 nm radiation, taken with a
UV-sensitive, photon counting
imaging tube [22]. The spacing
between adjacent ions is approxi-
mately 10 mm. The ªgapsº in the
string are occupied by impurity
ions, most likely other isotopes of
Hg�, which do not fluoresce be-
cause the frequencies of their re-
sonant transitions do not coincide
with those of the 194 nm
2S1=2 !2 P1=2 transition of
199Hg�.



wz,
���
3
p

wz and
�������
5:4
p

wz. For N > 3 ions, the Nth axial normal mode can be determined
numerically [12, 13, 23]. We will concentrate on the axial center-of-mass (COM) mode,
which is the lowest frequency mode and is also the most resolved in frequency from the
others. The quantum state of axial COM motion at frequency wz can be described by the
ladder of vibrational eigenstates jni, of energy �hwz�n� 1

2� with vibrational index n de-
scribing the number of ªphononsº contained in the collective harmonic COM motion.

C. Coupling between internal and motional states

We describe the coupling between the internal levels of a particular ion in the string with
the COM axial mode of collective motion when a classical radiation field is applied to that
ion. If the internal levels j#ij and j"ij of the jth ion in a string are coupled by a dipole
moment operator mj (other couplings can be shown to behave analogously), then exposing
this ion to a traveling-wave electric field E�r� � E0 cos �k � rÿ wLt � j� with frequency
wL, phase j, and wavevector k, results in the interaction Hamiltonian

hj
I � ÿmj � E�r� � �hWj�Sj

� � Sj
ÿ� �ei�k � zÿwLt�j� � eÿi�k � zÿwLt�j�� : �3�

In this expression, Wj � ÿh"jmj j#i � E0=4�h is the resonant Rabi frequency connecting j#ij
to j"ij in the absence of confinement, Sj

��Sj
ÿ� is the internal level raising (lowering) opera-

tor of the jth ion changing j#ij to j"ij and vice-versa, z � z0ẑ�aeÿiwzt � ayeiwzt� is the axial
COM coordinate operator of the confined motion with associated harmonic raising (low-
ering) operator ay�a� and zero-point spread z0 � ��h=2Nmwz�1=2, and Nm is the total mass
of the ion collection. If the applied radiation frequency is tuned to wL � w0 � �n0 ÿ n�wz,
thereby coupling the states jni j#ij and jn0i j"ij, hj

I is transformed to

hj
I � �hWj�Sj

� eih�a�ay��ij � Sj
ÿ eÿih�a�ay�ÿij� �4�

in a frame rotating at wL, where terms oscillating faster than Wj �Wj � wz; w0� have been
neglected. Here, h � �k � ẑ� z0 is the Lamb-Dicke parameter, which controls the amount of
coupling between internal and COM motional states.

When the coupling of Eq. (4) is applied between the jth ion and the COM mode of
motion, the system evolves between the two quantum states jni j#ij and jn0i j"ij with Rabi
frequency [24, 25]

Wj
n0; n �

1

�h
jhn0jj h"jhj

I j#ij jnij

� Wj jhn0j eih�a�ay� jnij � Wjhjn
0ÿnj eÿh2=2

��������
n< !

n> !

s
Ljn

0ÿnj
n<
�h2� ; �5�

where n>�n<� is the greater (lesser) of n and n0 and La
n �x� is a generalized Laguerre poly-

nomial. If the Lamb-Dicke criterion is satisfied, where the amplitude of the ion's motion in
the direction of the radiation is much less than l=2p �or n1=2h� 1�, we can evaluate Wj

n0; n
to lowest order in h to obtain

Wj
n0; n � Wj hjn
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jn0 ÿ nj !
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s
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We will be primarily interested in three types of transitions ±± the carrier �n0 � n�, the first
red sideband �n0 � nÿ 1�, and the first blue sideband �n0 � n� 1� whose Rabi frequencies,
in the Lamb-Dicke limit, are given from Eq. (6) by Wj; hn1=2Wj, and h�n� 1�1=2 Wj respec-
tively.

In practice, driving direct transitions between jni j#ij and jn0i j"ij with rf or microwave
radiation is not be feasible, as the sideband operation transition rates (proportional to
h � 2pz0=l) would be extremely slow due to the long wavelength of the radiation. Alterna-
tively, optical fields can be used to drive two-photon stimulated Raman transitions between
jni j#ij and jn0i j"ij [17, 26]. As depicted in Fig. 1b, two laser beams detuned by D from an
excited state of radiative width g are applied to the j th ion with their difference frequency
matched to the desired transition frequency. For sufficient detuning jDj � g, the excited
state may be adiabatically eliminated, and the above couplings apply, with Wj replaced by
gj

1gj
2=D, where gj

1 and gj
2 are the individual Rabi frequencies of the two beams when reso-

nantly coupled to the excited level. In addition, wL�j� is replaced by the difference fre-
quency (phase) of the beams; and k is replaced by the difference in wavevectors of the two
Raman beams dk � k1 ÿ k2. Since the relevant frequency depends only on the microwave
difference between the two laser frequencies, both beams can be generated with a single
laser source and a modulator, thereby relaxing the constraints of laser frequency stabiliza-
tion. The use of stimulated Raman transitions thus combines the advantages of the strong
couplings with the frequency stability of microwave sources [26, 27].

D. Laser cooling to the motional ground state

As a starting point for trapped ion quantum computing, the ions must be initialized in
known pure states. Using standard optical pumping techniques, we can prepare the ions in
the j#i, internal state. Laser cooling in the resolved sideband limit [25] can, for single ions,
generate the jn � 0i motional state with reasonable efficiency [17, 28]. This type of laser
cooling is usually preceded by a stage of ªDopplerº laser cooling [29] which typically
cools the ion to hni � 1, or an equivalent temperature of about 1 mK.

Resolved sideband laser cooling for a single, harmonically-bound atom can be explained
as follows: For simplicity, we assume the atom is confined by a 1-D harmonic well of
vibration frequency wz. We use an optical transition whose radiative linewidth g is rela-
tively narrow, g� wz (Doppler laser cooling applies when g � wz). If a laser beam (fre-
quency wL) is incident along the direction of the atomic motion, the bound atom's absorp-
tion spectrum is composed of a ªcarrierº at frequency w0 and resolved frequency-
modulation sidebands that are spaced by wz. These sidebands in the spectrum are generated
from the Doppler effect (like vibrational substructure in a molecular optical spectrum). La-
ser cooling can occur if the laser is tuned to a lower (red) sideband, for example, at
wL � w0 ÿ wz. In this case, photons of energy �h�w0 ÿ wz� are absorbed, and spontaneously
emitted photons of average energy �hw0 ÿ R return the atom to its initial internal state,
where R � ��hk�2=2m � �hwR is the photon recoil energy of the atom. Overall, for each
scattering event, this reduces the atom's kinetic energy by �hwz if wz � wR, a condition
which is satisfied for ions in strong ion traps. Since wR=wz � h2 where h is the Lamb-
Dicke parameter, this simple form of sideband cooling requires that the Lamb-Dicke param-
eter be small. For example, in 9Be�, if the recoil corresponds to spontaneous emission from
the 313 nm 2P1=2 ! 2S1=2 transition (typically used for laser cooling), wR=2p ' 230 kHz.
This is to be compared to trap oscillation frequencies in some laser-cooling experiments of
around 10 MHz [17]. Cooling proceeds until the atom's mean vibrational quantum number
in the harmonic well is given by hnimin ' �g=2wz�2 � 1 [29]. As discussed above, it is
convenient to use two-photon stimulated Raman transitions for sideband cooling [17, 30], but
the basic idea for, and limits to, cooling are essentially the same as for single-photon transitions.
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Although laser cooling to the jn � 0i state has been achieved with single ions [17, 28]; a
prerequisite to future work is to laser cool a collection of ions (or, at least one mode of the
collection) to the zero-point state. Cooling of any of the 3N modes of motion of a collec-
tion of ions should, in principle, work the same as cooling of a single ion. To cool a
particular mode, we tune the cooling radiation to its first lower sideband. If we want to
cool all modes, sideband cooling must be cycled through all 3N modes more than once, or
applied to all 3N modes at once, since recoil will heat all modes. For the COM mode, the
cooling is essentially the same as cooling a single particle of mass Nm; however, the recoil
energy upon re-emission is distributed over all 3N modes. Other methods to prepare atoms
in the jn � 0i state are discussed in Refs. [31]. In Ref. [32], it is shown that it is not
necessary to satisfy the condition wR � wz �h� 1� to achieve cooling to n � 0.

III. Quantum Logic with Trapped Ions

Several authors have shown that an arbitrary unitary operation (therefore any quantum com-
putation) on a collection of quantum bits can be broken into a series of fundamental single
bit and dual bit quantum logic gates [33]. This is similar to classical computing, where
certain families of logic gates are universal (for instance, the single bit NOT and two bit
AND gates). One such family of universal quantum logic gates consists of the single bit
rotation gate and the two-bit controlled-NOT gate [34]. For brevity, we concentrate on these
two gates and how they can be implemented in a system of trapped ions.

The single bit rotation gate �operator R�q; j�� simply changes the state of a single quan-
tum bit and is characterized by the following transformation:

j#i ! cos �q=2� j#i ÿ i eij sin �q=2� j"i
j"i ! cos �q=2� j"i ÿ i eÿij sin �q=2� j#i ; �7�

where q and j are parameters of the gate. This transformation is commonplace in atomic
physics and nuclear magnetic resonance, and has been widely applied to two level systems.
In the context of trapped ions, the single bit rotation gate is accomplished by tuning to the
carrier transition �wL � w0� and applying radiation for a time t such that q � 2Wjt
(Eq. (6)). The parameter q describes the ªrotationº between the two spin states (q � p is
called a ªpº pulse, etc.), and the parameter j describes the phase of the rotation. Figure 3
depicts the observed Rabi flopping between j#i, and j"i, states in a single trapped 9Be� ion
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Fig. 3: Experimental plot of the probability P#�t� of finding a single 9Be� ion in the j#i
state after first preparing it in the j#i state and applying the carrier coupling (Eq. (7)) for a
time t, with q=2 � Wjt. P#�t� does not follow a perfect sinusoid due to decoherence, de-
scribed in section IV. Each point represents an average of 4000 observations.



according to the above transformation [35]. The ion is first prepared in the j#i, state, then
the carrier transition is applied for a time t, and the state �j#i, or j"i� is detected as de-
scribed above and in Fig. 1a.

A more nontrivial quantum logic gate is the two-bit controlled-NOT (CN) gate [33, 34],
reminiscent of the classical XOR gate. This gate flips the spin of ion k, the ªtarget bitº
�j#ik $ j"ik� if and only if ion j, the ªcontrol bit,º is in state j"i. The transformation of the
two quantum bits j and k are as follows:

j#ij j#ik ! j#ij j#ik
j#ij j"ik ! j#ij j"ik
j"ij j#ik ! j"ij j"ik
j"ij j"ik ! j"ij j#ik :

�8�

Cirac and Zoller [9] showed how the above transformation could be accomplished
between two of a collection of trapped ions by utilizing a motional mode (i.e., axial COM
mode) as a ªdata busº through which the quantum bits are shuttled. As described above,
the COM mode is assumed to be initially cooled to the jn � 0i ground state. The scheme is
outlined as follows:

(1) Map the state of ion j (spanning the states j#ij; j"ij) onto the first two axial COM
motional states (spanning the states jn � 0i; jn � 1i) shared amongst all ions.

(2) Flip the spin state of ion k �j#ik $ j"ik� if and only if there is a phonon in the COM
mode.

(3) Reverse step (1): map the state of the motion back onto ion j.

The central ingredient here is step (2), which is itself a ªreducedº CN gate, with the first
two motional states acting as the control bit and ion k acting as the target bit

j0i j#ik ! j0i j#ik
j0i j"ik ! j0i j"ik
j1i j#ik ! j1i j"ik
j1i j"ik ! j1i j#ik :

�9�

This last transformation has been realized on a single trapped ion [10]. In that experiment,
performed on a trapped 9Be� ion, the control bit was one of the three modes of the ion's
motion. The reduced CN operation between these states (step (2) above) was realized by
applying three laser pulses in succession:

(a) A p=2 pulse (Wkt � p=4 in Eq. (6)) is applied on the carrier transition. For a certain
choice of initial phase, this corresponds to the rotation operator R�q � p=2; j).

(b) A 2p pulse is applied on the first blue sideband transition between levels j"i and an
auxiliary level jauxi in the ion (the jF � 2; MF � 0i level in 9Be� ; see Fig. 4). This
operation provides the ªconditional dynamicsº for the overall CN operation. It changes
the sign of the j1i j"i component of the wavefunction but leaves the sign of the j0i j"i
component of the wavefunction unchanged; that is, the sign change is conditioned on
whether or not the ion is in the j0i or j1i motional state.

(c) A p=2 pulse is applied to the spin carrier transition with a 180o phase shift relative to
step (a). This corresponds to the operator R�q � p=2; j� p�.

Steps (a) and (c) can be regarded as two resonant pulses of opposite phase in the Ramsey
separated-field method of spectroscopy [36]. If step (b) is active (thereby changing the sign
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of the j1i j"i component of the wavefunction), then a spin flip is induced by the Ramsey
fields. If step (b) is inactive, step (c) reverses the effect of step (a).

Instead of the three pulses (a±±c above), a simpler CN gate scheme between an ion's
internal and motional states can be achieved with a single laser pulse, while eliminating the
requirement of the auxiliary internal electronic level [37]. By applying a single pulse tuned
to the carrier transition, from Eq. (5), the states jni j#i and jni j"i are coupled with Rabi
frequency

Wn; n � W jhnj eih�a� ay� jnij � W eÿh2=2ln�h2� ; �10�
where ln�h2� � L0

n�h2� is a Laguerre polynomial. Specializing to the jni � j0i and
jni � j1i vibrational levels relevant to quantum logic, we have

W0; 0 � W eÿh2=2 ;

W1; 1 � W eÿh2=2�1ÿ h2� :
�11�

The CN gate can be achieved in a single pulse by setting h so that
W1; 1=W0; 0 � �2k � 1�=2m, with k and m positive integers satisfying m > k � 0. Setting
W1; 1=W0; 0 � 2m=�2k � 1� will also work, with the roles of the j0i and j1i motional states
switched in Eq. (10). By driving the carrier transition for a duration t such that
W1; 1t � �k � 1

2�p, or a ªp-pulseº (mod 2p) on the jni � j1i component, this forces
W0; 0t � mp. Thus the states j#i j1i $ j"i j1i are swapped, while the states j#i j0i and
j"i j0i remain unaffected. This transformation is equivalent to the reduced CN of Eq. (9),
apart from phase factors which can be eliminated by the appropriate settings of the phase
of subsequent logic operations.

The mapping steps (steps (1) and (3) above) can be realized by applying a p-pulse on
the red sideband of ion j. This accomplishes the mapping j0i �a j#ij � b j"ij� ! �a j0i
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Fig. 4: Energy levels of a single trapped 9Be� ion, including the internal hyperfine levels
j#i and j"i and an auxiliary level jauxi [the 2S1=2�F � 2; mF � 0� state], each dressed by
the lowest two motional quantum harmonic oscillator states jni � j0i and j1i. The con-
trolled-NOT quantum logic gate results in a spin flip �j#i  ! j"i if and only if jni � j1i.
This transformation is realized with a sequence of three pulses of laser light which couple
the states indicated by the arrows: (a) A p=2 pulse couples states jni j#i to jni j"i. (b) A 2p
pulse couples state j1i j"i to j0i jauxi, resulting in a sign change of any component in the
j1i j"i state. (c) A ÿp=2 pulse couples states jni j#i to jni j"i (same as step (a) with a p
phase shift). If jni � j0i, then step (b) is inactive since it only affects to the j1i j"i state, and
the two p=2 pulses cancel, leaving the initial state unaffected. If jni � j1i, then the sign
change in step (b) causes the two p=2 pulses to add, resulting in a net spin flip �j#i  ! j"i�.
The result is the transformation of Eq. (9).



�b j1i� j#ij. Analogous mapping of internal state superpositions to motional state super-
positions of a trapped ion has also been reported in the generation of a ªSchroÈdinger
catº state of motion [38] and the tomographic measurement of nonclassical states of
motion [39].

To complete this section, we give an example of how a ªmaximally-entangledº state of N
ions might be prepared with the use of the quantum logic gates described in this section
[9]. We desire to create the state

FME � j#i1 j#i2 j#i3 . . . j#iN � eij j"i1 j"i2 j"i3 . . . j"iN���
2
p �12�

(or equivalently, a coherent superposition of the numbers 0 and 2N ÿ 1 in binary where we
make the identification j#i � 0 and j"i � 1). Starting in an initial state Finit where all spins
are in the j#i state, it is easy to show that one way to prepare Eq. (12) is to operate the
following N gates on the initial state:

FME � �CN1;N � �CN1;Nÿ 1� �CN1;Nÿ 2� . . . �CN1; 2� �R1�p=2; j��Finit ; �13�
where CNi; j denotes the controlled-NOT operator with ion i as the control bit and ion j as
the target bit, and the rotation operator is applied to the first ion. The state FME can be
viewed as the N-particle generalization of the entangled pair states envisioned by Einstein,
Podolsky, and Rosen [40], and may find uses in improved atomic spectroscopy and fre-
quency standards [7, 8].

IV. Packing Ions into a Trap

The reduced CN gate demonstrated in [10] involved only a single ion, and is therefore not
useful for computation. Future experimental work will concentrate on scaling the system up
by packing more ions into the trap and improving the gate fidelity, thereby allowing more
gates to be coherently performed. In this section, we survey selected experimental problems
which may arise in the scaleup. For a more extensive coverage of the scaling problem, see
Ref. [11].

A. Individual ion addressing

One major concern in extending quantum logic to larger numbers of ions is the requirement
that ions be individually addressed with laser beams for logic operations. This may be
difficult, because the high vibrational frequencies desired for efficient laser cooling and
suppression of decoherence also results in closely spaced ions. It can be shown that the
minimum separation of adjacent ions in a linear trap between the center ions scales approxi-
mately as smin ' 2sNÿ0:56, with s � �q2=4pe0mw2

z �1=3, where N is the number of ions
[12, 13]. For 9Be� ions with an axial COM frequency of wz=2p � 1 MHz, this separation
is about 10 mm for 2 ions, and 4 mm for 10 ions.

The most straightforward method for individual optical addressing is to tightly focus
laser beams on the selected ion [9]. The transverse intensity distribution of a Gaussian
optical beam of power P is

I�r� � 2P

pw2
0

exp ÿ 2r2

w2
0

� �
; �14�
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where w0 ' l�p � NA� is the beam waist, l the radiation wavelength, and NA � tan q is the
numerical aperture of the beam with cone half-angle q (the formula for w0 in the paraxial
ray approximation is valid only for NA < 1) [41]. For large numerical apertures
(NA � 0:5), it appears that laser beams can thus be focussed down to a spot on the order of
a wavelength, but this is difficult to realize in the laboratory. If we can realize w0 � 5 mm
in a Gaussian beam, then at a distance 10 mm from the center of the beam this would
imply a relative intensity of about 3 � 10ÿ4 or a electric field amplitude (proportional to
Rabi frequency) of 1.8% relative to the center of the beam. If w0 � 2 mm could be ob-
tained, the intensity (electric field) would be down by a factor of 1:3 � 10ÿ14 (1:1 � 10ÿ7).
These results are likely too optimistic, since imperfections in the surfaces of the intervening
vacuum port window, multiple reflections from these windows, and diffraction will typi-
cally distribute laser intensity outside of the theoretical waist of the beam. The degree to
which this occurs depends on the details of window surfaces, etc. and must be resolved
experimentally.

Tightly focussed Gaussian beams possess high transverse intensity gradients, resulting in
the potential for significant intensity fluctuations at the selected ion if the relative position
of the beam with respect to the ion is not stable on the time scale of the computation. An
alternative to using tightly focussed Gaussian laser beams is to first feed the (expanded)
laser beam through a sharply defined aperture (slit or aperture), and use a lens to image the
aperture at the position of the ions. With this technique, the beam intensity can be distribu-
ted more smoothly around the selected ion and have very steep intensity edges (on the
order of the original aperture sharpness) away from the ion, thus suppressing beam vibra-
tion problems and confining the radiation to a single ion. This technique has been used to
make relatively ªhardº walls for an optical dipole trap [42]. For this technique to work
well, the imaging lens must collect a large fraction of the light transmitted through the
aperture or else diffraction effects will result in light intensity outside the image of the
aperture. To address individual ions, we require very small aperture images, which gives
rise to a design tradeoff. If a one-to-one relay lens is used to image a small object aperture,
effects of diffraction are enhanced. If a demagnifying lens is used to reduce a large object
aperture, then the aperture must be placed a large distance from the lens, requiring a rela-
tively large lens. For two ions, imaging a sharp edge such as a razor blade at the space
between the ions may be sufficient. We might also consider having every other ion in a
string be a ªgarbageº ion which is not used in the computation, thereby increasing the
spacing between qubit ions by a factor of two (or more, if more garbage ions are used
between each qubit ion). This has the disadvantage that total number of ions (and spectator
modes) increases, aggravating the problems associated with large quantum registers. If suffi-
ciently good addressing on one ion in a string can be accomplished, it may be simpler to
shift the ions, rather than the laser beams, in order to address different ions. This could be
accomplished by applying different static potentials U0 and U00 to the end segments of the
rods in Fig. 2. However, changes in U0 and U00 would have to be coordinated to keep the
COM axial frequency constant or else additional phase shifts would be introduced. Stimu-
lated-Raman transitions have the advantage that the effective wavevector dk � k1 ÿ k2 can
be made parallel to the axis of the trap even though each beam is at an angle with respect
to the trap axis. This would allow selection of a particular ion, while eliminating coupling
to transverse modes.

Another method of optically addressing individual ions is to cause a destructive optical
interference at the position of a specific ion, with a net coupling at the other ion(s). For
instance, if ion j is positioned at the node of a resonant standing wave laser field, the
coupling between states jni j#ij and jn0i j"ij is proportional to hn0j sin �hj�a� ay�� jni. In this
case, the coupling of the standing wave to ion j vanishes when the laser frequency is tuned
to an even order sideband such as the carrier �n0 � n�. If, instead, the ion is positioned at
an antinode, the coupling is proportional to hn0j cos �hj�a� ay�� jni; thus, the coupling
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vanishes when the laser frequency is tuned to an odd order sideband, such as the first blue
or red sideband �n0 � n� 1�. By choosing the angles of focussed laser beams relative to
the trap axis appropriately, it should be possible to position an antinode (node) at ion j
while approximately positioning nodes (antinodes) at the ions adjacent to ion j (for equally
spaced ions). In the case of two-photon stimulated Raman transitions, we desire to place
ion j at a common node or antinode of two standing waves. Although this interference
technique should allow individual access to each of two trapped ions, it appears technically
difficult to extend this technique to more than three ions.

Next, we consider the application of external field gradients which shift the internal
energy levels of ions depending on their position. For a magnetic field gradient to give this
selectivity, we require the Zeeman splitting between adjacent ions to be much larger than
the Rabi frequency, or Dm�@jBj=@z� s=�h� W, where Dm is the difference in hm � Bi=jBj
between the two levels of interest, and s is the ion separation along the z direction. For
Dm � mB, s � 10 mm, and a Rabi frequency of W=2p � 1 MHz, this requires @jBj=@z
� 0:1 T/cm. Field gradients of this magnitude can be achieved; however, they might intro-
duce large and uncontrollable phase shifts for the other ions in a quantum register.

The laser beam itself can provide ion selectivity by employing the transverse gradient in
the optical field intensity. For instance, if we desire to perform a q-pulse on ion j without
affecting neighboring ion k, the intensity profile of the laser beam can be set so that the
ratio of field strengths (intensities for the case of two-photon stimulated-Raman transitions)
at ion j vs. ion k is q=2pm, where m is an integer. Now if the pulse duration is set so that
ion j is rotated by q, ion k receives a rotation of 2pm and hence returns back to its initial
state (with an extra phase factor of �ÿ1�m).

For the case of two-photon stimulated-Raman transitions, the laser beam can provide ion
frequency selectivity by employing the Stark shift and the transverse gradient of the optical
field. Here, for example, we could assume that the two counterpropagating Raman beams
of equal intensities and spatial profiles are offset so that beam 1 is centered on ion j, and
beam 2 is centered on adjacent ion k as depicted in Fig. 5. Let e be the fraction of peak
intensity seen by the offset ions (that is, the intensity of beam 2 at ion j and beam 1 at ion
k). Assume that when either beam is centered on either ion, the single photon resonant
Rabi frequencies are equivalent: g1 � g2 � g. When the beams are offset, the two-photon
Rabi frequency at each ion is W � e1=2�g2=DR�, where g2=DR is the Rabi frequency ex-
pected if both beams were centered on a given ion. The Stark shifts of the two ions are in
opposite directions: dj � �d0, dk � ÿd0, where d0 � W�1ÿ e�=e1=2. If we make d0 � W
�e� 1�, then by appropriately tuning the difference frequency of the laser beams, we
can selectively drive transitions on either ion j or k. Alternatively, if we desire to per-
form a q-pulse to ion j without affecting ion k in an ªunrepairableº way, e can be
tuned to a particular value which results in ion k returning to within a phase factor to
its initial state. For square pulses in time, we require q=2�1� d2=W2�1=2 � mp, or
e2 ÿ �1� �2mp=q�2� e� 1 � 0, where m is an integer. For m � 1 and q � p (a p-pulse on
ion j), this occurs for e � 0:208. Generalizing this to more than two ions becomes difficult
if the laser beams also overlap other qubit ions. This scheme places an additional premium
on laser power stability, since the light shifts are bigger than the Rabi frequencies by 1=e1=2

for e� 1. In addition, in both of the above schemes, employing the laser beams to differ-
entially affect neighboring ions, one major drawback is that the positions and profiles of the
laser beams must be accurately controlled.

Finally, we consider a method of addressing which utilizes rf micromotion. In a con-
ventional Paul trap, generalized to the case of asymmetric electrodes �F / V0 cos �WT t�
��ex2 � �1ÿ e� y2 ÿ z2�, 0 < e < 1� [43], the rf fields vanish only at a single point in
space. When multiple ions are crystalized in such a trap, each ion experiences a different rf
field, leading to different amounts of micromotion. In general, this effect causes each ion to
have a unique Rabi frequency when a laser is applied, allowing the possibility of differen-
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tial addressing of the ions. If we assume that each ion sees the same intensity laser field,
the Rabi frequency of ion j is proportional to J0�k � zj� [11, 44], where J0�X� is the zeroth
Bessel function of argument X, k is the effective laser wavevector, and zj is the amplitude
of micromotion associated with the jth ion. We assume that ion j experiences a static elec-
tric field Esj (due to the Coulomb field of the other ions in addition to background static
fields) which prevents the ion from occupying the trap center defined by the rf fields. For
simplicity, we assume that Esj � Esjx̂ is along the x axis of the trap, which should be the
case if the ions crystalize along the x-axis �e < 0:5�. To estimate zj, we solve the classical
equations of motion in the trap for U0 � 0 and find � zj � x̂ �

���
2
p

qEsj=mwxWT , where wx

is the x-axis COM secular harmonic frequency. Thus, the Rabi frequency of the jth ion is

Wj � Wj
0J0

���
2
p

kxqEj

mwxWT

� �
; �15�

where Wj
0 is the Rabi frequency in absence of micromotion. (This reduction of the Rabi

frequency due to ion motion is treated in section IV.B.1. under a different context.) Thus by
controlling the electric field Ej at the jth ion, some degree of differential addressing of the
ions is possible. For example, for three ions held along the x-axis with the middle ion
placed exactly at the rf null position, we find that the ratio of Rabi frequencies of the
outer ions to the middle ion is J0�b�, where b � 1:52kx�q2wx=4pe0m�1=3=WT . An interest-
ing case for individual addressing occurs when b � 2:405, in which case J0�b� � 0, and
the laser interaction with the outer two ions is effectively shut off. For three 9Be� ions
held in a trap with a rf drive frequency of WT � 240 MHz, we find that the Rabi frequency of
the outer two ions vanishes at a COM secular frequency of wx=2p � 6:1 MHz. Here we
assume that the Rabi frequency describes a stimulated Raman coupling between hyperfine
ground states with kx �

���
2
p �2p=l� and l � 313 nm, relevant to recent experiments [10].

Many of the above individual addressing schemes are improved greatly when dealing
with only two ions instead of a string of many. This leads us to seriously consider systems
where quantum logic operations are performed on accumulators consisting of only two
ions, with the other ions located somewhere else. For example, pairs of ions may be held in
different regions of the same trap structure [11], or quantum information may be transferred
from one register of ions to another by optical means [45].
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Fig. 5: Differential AC Stark shift-
ing of neighboring ions. Equal in-
tensity counter propagating beams 1
and 2 are centered on ions j and k,
respectively. A fraction e of the
peak intensity I0 of each beam is
applied to the other ion. This results
in a differential AC Stark shift of
ions j and k, allowing the possibility
of individually accessing the ions by
tuning the frequency of the laser
beams.



B. Multimode interference

Each additional ion in a quantum register adds three more motional modes. The simplest
form of the Cirac/Zoller scheme ideally uses just a single mode as the bus. In this section,
a few potential problems associated with the 3N ÿ 1 spectator modes are considered. First,
we must generalize the interaction with electromagnetic fields discussed in section II.B to
consider motion in all 3N modes of motion for N trapped ions. Here, as was assumed by
Cirac and Zoller [9], we consider that, on any given operation, the laser beam(s) interacts
with only the jth ion; however, that ion will, in general, have components of motion from
all modes. In this case Eq. (3) for the jth ion becomes

Hj
I � �hWj�Sj

� � Sj
ÿ� �ei�k � xjÿwt�jj� � h:c:� : �16�

We write the position operator of the jth ion (which represents the deviation from its equili-
brium position) as

xj � uj x̂� uN� j ŷ� u2N � j ẑ ; j 2 f1; 2; ; . . . Ng ; �17�

where the up are related to the 3N normal mode coordinates qk �k 2 f1; 2; . . . 3Ng by the
following relations [46]

up �
P3L

k� 1
Dp

kqk ; qk �
P3L

p� 1
Dp

kup ; qk � qk0�ak eÿiwk t � ayk eiwk t� : �18�

In this expression, qk is the position operator and ak and ayk are the associated lowering and
raising operators for for the kth normal mode, and the matrix Dp

k is the transformation
matrix between physical coordinates of the individual ions and normal coordinates of the
string. Following the procedure of section II.C, we find

Hj
I � �hWj Sj

� exp i
P3L

k� 1
hj

k�ak eÿiwk t � ayk eiwk t� ÿ i�dt ÿ jj�
� �

� h:c:

� �
; �19�

where we have kept the time dependence to allow consideration of all motional modes with
different frequencies, and d � wL ÿ w0 is the detuning of the applied radiation frequency
(or difference frequency for the Raman coupling). The generalized Lamb-Dicke parameters
are hj

k � �k � x̂Dj
k � k � ŷDN�j

k � k � ẑD2N�j
k � qk0, but for the linear trap case, motion will be

separable in the x, y, and z directions and hj
k will consist of one of these terms. We are

typically interested in coupling the internal states of a given ion j to a selected mode of collec-
tive motion k. In this case, the Rabi frequency coupling the states jnki j#ij to jn0ki j"ij is

Wj
n0k ; nk
� Wj jhfnp 6� kg; n

0
kj
Q3N

l� 1
eihj

l�al � ayl � jfnp 6� kg; nkij : �20�

where jfnp 6� kgi denotes the state of motion of the 3N ÿ 1 spectator modes excluding
mode k.

1. Effects of motion in spectator modes on logic gates (Debye-Waller factors)

From the last equation, the Rabi frequency of a particular operation will in general depend
on the motional state of the spectator modes. For instance, the conventional controlled-not
gate employs two carrier pulses (steps (a) and (c) in Sec. III) which ideally do not depend
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on the state of motion; this requires the Lamb-Dicke parameter h to be small (see Eq. (10)).
In the Raman configuration, h is proportional to the difference in two wavevectors and can
be made negligible by using co-propagating beams �dk � 0�. On the other hand, with sin-
gle-photon optical transitions, the Rabi frequencies depend on the motion of all modes
which have a component of motion along the direction of k: We can take advantage of the
motional dependence of the carrier to construct a logic gate, but in this case also, the Rabi
frequency will depend on the motion in the other modes along the direction of k or dk.
Similarly, for sideband operations, such as steps (1) and (3) of the CN scheme discussed in
Sec. III, it will, in general, be impossible to have Wj

n0; n depend on only one mode of
motion. In this section, we examine the influence of extraneous modes on the Rabi frequen-
cies Wj

n0; n.
In a collection of N ions, the motion in the 3N ÿ 1 spectator modes reduces the Rabi

frequency in much the same way as lattice vibrations affect a single emitter or scatterer
embedded in a crystal, as described by the Debye-Waller effect [47]. Typically, the mo-
tional quantum numbers of the spectator modes in Eq. (20) will be thermally distributed
(i.e., P�np� / gnp where g � �np=�1� �np� with �np the mean number of phonons in mode p),
so we can calculate the rms and mean values of the Rabi frequency given this distribution.
For simplicity, we assume that all spectator modes are in the Lamb-Dicke regime
�hj

p�n1=2
p � 1�, but see Ref. [11] for the more general case. If the frequencies and ampli-

tudes of all modes contributing to the axial motion of ion j are assumed to be about the
same, we can write hj

p ' h=N1=2 and �np ' �n where h and �n are the Lamb-Dicke parameter
and mean occupation for the axial motion of a single (thermalized) trapped ion. In this
case, the fractional fluctuation in the Rabi frequency from run to run is

DWj; rms
n0k ; nk

�Wj
n0k ; nk

' h2

�������������������
�n��n� 1�

N

r
: �21�

This expression indicates that a large number of ions is beneficial because it tends to aver-
age out the effects of motion in the N ÿ 1 spectator modes. Eq. (21) is an overestimate of
the fluctuations since the spectator modes will have higher frequency than the COM mode,
leading to smaller amplitudes of motion than assumed in this crude estimate. In any case, it
is clearly desirable to cool all modes (whose motion is parallel to dk) to the zero-point
state (�np � 0) to suppress the effects of these Debye-Waller factor fluctuations.

2. Mode cross-coupling from static electric field imperfections

If the 3N ÿ 1 spectator modes of oscillation are not all laser-cooled to their zero-point
energy, then energy can be transferred to the kth mode of interest. Even when the spectator
modes are cooled to the zero-point state, they can act as a reservoir for energy from the
COM mode. This does not lead to heating but can cause decoherence.

Ideally, the ions are subjected to quadratic potentials as in Sec. II.B. In practice, higher-
order static potential terms are present; these terms can induce a coupling between the
modes. Similar couplings are induced by the time varying fields necessary for providing
entanglement; these are discussed below. We will assume that the higher order field gradi-
ents act as a perturbation to the (harmonic) normal mode solution. Following the conven-
tion in the above introduction to Sec. IV.B, these fields will be specified by Ei for
i 2 f1; 2; . . . 3Ng where the index i specifies both the ion and direction of E. We write the
electric field at the jth ion as

Ej � Ejx̂� EN� jŷ� E2N� j ẑ ; j 2 f1; 2; . . . Ng : �22�

Fortschr. Phys. 46 (1998) 4±±5 377



From Eqs. (18) and (21), we can write the equation of the kth normal mode as [46]

@2qk

@t2
� w2

kqk � q

m

P3N

i� 1
Di

kEi : �23�

In general, we can write

Ei � Ei�fupg� � Ei�fqjg�

� Ei�fqjg � 0� � P3N

m� 1
qm

@Ei

@qm

� �
fqjg� 0

� 1

2

P3L

l� 1

P3N

m� 1
qlqm

@2Ei

@ql @qm

� �
fqjg� 0

� . . . ;

�24�

where the derivatives are evaluated at the equilibrium positions. The first term on the right
side of the last equation just gives rise to a shift of the equilibrium positions, and the
second term can be absorbed into new definitions of the normal mode frequencies wi. The
second-order term (last term shown in this equation) can resonantly couple two modes of
oscillation (l and m) to the normal mode of interest k. We find a possible resonant term:

@2qk

@t2
� w2

kqk � q

m

P3N

i� 1
Di

kqlqm
@2Ei

@ql @qm

� �
fqjg� 0

; �25�

where the l and m mode frequencies satisfy jwl � wmj � wk. This type of coupling
can either add to or extract energy from mode k, depending on the relative phases
of motion in the three modes. By substituting the free solution to modes l and
m �qj�t� � Qk exp ��i�wjt � jj�� into the second-order term, we find that if
qk �t � 0� � �dqk=dt�t� 0 � 0, the driven solution to the amplitude of mode k initially
grows linearly with time:

jqk�t�j � qt

2mwk

P3N

i� 1
Di

kQlQm
@2Ei

@ql @qm

� �
fqjg� 0

�����
����� : �26�

We illustrate with an approximate numerical example which might have been expected to
play a role in the motional heating that was observed in the NIST experiments [10, 17]
(see section V.B below). In those experiments, performed on single 9Be� ions, the heat-
ing that was observed on the motion in the x direction was such that the ion made a
transition from the n � 0 to n � 1 level in about 1 ms. For a single ion, the three nor-
mal modes are just the oscillation modes along the x, y, and z directions �q1 � x;
q2 � y; q3 � z; Di

k � dk�. The mode frequencies were �wx; wy; wz�=2p ' (11.2, 18.2,
29.8) MHz, thus approximately satisfying the condition wx � wy � wz. For sake of argu-
ment, we assume this resonance condition to be exactly satisfied. We consider heating of
the x motion assuming both the y and z modes are excited. From Eq. (26), we find
jx�t�j � jqtAyAz�@2Ex=@y @z��y� z� 0�=�2mwx�j where Ay and Az are the amplitudes of motion
in the y and z directions. Here, we neglect the fact that energy is exchanged between the
three modes; for simplicity we assume the amplitudes of the y and z motion remain fixed.
In this approximation, if Ay � Az � x, the time it takes to excite the x motion to the same
amplitude is given by t � j2mwx=�qx�@2Ex=@y @z��y� z� 0�j. If x � 10 nm (corresponding to

hnyi ' hnzi ' 1 for the conditions of the single 9Be� ion NIST experiments, the field
gradient required to drive the x motion to an amplitude of 10 nm �hnxi ' 1� in the
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observed time of 1 ms is approximately @2Ex=@y @z � 1000 V/mm3. It is highly unlikely
the gradient was this large for the NIST experiments, and, furthermore, the resonance
condition was only approximately satisfied. Moreover, this source of heating was easily
tested by varying the initial values of Ay and Az (by varying the Doppler-cooling mini-
mum temperature through laser detuning) and studying the heating rate of the x motion
which had previously been cooled to the zero point of motion. No dependence on the
initial values of Ay and Az was found. In any case, if all modes of motion are initially
cooled to the zero-point state this source of heating vanishes because the assumed cou-
pling only provides an exchange of energy between modes. This places a premium on
cooling all modes to as low an energy as possible. Finally, it appears that this single-
ion example gives a worst case scenario since, for large numbers of ions, the force on
the generalized coordinates (right hand side of Eq. (23)) requires a high-order field gra-
dient to be nonzero. These gradients are highly suppressed in the typical case where ion-ion
separation is much smaller than the distance between the ions and the trap electrodes.

3. Mode cross coupling induced by logic operations

In the preceding sections, we have assumed that when transitions are driven between
jnki j#ij and jn0ki j"ij involving a single mode of motion k, the other 3N ÿ 1 spectator
modes of motion are not affected because coupling to them is nonresonant. However, when
the sum or difference frequency of two or more spectator modes is near the frequency of
the desired mode-k transition �wk jn0k ÿ nkj�, higher order couplings can entangle the
jnki j#ij and jn0ki j"ij states with the spectator mode states.

Equation (19) describes the general interaction Hamiltonian between the internal levels of
ion j and all 3N modes of motion. By expanding the exponential in Eq. (19) to all orders,
we find

Hj
I � �hW0j Sj

�
Q3N

l� 1

P1
bl; dl � 0

�ihj
la
y
l �bl �ihj

lal�dl

bl!dl!
ei�bl ÿ dl�wlt

 !
ei�dtÿjj� � h:c:

" #
; �27�

where W0j � Wj exp �ÿ 1
2 Sl�hj

l�2�. This equation describes the processes of each mode l gain-
ing or losing �bl ÿ dl� vibrational quanta, accompanied by the raising or lowering of the
internal electronic levels of ion j. We must account for all terms in Eq. (27) which do not
vary rapidly in time, or terms in which the resonance condition is nearly met:
Sl�bl ÿ dl�w1 ' d � wk�n0k ÿ nk�. Although detailed treatment of this problem is beyond
our intent, a couple of comments may be made.

In general, we must account for all the terms in Eq. (27) which cause significant errors
in the overall computation we are trying to carry out. For two or more trapped ions, some
combination of modes will nearly always satisfy the resonance condition. However, this
may occur only for high orders of bl and dl, and if the Lamb-Dicke criterion is met, the
contributions are vanishingly small. The terms that will cause problems are the ones that
are close to satisfying the resonance condition and are relatively low order in bl and dl. If
the Lamb-Dicke criterion is satisfied, it will always be possible to avoid these spurious
couplings, but it may be at the expense of making the Rabi frequency so small (in order to
avoid coupling to relatively nearby off-resonant terms) that the operations will become too
slow.

To understand this problem in the context of a simple example, we assume that a cross-
mode coupling of this type occurs when two modes, p and q, have frequencies which
satisfy the condition npwp ÿ nqwq ' 0, wk, or ÿwk corresponding to possible extraneous
mode coupling on the carrier, first blue sideband, or first red sideband of the logic opera-
tions (assumed to utilize mode k). This additional resonance condition yields, to lowest
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order in the Lamb-Dicke parameters, the effective Hamiltonian

Hj
I � �hW0jS

j
� 1� ihj

k�ak eÿiwk t � ayk eiwk t�
�
� �ihpayp�np �ihqaq�nq

np!nq!
ei�npwpÿnqwq� t

)
eÿi�dtÿjj� � h:c: ; �28�

where the resonance conditions are given by d � wL ÿ w0 � 0, �wk, or ÿwk. A specific
example is relevant to the NIST single 9Be

�
ion experiments. Here, mode k was the x

oscillation, and modes p and q are identified with the z and y oscillations of the single ion in
the trap. In this experiment hx � dk � x̂x0, hy � dk � ŷy0, hz � dk � ẑz0, and wx ' wz ÿ wy.
(The frequency relationship wx � wz ÿ wy is a consequence of Maxwell's equations for a
quadrupole rf trap in the absence of static potentials applied to the electrodes [43]) We
assume that the desired transition is the first blue sideband of mode x �d � wx�. In this
case, the resonant part of Eq. (28) becomes

Hj
I � �hW0j�Sj

�fihxayx ÿ hzhyayzay � O�h3�g � h:c:� : �29�
The term proportional to ayx is the desired anti-Jaynes-Cummings operator, and the term
proportional to ayzay can entangle the internal state with the other spectator modes (z and y),
leading to errors.

For logic operations on a string of ions in a linear trap, we will assume that all other
mode frequencies are higher. With the use of stimulated-Raman transitions, we can make
dk k ẑ and restrict our attention to spectator modes along the z axis. Nevertheless, as N
becomes large, nearby resonances of the type shown in Eq. (28) will become harder to
avoid. These coupling terms always scale as products of Lamb-Dicke parameters. Thus if
the spectator mode Lamb-Dicke parameters are small enough, or if at least one Lamb-Dicke
parameter is approximately zero, the higher order unwanted resonances may be sufficiently
suppressed. Furthermore, if the spectator modes are cooled to near the zero-point energy
�hni � 1�, then any couplings in Eq. (28) with powers of the annihilation operator aq will
be absent most of the time. Hence, in large registers, it will probably be important to cool
all modes to near the zero-point energy.

V. Decoherence

A. Internal state decoherence from spontaneous emission

The internal atomic states of trapped ions, which store quantum bits of information, must
be protected from spontaneous emission, at least for the duration of the computation. This
excludes the possibility of ªerror correction,º [48] which can tolerate a certain level of
errors due to spontaneous emission. For qubit levels coupled by single photon optical tran-
sitions, this may be accomplished by employing long-lived energy levels which do not have
an allowed electric dipole coupling, such as metastable electronic levels with a quadrupole
or intercombination coupling to the ground state. Although the interaction of these states
with the vacuum (causing spontaneous emission) is reduced, their interaction with an exter-
nal field for use in quantum logic operations is also reduced. This results in a fundamental
limit on the accuracy of each operation by roughly the ratio of the spontaneous emission
rate to the Rabi frequency x � G=W. In the case of optical transitions, W cannot be in-
creased indefinitely, since at optical intensities beyond about 1014 W/cm2, the atom is
quickly photoionized. This amounts to inaccuracies due to spontaneous emission on the
order of x � 10ÿ6ÿ10ÿ7 [49]. Even this limit may be too optimistic, as the two-level
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approximation breaks down before photoionization occurs, and the coupling to other elec-
tronic levels must also be considered [49]. This results in inaccuracies due to spontaneous
emission on the order of x � 10ÿ5ÿ10ÿ6, depending on the particular ion used.

In the case of two-photon stimulated-Raman transitions between stable electronic ground
states, the ratio of spontaneous emission rate to Rabi frequency is approximately
xSR � g

se
=�g2=D�, where gse � Gg2=D2 is the off-resonant spontaneous emission rate, g is

the resonant single-photon Rabi frequency of each laser beam, and D is the detuning of the
Raman beams from the excited state. This results in an inaccuracy G=D due to spontaneous
emission, which is independent of optical intensity. Since Raman transitions between S
electronic ground states are effective only when the detuning D is not much greater than
the fine structure splitting of the atom [50]; this results in an inaccuracy xSR due to sponta-
neous emission in range from about 10ÿ4 (9Be�) to 10ÿ7 (199Hg�), depending on the parti-
cular ion used. Spontaneous emission from spectator electronic levels should not signifi-
cantly affect this limit, provided that their splitting from the virtual excited state
significantly exceeds D and that the single photon resonant Rabi frequencies coupling the
ground states to the spectator levels are not much bigger than g [49]. These appear to be
reasonable assumptions for most candidate ions.

The decohering effects of spontaneous emission can be overcome by error correction
schemes. Error correction is complicated by the fact that when spontaneous emission oc-
curs, the atoms may decay to states outside the original set of computational basis states.
However, this situation can, in principle, be detected by optically pumping the ions back to
the computational basis and applying the error correction schemes [49, 51].

Spontaneous emission decoherence could, in principle, be nearly eliminated by driving
single-photon transitions between ground-state-hyperfine or Zeeman levels with rf or micro-
wave radiation since spontaneous emission from these levels is negligible. This may be
accomplished by coupling the internal and motional states with inhomogeneous magnetic
fields [52]. The speed of sideband operations is limited by the size of the field inhomogene-
ity one can obtain. For example, consider an ion moving along the z-axis with a magnetic
field gradient @Bx=@z applied on top of a uniform magnetic field Bz along the direction of
motion. In the ion's reference frame, there is an rf magnetic field which can induce transi-
tions between the internal states. The interaction Hamiltonian is then

H � ÿm � B � ÿmBzSz ÿ m�@Bx=@z� z0

4
�S� � Sÿ� �ay � a� ; �30�

where m � mB is the magnitude of the ion magnetic moment, typically near one Bohr mag-
neton, z0 is the spatial spread of the zero-point ion wavepacket, S� are the spin raising and
lowering operators from Sec. II.C and a and ay are the usual motional raising and lowering
operators. The coupling (last term in Eq. (30)) is analogous to Eq. (3), allowing the con-
struction of logic gates as described above. Unfortunately, this method requires very high
magnetic field gradients @Bx=@z. For instance, in order to realize an effective Rabi fre-
quency of 0.1 MHz �Weff � mB�@Bx=@z� z0=4�, a magnetic field gradient of around 10 T/cm
would be necessary, where we have assumed that the motional frequency is 1 MHz.
Although these gradients aren't unreasonable in the laboratory, the residual fields that ac-
company the gradient will dramatically shift the internal electronic levels of the trapped
ions. Moreover, it would be difficult to address selected ions because of the long wave-
length of the radiation relative to typical ion spacings.

B. Motional decoherence

Although the internal states of ions may be well isolated from environmental influences, the
motional states of a collection of trapped ions are expected to be more susceptible to deco-
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herence. The Cirac/Zoller scheme for quantum logic [9] transfers quantum information tran-
siently through the motional states, so any decoherence of the motion will compromise
operation of any multi bit quantum gate and must be minimized. In the NIST experiments
with a single ion, the motional state of all three modes was observed to absorb energy from
the environment at the rate of about 1 phonon (energy �hwz, where wz=2p � 10 MHz) per
millisecond from the ground state [10, 17]. Although this as of yet unexplained heating rate
is not believed to be fundamental, it is of considerable interest to characterize the possible
sources. There are several potential mechanisms for motional decoherence; for instance ªrf
heatingº from rf fields in the trap [53], collisions with background atoms, fluctuating patch
and contact potentials on the trap electrodes, electron field emission from the electrodes,
and Ohmic loss of induced image currents in the trap electrodes [54, 55]. These and other
effects, considered in Ref. [11], are not expected to be major obstacles to motional coher-
ence in a linear ion trap.

By virtue of the electric charge of trapped ions, it is natural to consider the coupling of
spurious electric fields to the motion of the ion string. In this section we relate the size of
electric field noise to the expected transition rate from the quantum ground state of motion
in the ion trap. Such noisy electric fields might be generated from unstable trap parameters,
external radiation, thermal (Johnson) noise from resistive losses in the trap electrodes, or
patch potentials from nearby surfaces.

We first consider the axial COM harmonic motion of a string of N ions at frequency wz.
An external uniform electric field will shift the position of the trap center; an external
electric field gradient will change the effective spring constant of the trap. Following the
approach of Savard, O'Hara and Thomas [56], who considered heating mechanisms in
the context of neutral atom dipole traps, we can similarly calculate the rate G0 at which the
ground state of ion motion is vacated due to noisy electric fields. We find

Gaxial
0 � Nq2

4m�hwz
SE�wz� � �h

4Nmwz
SE0 �2wz�

� �
; �31�

where SE�w� is the electric field noise spectral density in (V/cm)2/Hz and SE0 �w� is the
electric field gradient noise spectral density in (V/cm2)2/Hz. The noise densities are defined
so that the mean-squared electric field and field gradient are �2p�ÿ1 �1

0 dw SE�w� and
�2p�ÿ1 �1

0 dw SE0 �w�, respectively [56].
Note that contributions of electric field noise to motional heating is concentrated near

resonance �wz� in Eq. (31), as expected for a resonantly driven harmonic oscillator. Contri-
butions of electric field gradient noise to heating is concentrated near twice the resonant
frequency �2wz�, as expected for a parametrically driven harmonic oscillator. For modes of
motion with secular frequency wx derived from ponderomotive rf forces (i.e., the radial
modes of a linear trap), there are additional contributions to heating from noisy fields at
frequencies WT � wx and gradients at frequencies WT � 2wx, to lowest order in the pseudo-
potential approximation ��wx=WT� � 1� [21]. We find

G radial
0 � Nq2

4m�hwx
SE�wx� � w2

x

2W2
T

SE�WT � wx� � �h

4Nmwx
SE0 �2wx� � 2w2

x

W2
T

SE0 �WT � 2wx�
 !" #

:

�32�

Given a source of electric field noise SE�w�1=2, we may expect the corresponding gradi-
ent noise spectrum SE0 �w�1=2 to be no larger than SE�w�1=2=d, where d is the characteristic
ion trap electrode size. From the above equations, we find that this implies that the heating
rate from gradient noise is expected to be a factor of � �z0=2d�2 smaller than the heating
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rate from electric field noise, where we recall that z0 � ��h=2Nmwz�1=2 is the size of the
ground state wavepacket of the mode of interest. This ratio is typically very small in ion
traps (in the NIST 9Be� experiments, z0 � 7 nm, d � 250 mm, and �z0=2d�2 � 2� 10ÿ10�.
Noise in the electric field gradient is therefore expected to be much less of a concern than
noise in the electric field, unless the electric potentials on the trap electrodes possess an
unusually high degree of symmetry. It also follows that the COM modes should be most
susceptible to heating, as the non-COM modes do not respond to uniform electric fields.
For instance, in the case of two ions confined along the z axis, the COM mode along z is
sensitive to resonant uniform electric fields. The ªstretchº mode along z (where the two
ions' motions are out of phase) on the other hand, is only sensitive to resonant electric field
gradients. Therefore, if quantum logic operations are limited by motional heating due to
uniform electric fields, higher-order (non-COM) motional modes should be used for quan-
tum logic. COM heating will still indirectly affect the fidelity of operations on other modes,
but this effect should be of higher order, as discussed in section IV.B.1.

We examine two expected sources of electric field noise, and estimate their effects on the
heating rate of COM modes. These results are compared to the NIST experiment on a
single 9Be� ion [17], where we observed a heating rate G0 � 103/sec, corresponding to an
electric field noise of SE�wx�1=2 � 4 � 10ÿ8 V/cm/Hz1/2 or electric field gradient noise of
SE0 �2wx�1=2 � 0:07 V/cm2/Hz1=2.

1. Thermal or blackbody noise

Thermal fluctuations from lossy elements of the trap electrode structure may lead to electric
field noise at the ions. This is essentially the effect of blackbody radiation on the ion
motion, altered by the ªcavityº formed from the trap electrodes [11, 54, 57]. Lossy or
resistive elements of the trap electrodes will only give rise to a noisy electric field only if
the effective resistive current path is asymmetrically oriented with respect to the ions; other-
wise only neglegible field gradients will contribute, as discussed above. The voltage noise
spectral density from a resistor R at temperature T is 4kTR. For an electrode structure of
characteristic size d, we thus expect an electric field noise density of SE�w� � 4kTR�w�=d2,
where R�w� describes the resistance seen by the ion from the surrounding electrode struc-
ture, or, equivalently, the resistance through which currents induced by ion motion flow.
Neglecting the gradient terms in Eqs. (31) and (32), this results in axial and radial mode
heating rates of [7, 11]

G axial
0 � Nq2kTR�wz�

md2�hwz
�33�

and

G radial
0 � Nq2kT

m�hwxd2
R�wx� � w2

x

2W2
T

R�WT � wx�
 !

: �34�

We now use this last equation to estimate the heating rate which might have been ex-
pected in the NIST single ion 9Be+ experiments [17], where all modes were confined from
ponderomotive forces. We consider two current paths in the electrode structure which
would likely have provided the largest resistances. The first is a direct path between the
endcap electrodes, which were positioned around the ring electrode [11, 43]. Since this
path length is only about l � 0.5 cm and much smaller than the wavelengths associated
with the frequencies of interest wx=2p � 10 MHz and �WT � wx�=2p � 230 MHz, we can
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treat this path as a lumped resistor with resistance R�w� � rl=A�w�. Here, r is the resistiv-
ity of the electrode material and A�w� is the effective cross-sectional area of the resistive
path, proportional to the skin depth at frequency w. We conservatively estimate
R�wx� � 0:04 W and R�WT � wx� � 0:20 W in the experiment [11, 43] and calculate a heat-
ing rate of G0 � 0:7=s, dominated by the first term of Eq. (34) and much smaller than
observed.

The rf and static electrodes in an rf trap are typically joined through an rf step-up trans-
former. This leads us to consider a resistive path from the rf to the static electrode, as the
resistance between these electrodes can be high at frequencies near the resonant rf drive
frequency WT. In a linear trap, these fields should not have a component along the axial
modes of motion; moreover, these fields will vanish at trap center and only provide a gradi-
ent, unless there is an extreme asymmetry in the electrode structure. We thus consider noise
fields resulting from a geometrical asymmetry b between the ring and endcap electrodes
�0 � b � 1, where b is proportional to the electric field at the ion if a potential is applied
between the ring and endcaps; b � 0 for perfect symmetry). In the NIST 9Be+ experiments
[10, 17], a quarter-wave transmision line acts as the step-up transformer [43], thus the
impedance between the rf and static trap electrodes as a function of frequency w is

Ztrap�w� � Z0 tanh
p

4Q

�������
w

WT

r
� i

p

2WT

� �
; �35�

where Z0 is the characteristic line impedance, and Q is the loaded quality factor of the
transmission line of length pc=2WT at resonance �w � WT�. The resistance is the real
part of Eq. (35), and at the frequencies of interest which might couple to the ion mo-
tion, wx and WT � wx, we have R�wx� � �pZ0=4Q� �wx=WT�1=2 � 0:03 W and
R�WT � wx� � �Z0=pQ� �WT=wx�2 � 34 W. In these expressions, Z0 � 100 W and Q � 500
are the characteristic impedance and quality factor of the transformer, and wx=2p and
WT=2p are taken to be 10 MHz and 230 MHz respectively [43]. Note the estimated resis-
tance R�wx� is nearly equivalent to the value in the skin-depth model above, since this path
length is still only a small fraction of the wavelength associated with wx. We find that the
two terms in Eq. (34) contribute roughly equal amounts to a total heating rate of approxi-
mately G0 � 0:8b2=s. Again, this rate is much smaller than the observed rate, even for
large asymmetries.

2. Noise on trap voltages

Fluctuations in the trap voltages (U0 and V0 in Eq. (1)) will nominally only give rise to a
noisy field gradient. However, in some cases, asymmetric fluctuations in trap parameters
can give rise to a noisy electric field. For instance, noise on the static potentials of the end
segments of a linear trap (Fig. 2) may not be common mode if the potentials are provided
from uncorrelated power supplies, or if the leads connecting to the end segments experience
different amounts of noise from pickup. In these cases, we can relate the electric field noise
density to a differential potential noise density defined by SdU0

�w� � d2SE�w�, where dU0

is the difference in potentials between the rod end segments. From Eq. (31), this would
give rise to a heating rate of

G0 � Nq2

4m�hwzd2
SdU0
�wz� : �36�

For example, a typical power supply might have rms noise of 0.1 mV uniformly distributed
across a 20 MHz bandwidth. If the supply is filtered so that signal amplitude at frequency

D. J. Wineland et al. : Experimental Primer384



wx is attenuated by a factor F < 1, we find �SdU0
�2wz��1=2 � 20F (nV/Hz1=2�, leading to a

heating rate of the axial COM mode of G0 � 4 � 106N � F2=s. Here we have assumed trap
parameters wz=2p � 1 MHz and d � 0.025 cm.

If there exist asymmetric static patch or contact potentials on the electrodes, this could
lead to a static electric field Estatic which would push the ions away from at the geometrical
trap center defined by x � y � z � 0 in Eq. (1). In this case, fluctuations in the potentials
U0 and V0 will be converted into a noisy electric field at the ions. If Estatic is in the axial
direction, then a noise density of the static voltage SU0�w� would be equivalent to a field
noise density of SE�w� � �Estatic=hU0i�2 SU0�w�. If we assume Estatic � j=d, where j is an
effective axial potential difference across the electrodes (due to patch potentials for in-
stance), then we find from Eq. (31)

G0 � Nq2

4m�hwzd2

j

hU0i
� �2

SU0�wz� : �37�

Similar to above, this leads to a heating rate of G0 � 4 � 106N � F2�j=hU0i�2=s assum-
ing the above values of the trap parameters. Controlling these potentially troublesome
heating rates clearly points to the importance of heavily filtering the static electrodes at
frequency wz. The filtering is best accomplished as close as possible to the trap electro-
des, and for reasonable filter factors of F < 10ÿ4, these heating sources should be neg-
ligible.

For fluctuations in the rf potential V0, we can derive a similar heating rate of motional
modes confined by ponderomotive rf forces, which would be relevant to the NIST experi-
ments. For simplicity, we consider the COM radial mode at frequency wx and assume the
confinement is dominated by the ponderomotive force (wp term in Eq. (2)). We consider the
case of a patch field Estatic � j=R. The equivalent electric field noise density is then
SE�w� � �2Estatic=hV0i�2 SV0�w�, which from Eq. (32) results in a heating rate

G radial
0 � Nq2

4m�hwxR2

2j

hV0i
� �2

SV0�wx� � w2
x

2W2
T

SV0�WT � wx�
 !

; �38�

where SV0�w� refers to the rf potential noise density at the trap rf electrode. To estimate the
effect of rf amplitude noise at the input, we again assume that the rf input lead is connected
to a step-up transformer. For a transformer of characteristic impedance Z0 and quality factor
Q� WT=2wx � 1, input signals of frequency wx are essentially filtered out, and signals at
WT � wx are multiplied by the factor �Z0=�2pRsQ��1=2 WT=wx, where Rs is the source impe-
dance. We thus neglect the first term of Eq. (38) and replace SV0�WT � wx� by
�Z0=�2pRsQ�� �WT=wx�2 SV0; input�WT � wx� in the second term. If the rf source feeding the
input has an effective noise figure of NF � 10 dB above the Johnson noise of a Rs � 50 W
source impedance, we have SV0; input � 10�4kTRs� � 10ÿ17 V2=Hz. Assuming
wx=2p � 10 MHz, we find hV0i � 750 V and a heating rate of G0 � 10�j=hV0i�2=s. Since
j� hV0i for typical patch potentials of < 1 V, this source of heating is again much smal-
ler than observed. Moreover, in the NIST experiments, j was varied over a wide range
without an observed dependence on heating rate.

Although we have tried to characterize the more obvious sources of electric field
noise, the actual electric field noise spectral density in an ion trap may have a compli-
cated structure and may be difficult to characterize. The motional modes of a string of
ions are most susceptible to electric field noise near the motional frequency of interest,
as expected. If spurious resonances should occur at these frequencies due to background
electric fields, it might be possible to avoid them by simply changing the trap param-
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eters. As stated above, heavy filtering of the electrodes should provide adequate noise
suppression at these frequencies and the COM motion of ions trapped in electrode
structures with a high degree of symmetry will be less susceptible to electric field
noise.

C. Induced decoherence from applied field amplitude noise

In the ion trap quantum computer, all operations can be traced back to Eq. (5), the coupling
of states jni j#i to jn0i j"i. The fidelity of these operations will depend, in part, on how
accurately the coupling strength Wj and the application time can be set. For instance, in the
rotation gate of Eq. (7), the rotation angle q � 2Wjt, and noise in these parameters will lead
to evolution to an undesired quantum state. The effects of (Gaussian) noise on laser inten-
sity have been treated by Schneider and Milburn [58]. These effects show up in a well-
characterized way for transitions involving Fock states. Here we briefly investigate the size
of laser power fluctuations, as the Rabi frequency is proportional to the laser power in the
Raman configuration. We do not examine how such errors might propagate in an extended
gate structure [9, 11, 59].

Fluctuations in the laser intensity at the site of a given ion can arise from both
fluctuations in the relative position of the beam with respect to the ion and fluctuations
in laser power. Laser/ion position stability is particularly important since the Cirac/Zoller
scheme of quantum logic assumes that ions in an array be selectively addressed, there-
by requiring a high degree of control of the laser beam spatial profile (Sec. IV.A). Of
course, the simplest method for minimizing position fluctuations is to employ mechani-
cally stiff mounts for the optics and ion trap electrodes, and have the laser source as
close as possible to the ions. A quadrant detector indexed to the trap electrodes and
placed near the ion may also be used to actively stabilize the beam position by feeding
back to a galvanometer or acousto-optic modulator. If optical fibers are used to deliver
laser beams to the ions, position fluctuations between the fiber and the ions could be
made small; however, we must also consider position fluctuations between the laser
source and the input to the fiber. If the position tolerances can be adequately con-
trolled, the dominant source of intensity noise at the ion would likely be given by
fluctuations in optical power and laser mode. Here, we estimate limits on laser ampli-
tude noise.

If we assume the laser fields responsible for quantum logic operations are coherent
states, the fundamental noise floor is photon shot noise. For a laser beam of average power
P0 the fractional level of shot noise is

dP

P0
�

�����������
�hw

P0top

s
; �39�

where w is the (optical) photon frequency, top is the time the radiation is applied, and, for
simplicity, we assume square pulse envelopes. Almost all laser sources have significant
amplitude noise well above the shot-noise limit in the 10 Hz±±10 kHz range due to acoustic
vibrations which, for example, affect the laser cavity resonators. Much of this noise can be
removed by active power stabilization, where a beamsplitter directs a portion of the laser
power to a photodetector, and an error signal is derived and fed back to an upstream mod-
ulator or, in the case of a diode laser, directly to the amplitude of the laser source [60]. The
limiting noise of this stabilization scheme is degraded slightly by the imperfect quantum
efficiency of the photodetector as well as the beamsplitter. If the beamsplitter directs a
fraction, of the input optical power to the stabilizer (which then gives an optical power
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Pu ' �1ÿ e�P0 directed to the ion), and the quantum efficiency of the photo detector is
hdet, the limit of fractional power noise in the logic pulse is (assuming no added electronic
noise in the feedback loop)

dPu

Pu
�

������������������������������������
�hw

Putophdete�1ÿ e�

s
: �40�

For a laser wavelength of 313 nm, and assuming, e � 0:5, and hdet � 0:5, we have
dPu=Pu � 2:3 � 10ÿ9�Pmtop�ÿ1=2. For 1 W of usable laser power and top � 1 ms, this corre-
sponds to a fractional power fluctuation of � 2:3 � 10ÿ6.

This estimate applies only to the laser power fluctuations at the beamsplitter and assumes
no additional noise is introduced between the beamsplitter and the photo detector or the
beam splitter and the ions. Typically, the usable part of the laser beam must be directed
further through optics, the air, and a window to the vacuum envelope enclosing the ion
trap. Fluctuating etalon effects in the optics and air currents may therefore seriously in-
crease the power fluctuations beyond Eq. (39).

Fluctuations in timing errors may also be important. Clearly, fractional fluctuations in the
duration of laser pulses will correspond directly to the same fractional fluctuations in the
desired value of the gate parameters (e.g., rotation angles in Eq. (7)). If we require frac-
tional fluctuations of 10ÿ6 on these parameters, then we require timing precision of 1 ps on
a 1 s pulse. Similar considerations apply to the stability of pulse envelope shapes.

For both amplitude and timing fluctuations, it may be possible to sample a portion of the
beam used for logic and apply it to a ªcheck bitº ion. The response of this ion could then
be used to monitor and control the amplitude and timing of the pulses.

VI. Conclusion

A system of trapped and cooled atomic ions is one of the few viable experimental candi-
dates for quantum computation. Internal levels of the ions can coherently store quantum
bits for extremely long times. Preserving coherence during logic gates will clearly be more
difficult, because (1) the quantum bits are distributed through a collective motional degree
of freedom in the trap which more readily couples to the environment, and (2) technical
noise on the logic gates degrades gate operation. Nevertheless, to our knowledge, these
difficulties appear to be technical, not fundamental. The maximum number of gates which
can be applied coherently, and the maximum number of ions which can be packed into a
trap, will undoubtedly be determined by technical limits. Although it appears that the
quantum factoring algorithm would be extremely difficult to implement, we conclude that
an ion trap quantum computer of very modest numbers of bits and gates looks quite pro-
mising.

In this paper, we have attemped to identify some of the more important experimental
concerns with the ion trap system, and expect that their resolution will likely be determined
in the laboratory. We summarize with a few general observations regarding the ion trap
quantum computer.

(1) The most attractive coupling scheme appears to involve two-photon stimulated Ra-
man transitions between hyperfine (or Zeeman) ground states separated by rf or microwave
frequencies. This not only relaxes the laser frequency stability requirements when compared
to single-photon optical transitions, but also allows more geometrical control of the effec-
tive wavevector dk � k1 ÿ k2, which determines the coupling to particular motional modes.

(2) Laser cooling of all modes having a component of motion along dk to their ground
state energy will minimize cross coupling between the modes.
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(3) The axial COM motional mode may not be the best choice for a ªdata busº which
couples the quantum bits between ions. First, although the COM mode is most resolved
from the other modes, it has the lowest motional frequency, which may ultimately set a
limit on the quantum gate speed. Second, the non-COM motional modes should be less
sensitive to heating from external electric fields.

(4) For a given number of ions, the optimum value of the mode frequencies will likely
involve a key tradeoff. Larger frequencies might minimize the effect of some sources of
motional decoherence, as the motional energy levels would be further separated. This
would also allow gate operations (and laser cooling) to proceed faster, as the Rabi fre-
quency can be no larger than the mode frequency. On the other hand, smaller frequencies
will increase the spatial separation of the ions, thus easing the problem of optical addres-
sing of individual ions in a string.

(5) Internal state decoherence will likely be small, and it does not appear that motional
decoherence will be a fundamental problem, notwithstanding the heating problem observed
in the NIST experiments. It is important to heavily filter the ion trap static electrodes at wz

to minimize environmental influences on the ion string COM motion.

Acknowledgements

We gratefully acknowledge the support of the U.S. National Security Agency, Army Re-
search Office, and Office of Naval Research. We acknowledge useful discussions with
P. Bardroff, R. Blatt, I. Cirac, T. Darling, L. Davidovich, A. Despain, D. DiVincenzo,
A. Ekert, B. Esry, N. Gisin, S. Haroche, M. Holland, M. Holzscheiter, R. Hughes,
D. James, J. Kimble, P. Knight, S. Lloyd, G. Milburn, J. Preskill, W. Schleich, A. Steane,
W. Vogel, P. Zoller, and W. Zurek.

References

[1] D. P. DiVincenzo, Science 270, 255 (1995); S. Lloyd, Scientific American 273, 140 (October
1995).

[2] A. Ekert and R. Jozsa, 1996, Rev. Mod. Phys. 68, 733.
[3] D. Deutsch, Proc. R. Soc. London A 425, 73 (1989); D. Deutsch and R. Jozsa, Proc. R. Soc.

London A 439, 554 (1992).
[4] P. Shor, 1994, Proc. 35th Ann. Symp. Found. Comp. Sci. (IEEE Computer Society Press, New

York), p. 124.
[5] S. Lloyd, Science 261, 1569 (1993); 273, 1073 (1996); L. K. Grover, Phys. Rev. Lett. 79, 325

(1997).
[6] Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, Eds. (Princeton Univ. Press,

Princeton, NJ, 1983).
[7] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994).
[8] J. J. Bollinger, D. J. Wineland, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 54, R4649

(1996).
[9] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[10] C. Monroe, D. Meekhof, B. King, W. Itano, and D. Wineland, Phys. Rev. Lett. 75, 4714
(1995).

[11] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof,
quant-ph/9710025.

[12] A. Steane, Appl. Phys. B 64, 623 (1997).
[13] D. F. James, Appl. Phys. B (in press), quant-ph/9702053.
[14] P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, Phys. Rev. A 52, 3554 (1995); Q. A.

Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Phys. Rev. Lett. 75, 4710
(1995); P. R. Berman, Ed., Cavity Quantum Electrodynamics, (Academic, Boston, MA, 1994).

D. J. Wineland et al. : Experimental Primer388



[15] N. A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997); D. G. Cory, A. F. Fahmy, and
T. F. Havel, Proc. Nat. Acad. Sci. USA 94, 1634 (1997).

[16] J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, and D. J. Wineland, IEEE Trans.
on Instrum. and Measurement 40, 126 (1991).

[17] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P.
Gould, Phys. Rev. Lett. 75, 4011 (1995).

[18] W. Nagourney, J. Sandberg, and H.G. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986); Th. Sauter,
R. Blatt, W. Neuhauser, and P. E. Toschek, Phys. Rev. Lett. 57, 1696 (1986); J. C. Bergquist,
R. G. Hulet, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 57, 1699 (1986).

[19] M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev.
A45, 6493 (1992).

[20] W. Paul, H. P. Reinhard, and U. von Zahn, Z. Phys. 152, 143 (1958).
[21] H. G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967); 5, 109 (1967).
[22] M. E. Poitzsch, J. C. Bergquist, W. M. Itano, and D.J. Wineland, Rev. Sci. Instrum. 67, 129

(1996).
[23] B. Esry and B. Paul (private communication).
[24] K. E. Kahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969); D. J. Wineland and W. M.

Itano, Phys. Rev. A 20, 1521 (1979); W. Vogel and R. L. De Matos Filho, Phys. Rev. A 52,
4214 (1995).

[25] D. J. Wineland and H. G. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).
[26] J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys.

Rev. Lett. 48, 867 (1982).
[27] M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[28] F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 62, 403

(1989).
[29] D. J. Wineland, R. E. Drullinger, and F. L. Walls, Phys. Rev. Lett. 40, 1639 (1978);

W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Phys. Rev. Lett 41, 233 (1978);
D. J. Wineland, and W. M. Itano, Physics Today, vol. 40, no. 6, p. 34 (1987)

[30] B. Appasamy, I. Siemers, Y. Stalgies, J. Eschner, R. Blatt, W. Neuhauser, and P. E. To-
schek, Appl. Phys. B 60, 473 (1995).

[31] R. Dum, P. Marte, T. Pellizzari, and P. Zoller, Phys. Rev. Lett. 73, 2829 (1994); J. Eschner,
B. Appasamy, and P. E. Toschek, Phys. Rev. Lett. 74, 2435 (1995).

[32] G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller, Europhys. Lett. 39, 13 (1997).
[33] D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995); A. Barenco, et al., Phys. Rev. A 52, 3457

(1995); S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[34] R. P. Feynman, Opt. News 11, 11 (1985).
[35] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett.

76, 1796 (1996).
[36] N. F. Ramsey, Molecular Beams, (Oxford University, London, 1963).
[37] C. Monroe, D. Leibfried, B. E. King, D. M. Meekhof, W. M. Itano, and D. J. Wineland,

Phys. Rev. A 55, R2489 (1997).
[38] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996).
[39] D. Leibfried, D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland,

Phys. Rev. Lett. 77, 4281 (1996); J. Mod. Optics 44, 2485 (1997).
[40] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
[41] A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
[42] S. Chu, private communication (1997).
[43] S. R. Jefferts, C. Monroe, E. W. Bell, and D. J. Wineland, Phys. Rev. A 51, 3112 (1995).
[44] D. J. Wineland and W. M. Itano, Phys. Rev. A 20, 1521 (1979).
[45] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997); S. J.

van Enk, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 429 (1997).
[46] H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1950).
[47] H. Frauenfelder, The Mossbauer Effect, (Benjamin, New York, 1963); H. J Lipkin, Quantum

Mechanics (North Holland, Amsterdam, 1973), Chaps. 2±±4.
[48] P. W. Shor, Phys. Rev. A 52, R2493 (1995); A. Steane, Phys. Rev. Lett. 77, 793 (1996); Proc.

R. Soc. Lond. A 452, 2551 (1996); R. LaFlamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys.
Rev. Lett. 77, 198 (1996); D. P. DiVincenzo and P. W. Shor, Phys. Rev. Lett. 77, 3260 (1996).

Fortschr. Phys. 46 (1998) 4±±5 389



[49] M. B. Plenio and P. L. Knight, Phys. Rev. A 53, 2986 (1996); M. B. Plenio, V. Vedral, and
P. L. Knight, Phys. Rev. A 55, 67 (1997).

[50] R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen, Optics Letters, 19, 207 (1994).
[51] J. I. Cirac, T. Pellizzari, and P. Zoller, Science 273, 1207 (1996).
[52] H. Harde, H. Lehmitz, J. Hattendorf-Ledwoch, and R. Blatt, Appl. Phys. B 53, 131 (1991);

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev.
A 46, R6797 (1992).

[53] H. Walther, Adv. At. Mol. Phys. 31, 137 (1993).
[54] D. J. Wineland and H. G. Dehmelt, J. Appl. Phys. 46, 919 (1975).
[55] J. R. Anglin, J. P. Paz, and W. H. Zurek, Phys. Rev. A 55, 4041 (1997).
[56] T. A. Savard, K. M. O'hara, and J. E. Thomas, Phys. Rev. A 56, R1095 (1997).
[57] A. J. Dahm and D. N. Langenberg, Am. J. Phys. 43, 1004 (1975).
[58] S. Schneider and G. J. Milburn, quant-ph/9710044.
[59] C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 78, 3971 (1997).
[60] N. C. Wong, J. L. Hall, J. Opt. Soc. Am. B2, 1527 (1985); C. C. Harb, M. B. Gray, H.-A.

Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, IEEE J. Quant. Elec. 30,
2907 (1994).

(Manuscript received: September 19, 1997)

D. J. Wineland et al. : Experimental Primer390


