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Sympathetic cooling of trapped ions for quantum logic
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One limit to the fidelity of quantum logic operations on trapped ions arises from heating of the ions’
collective modes of motion. Sympathetic cooling of the ions during the logic operations may eliminate this
source of errors. We discuss the benefits and drawbacks of this proposal, and describe possible experimental
implementations. We also present an overview of trapped-ion dynamics in this scheme.

PACS numbds): 03.67—a, 32.80.Pj

[. INTRODUCTION center ion, leaving all other internal coherences intact. If the
logic operations use a mode in which the center ion remains
One of the most attractive physical systems for generatingt rest, the motional coherences in that mode are also unaf-
large entangled states and realizing a quantum compiiter fected by the cooling. On the other hand, the sympathetic
is a collection of cold trapped atomic iofig]. The ion trap ~ cooling keeps the COM motion cold, reducing the thermal
quantum computer stores one or more quantum(gitbity ~ Wave packet spread of the ions. In the following, we will
in the internal states of each trapped ion, and quantum logigiscuss the dynamics of an ion string in which all ions are
gates(implemented by interactions with externally applied identical except the center ion, assuming heating by a uni-
laser beamscan couple qubits through a collective quan- form .electrlc field. Our .results' give gwdelme; f_or imple-
tized mode of motion of the ion Coulomb crystal. Loss of Menting the sympathetic cooling scheme. Similar results
coherence of the internal states of trapped ions is negligibl¥ould apply to two- and three-dimensional ion crysfdie—
under proper conditions but heating of the motion of the iont3l.
crystal may ultimately limit the fidelity of logic gates of this
type. In fact, such heating is currently a limiting factor in the
National Institute of Standards and Technold®}ST) ion- Il. AXIAL MODES OF MOTION

trap quantum logic experiments, 4. We consider a crystal df ions, all of chargey, in a linear

Electric fields from the environment readily couple to theradiofrequency(RF) trap [10,11]. The linear RF trap is es-

motpn of the ions, heating t'he lon crys[@—?]. If the ion sentially an RF quadrupole mass filter with a static confining
trap is much larger than the ion crystal size, we expect these .

electric fields to be nearly uniform across the crystal. Unj-Potential along the filter axig. If the radial confinement is
form fields will heat only modes that involve center—of—massfsumc'e_ntly strong compared t_o t_he aX|e_1I confm_emen_t, the
motion (COM motion, in which the crystal moves as a rigid '°"S Will line up along thez axis in a string configuration
body. Motional modes orthogonal to the COM motion, for [10,11. There is no RF electric field alorg so we can write
instance, the collective breathing mode, require field gradithe axial confining potential a$(z) = gayz*/2 for a, a con-
ents to excite their motion. The heating of these modes i§tant. The potential energy of the string is then given by
therefore suppressddl]. However, even if quantum logic

operations use such a “cold” mode, the heating of the COM

. [ . .. . . . N 2 N
motion can still indirectly limit the fidelity of logic opera- 1 > 9 1
tions. Since the laser coupling of an internal qubit and a V(%1 - - ’Zn)_ﬁqaoizl “ " Brreg E 27| @)
motional mode depends on the total wave-packet spread of ';’;jl

the ion containing the qubit, the thermal COM motion can
reduce the logic fidelity3,4].

In this paper, we examine sympathetic cool{i@ in a  for z the position of theth ion in the string(counting from
particular scheme for which we can continuously laser coothe end of the string The first term in the potential energy
the COM motion while leaving undisturbed the coherencegxpresses the influence of the static confining potential along
of both the internal qubits and the mode used for quantunthez axis, while the second arises from the mutual Coulomb
logic. In this method, one applies continuous laser cooling tdepulsion of the ions. For a single ion of mass the trap
only the center ion of a Coulomb-coupled string of an oddfrequency along is just w,=+/gag/m.
number of ions. One can address the center ion alone if the We can compute the equilibrium positions of the ions in
center ion is of a different ion species than that composinghe string by minimizing the potential energy of E().
the rest of the strin§9]. Alternatively, one can simply focus Defining a length scale’ by /3= q/(4meqa,) and normal-
the cooling beams so that they affect only the center ion. Inzing the ion positions by;=z;// gives a set of equations
either case, the cooling affects only the internal states of théor the u; as
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Ui— < 2 < Y
=t (Ui Ui (i) @ for the frequencieg and(orthonormal eigenvectors ) of

the N normal modes. Because of our normalization of the

which has analytic solutions only up b= 3. Steang¢l]and Lagrangian(6), the /, are normalized tav, and thev ™ are
Jameq 14] have computed the equilibrium positions of ions expressed in terms of the normalized coordina@eg). In
in strings withN up to 10. The potential energy is indepen- terms of the physical timg the frequency of th&th mode is
dent of the mass, so the equilibrium positions of ions in a/,w,. If the kth mode is excited with an amplitud®, we
string are independent of the elemental composition of thé¢ave
string if all the ions have the same charge. .

In a real ion trap the ions will have some nonzero tem- qi(t) =R CoMellted 0] j=n,, 9)
perature and will move about their equilibrium positions. If
the ions are sufficiently cold, we can write their positions as 1 () i (st + )
a function of time ag;(t)=/u;+q;(t), whereq;(t) is small dn(D=R C\/_—Unc etk K (10
enough to allow linearizing all forces. We focus on the case K
of an odd number of ion#, where all ions have mags, in terms of the physical coordinates(t).
except for the one at the center of the string which has mass \yje can solve for the normal modes analytically for
M. The ions are numbered,... N, with the center ion la-

, =3. Exact expressions for the normal-mode frequencies are
beled byn.=(N+1)/2. Following Jame§14], the Lagrang-

ian for the resulting small oscillations is 13 1 12
[H=| =+ —— (21— J441-34u+16%?)| , (11)
N N 2 10 10w
=TS et Y ga; (3
2. 5 2 20 070z g H =13, (12)
i#ng
1 1/2
N N |y _ 2
m M. 1 (3= 10+ 10 (21+ \441— 34+ 169u )} , (139
=3 2 Qi2+7Q§C_ Eqaoijzl Aijdid; (4) "
i';jc ' normalized tow,. The mode eigenvectors are
where 5(1)=N1<1,g(13—5ﬁ), 1), (14)
1+2§ !
o lu—u® v®=Ny(1,0,-1), (15)
A": k#i (5)
) 1 o v®=N,| 1 £(13—5§2) 1 (16)
—2——— i#]. 37 8 sh 2
|Ui_Uj|

. ) ) ) in terms of Q;(t). HereN;, N,, and N3 are normalization
We define a normalized time &=w,t. In treating the  factors. In the case of three identical ions=1), we can

case of two ion species, we write= M/m for th_e mass ratio express the mode eigenvectors in terms of@hgt) aso™®
of the two species and normalize the amplitude of the ion

L ‘ gt _ o ——  =(1L1,1)43, v®=(1,0-1)/\2, andv®=(1,—2,1)/\6.
vibrations q,(.t) as Qi=0iV0ao, 1#Nc, Qn,=0n, VG0 The mode eigenvectors, in this special case, also give the ion
The Lagrangian becomes

oscillation amplitudes in terms of the physical coordinates

1 4oz 1 N g;(t). For three identical ions, then, pure axial COM motion

L== E & _ 2 AlO.O. 6 constitutes a normal mod€This result holds for an arbitrary
IIQIQ] 1 ( ) . . . .

2 2iT=1 number of identical ion$.We also note that the center ion
does not move in mode #2; hence the frequency and eigen-
where vector of mode #2 are independentof For any odd num-
berN of ions there areN —1)/2 modes for which the center

Aij 1J#ne ion does not move. These modes will likewise have frequen-
Ai,j: Aj /\/; i or j=ng,i#j 7) ciis and eigkenvectors independenioiMoreover, they have
Al i=j=n v m=—0{%n and so they are orthogonal to the COM
) ¢ motion and do not couple to uniform electric fields. The
generalizing the result of JamgH4]. center ion moves in the otheN@1)/2 modes, and unless

The Lagrangian is now cast in the canonical form foru=1, each of theseN+1)/2 modes has a component of
small oscillations in the coordinaté€g;(t). To find the nor- axial COM motion and therefore couples to uniform electric
mal modes, we solve the eigenvalue equation fields.
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For N=5 and higher, the normal mode frequencies de-show below(Sec. IV) that this mode is undesirable for use in
pend onw in a complicated way. However, it is easy to find quantum logic. Hence, in order to maximize gate speed, it is
the frequencies numerically. Figure 1 shows the mode frebest to use a cooling ion that is of the same mass as, or
quencies foN=3, 5, 7, and 9 as a function qf for 0.01 lighter than, the logic ions. In this case mode 2 is well sepa-
<u<100. The modes are numbered in order of increasingated from all other modes, as shown in Fig. 1.
frequency(at w=1), and are normalized ®, . In each case,
the lowest-lying mode has all ions moving in the same di-
rection and consists of pure COM motion far=1. The . TRANSVERSE MODES OF MOTION
even-numbered modes correspond to the-(L)/2 modes — \ye now consider the motion of the ions transverse to the
for which the_center ion does not move. Their frequencies, o.ic The ions experience an RF potentiatosQt)(
are therefore mdepen_dent paf For both_ very large and very _—yA)/2 for a suitable choice of axesandy perpendicular to
smaII;.L the modes pair up, as s'hown in Fig. 1. For each PaiL, “\where ) is the frequency of the RF field ang is a
there is some valug>l for WhICh the modes bec_ome de_— constant. The static confining potential can be written
generate. Th.e relative spacing betyveen modes In & pair {§5./2)(2— ax?— (1— a)y?) at the position of the ions
also smaller in the large- limit than in the smallg limit. (with a a constant so there is also a transverse static elec-

If the static confining potential of the trap is not perfectly ¢ field. To analyze the ion motion, we work in the pseudo-
harmonic, the normal modes of motion will exchange energy,ential approximatiofil5], in which one time averages the
with each other. This problem is addressed in R&f.(Sec.  mqtion over a period of the RF drive to find the ponderomo-
4.1.8. These effects are small if all modes are reasonably;e force on the ion. If the static potential is negligible, the
cold. Moreover, mode cross-coupling is & resonant proces§e grive gives rise to an effective transverse confining po-
wh|ch requires the_ mode frequencies to be relgted as sums QI i1 of %mwrzo(XZerz), where w, o= qx/(y2Qm) for an
d|ffe_rences. Avoiding such resonances by tuning the trap PO%n of masam. If we include the effects of the static field, the
tentials reduces the rate of energy transfer by a large faCto{ransverse potential becomsn(w?x2+ w?y?), where o

The Rabi frequency of the laser-ion interaction sets the x y> 7 X
speed of quantum logic gates and the linewidths of transi= @roV1— aw3/wiy, ©y=w\1-(1-a)w/w;, Below
tions between vibrational states of the ion crystal. If we perwe will assumea=1/2, so thatw,=w,. In any case, the
form quantum logic on a normal mode whose frequency igransverse potential is that of a simple harmonic oscillator, as
too close to that of another “spectator” mode, we must re-we saw also for the axial potential. However, the transverse
duce our Rabi frequency, and thus our gate speed, to avoiptential depends directly on the ion’s mass, so the center
driving transitions on the spectator mode; otherwise we sufion of a string feels a different trap potential than the others
fer a loss of fidelity. Only the lowest-frequency mode is well for w# 1.
separated from all other modes far very large. We will We definee= w,q/w,, S0 thatw,= w,\/e’— 1/2. Then the
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ized ion vibration amplitudes along Here
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Bij i,j#ne e
B/={ Bij/\Vu i or j=ng,i#] (18) O W
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and i
1 N 1 FIG. 2. Trap anisotropy at instability of the string configuration
e2— 5— E 3 i=j,j#n as a function ofw for 3, 5, 7, and 9 ions. Arrows indicate the cusps
1 Ui Uy ' ¢ discussed in the text.
k#i
N . . .
B — 6_2 _ 1 B E 1 19 cusp, €, is independent ofe. In this regime e< e creates an
w2 ~ Jui—uy? I=]=ng (19 instability in a mode similar to the zigzag mode, except that
ﬁ;li the center ion remains fixed.
We can proceed to calculate the frequencies of the trans-
1 i#]. verse modes for values>e (). Again, these frequencies
|u;j— uj|3 are normalized to the axial frequency of a single ion of mass

m. Figure 3 shows the transverse mode frequencies for 3, 5,

We can describe the normal mode frequencies and oscillaZ, and 9 ions as a function @f, wheree is taken equal to
tion amplitudes in terms of the eigenvectors and eigenvalue$.le(«). The modes are numbered in order of increasing
of Bi’j , just as for the axial case above. The normalizations ofrequency atu=1 (all ions identica)l. In this numbering
the time and position coordinates remain the same as in thecheme, the central ion moves in odd-numbered modes but
axial case. not in even-numbered modes. The frequencies of the even-

In the previous section, we assumed that the radial coraumbered modes appear to dependotecause they are
finement of the ions was strong enough that the configuratiogalculated at a multiple 0é(w); for constante these fre-
of ions in a String along the axis was always stable. How- quencies are independent pf The cusps in the mode fre-
ever, for sufficiently smalle, the string configuration be- guencies in Fig. 3 arise from the cuspsegfu) at the cross-
comes unstable. The stable configurations for different valg, g, points between the two relevant solutions of Blet
ues of e can be calculated16,17, and several of these _q \jgde frequencies plotted for a constant valuee afo
configurations have been observed for small numbers of ionﬁot exhibit these cusps. As in the case of axial motion, the
[10,11]. Rather than review the theory of these configura—mode frequencies form pairs of one even- and one ’odd—

tions, we will simply find the range of validity of our small-
o ’ ; . . . __numbered mode for smajt. However, for largeu all but
oscillation Lagrangian for the string configuration. The string
one of the transverse modes become degenerate. The only

will remain stable for alle greater than somes=eg(1); €5 d te t de in thi is the 7i
also varies withN. On the boundary between stable and uyn-"ondegenerate transverse mode in this case 1s the zigzag
ode. In general, the modes are most easily resolved from

stable regions, the frequency of some mode goes to zerd!

Recalling that the determinant of a matrix is equal to theth€ir neighbors foru=1, as in the case of axial motion.

product of its eigenvalues, we see thafu) is the maxi- Increasinge reduces the frequency spacing betyveen nearly
mum value ofe satisfying deB’ (e, ) =0 for u fixed. Fig- degenerate modes. At=1.les(u) and n=1, for instance,

ure 2 showse((x) as a function ofu for 3, 5, 7, and 9 ions.  the fractional spacing between the cold transverse mode of 3
In each case, there is a cuspdg(u) corresponding to the i0ns and its nearest neighbor is 0.20, butder1.5e (u) the
crossing of the two largest solutions to &(e,u)=0. The  same spacing is 0.09.

position of the cusp varies with the number of ions, but lies The near degeneracy of the modes for large or siall
betweenu=0.1 andu=1 for N<9. The positions of the and fore/ e significantly greater than 1 limits the usefulness
cusps are labeled with arrows in Fig. 2. Feorgreater than of these modes because of possible mode cross-coupling, just
the value at the cusg< e (w) corresponds to instability of as for the axial modes. Resolving a particular transverse
the zigzag mode, so that the string breaks into a configuranode requires operating the trap near the point at which the
tion in which each ion is displaced in the opposite directionstring configuration becomes unstable, ieenearey(w). In

to its neighborg16,17]. For u smaller than the value at the this regime, the collective motion of the ions is quite sensi-
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tive to uncontrolled perturbations, which may pose signifi-for the heating rate of thith mode, expressed in terms of

cant technical problems for using a transverse mode in quanhe average number of quanta gained per second. Recall that

tum logic operations. v is the oscillation amplitude of théth ion in the kth

normal mode, expressed in the normalized coordinates. It is

useful to normalize the heating rate in Eg0) to the heating
Stochastic electric fields present on the ion trap electate of the lowest-lying axial mode of a string of identical

trodes, for instance, from fluctuating surface potentials, catons. This normal mode consists entirely of COM motion

heat the various normal modes of motion incoherently. Foand we writev“°™=1/\/N for all ions. The normalized heat-

ion trap characteristic dimensiah,,, much larger than the ing rate of thekth mode is then

size of the ion crystatl,,,,s, these fields are approximately

IV. MODE HEATING

uniform across the ion crystal, so they couple only to the — ® N 2

COM motion. The N—1)/2 even-numbered modes are or- Nk :i Ung + S p® (21)
thogonal to the COM motion, so they are only heated by — NZy \/; = Y ’

fluctuating electric-field gradients. The heating rates of these Ncom J-J;ﬁc

modes are reduced by a factor of at Iea‘qg,(sldt,ap)2<1
as compared to the heating of the other mog#s In the
following, therefore, we will neglect the effects of fluctuat-

ihr\eg]aiigtdaglj{adients, so that the even-numbered modes do ngE(wz):SE(gsz)-

The analysis of Secs. Il and Ill shows that the motion of a Figure 4 shows plots of the normalized heating rates of

crystal of N ions is separable into theN3 normal modes, g}eu?;('%l g?ggssgor?e: gﬂtSfoZ’tr?g(:rgnzsi\s/e?sfeurr]rfgggsqj@ith
each of which is equivalent to a simple harmonic oscillator. 9 ’ ’

Hence we can quantize the crystal motion by quantizing thezl'les‘ The numbering of modes on the plots of heating

normal modes. Thkth normal mode gives rise to a ladder of fate maiches the numbering on the corresponding plots of

energy levels spaced iy, , with 3N such ladders in all. moliebfcr)(tar?L;s(?z:zrilggelair:jdtfzansverse—mode lots, the even-
If we now write the uniform electric-field power spectral plots,

. . numbered modes have the center ion at rest, while the center
density asSg(w), we can generalize the result of REI8] to ion moves for all odd-numbered modes. We see from Figs. 4

where we have assumed that the spectral derGitw) is
constant over the frequency range of the normal modes, i.e.,

give and 5 that the modes for which the center ion is fixed can
— PSe(Lewy) p® N 2 never heat, while all .the other modes always heat to some
nk:E—kZ > M (200  extentforu#1. We will refer to these modes as “cold” and
Amh {yw, \/ﬁ -1 ) “hot” modes, respectively. If the ions are identical, only the
i#ng modes with all ions moving with the same amplitu@OM
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modeg can heat. There are three such modes, one alpng cold modes will only appear for particular values of The
one along;/, and one aloné. In interpreting Figs. 4 and 5, it case of a crystal of an even num_ber of ions, with two cooling
is important to recall that the normalized heating rate defined®ns at the center, will again yield cold modes. However,
in Eq. (21) is inversely proportional to the mode frequency. €Xcitation of any mode will cause th_e cooling ions to move,
For instance, thew dependence of the heating rate of theSO that the cold modes are not well isolated from the sympa-
highest-frequency transverse mode can be largely ascribed tBetic cooling in this case.

variations in the mode frequency, rather than to changes in For sympathetic cooling to be useful, we must find a cold

the coupling of the mode to the electric field. mode suitable for use in quantum logic. The cold mode must
be spectrally well separated from any other modes in order to
V. PROSPECTS FOR SYMPATHETIC COOLING maximize gate speed. We can use the lowest-lying cold axial

mode as the logic mode fqe<3. In this mode, called the

Heating reduces logic gate fidelity in two ways. The 10giC reathing mode, the center ion remains fixed and the spac-

mode itself can be heated, but by choosing a cold mode, Wg, o hetveen ions expand and contract in unison. Unless the
can render this effect negligible. On the other hand, the Ra ﬁ'g b X

f f th on b loai d . I‘rap is operated very close to the instability point of the
requency of the transition between logic-mode mOt'One}string configuration, the breathing mode is better separated

;tates dgpends on .the total wavg-packet spread of the i fbm its neighbors than are any of the cold transverse modes.
involved in the transition3,4]. Heating on modes other than . ~ 3 any cold mode, either axial or transverse, is nearly
ﬂ;]e IOg'C. m(;]qle Rcat?' ;[hus lead to uln_knO\_/vn, ungqnf{m"eddegenerate with a hot mode. In this regime one must make a
changes in this Rabi frequency, resulting in overdriving ofgecific calculation of mode frequencies in order to find the
undgrdqvmg of the transmon. The purpose of SymF_’athe'“Goest—resolved cold mode. Even so, the cold axial modes are
cooling is to remove this effect by cooling the center ion andagain better separated from their neighbors than are the cold

thus all hot modes. transverse modes, except fovery close toeg(w). It seems

In the foregoing, we have chosen fo conslder only Fheoest to select a cold axial mode as the logic mode in most
case of a crystal of an odd number of IOI’.1$,.Wlth the coolin ases.
lon at the center. We now see that this S the_ only case By selecting our laser-beam geometry appropriately, we
SU""’.‘b'e for sympathetic cooling, since only in t.h'S case docan ensure that the Rabi frequency of the motional transition
we find both(a) cold modes for arbitrary. and(b) isolation on the axial mode used for logic depends chiefly on the
of motion of the cold modes from motion of the cooling ion. spread of the ion wave packet alongn this case, heating of
As long as the crystal is symmetric under inversiorz,ithe  the axial modes will affect logic-gate fidelity, but heating of
normal modes must be either symmetffot or antisym-  the transverse modes will have little effect. If the mass of the
metric (cold) under inversion irz. If the cooling ion is not at  central ion is nearly the same as that of the others-(),
the center of the crystal, the crystal symmetry is broken anadnly the lowest axial mode will heat significantly, and we
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can continuously cool this mode by cooling only the centrallogic. For a string of 3 or 5 ions, sympathetic cooling would

ion, ensuring that all ions remain in the Lamb-Dicke limit require driving transitions on 2 or 3 axial-mode sidebands,
[3]. If w is not near 1, we must cool alN(+1)/2 hot modes respectively. From this example we see that sympathetic
(again by addressing the central Jdo keep all ions in the cooling can be useful even for ion mass ratios of nearly 3

Lamb-Dicke limit. to 1.
The analysis above indicates that, all other things being
equal, we are best off if our substituted ion is identical to, or VI. CONCLUSION

is an isotope of, the logic ions. However, sympathetic cool-
ing can still be useful if the two ion species have different
masses. For example, we can consider sympathetic cooli
using the specie$Be™ and ?*Mg™. Linear traps constructed

We have investigated a particular sympathetic cooling
heme for the case of an ion string confined in a linear RF
ap. We have numerically calculated the mode frequencies
at NIST have demonstrated axial secular frequencies of ovec?'f _the axial and transverse modes as funct_|ons of the mass

10 MHz for single trapped®Be* ions. For three ions with fatio 4 and trap anlsotropy for 3,5, 7, and 9 ions. We haye
24Mg* as the central iong,(Be")=27x10 MHz yields a also caI(;uIated the he_atlng .rates of th_ese modes relat.|ve Fo
spacing of 1.6 MHz between the cold axial breathing modethfa heating ratg of a single lon, assuming that the heatm'g IS
and its nearest neighbor. If we reverse the roles of the iong.rlven by a uniform stoc_hastlc _electrlc field. The _results n-
[wMg")=27x10 MHZ], the spacing increases to 6.2 |cat_e that the scheme is f_ea5|ble for many chmces of ion
z ' : Species if we use a cold axial mode as the logic mode. The
optimal implementation of the scheme employs two ion spe-
cies of nearly equal mass. However, a demonstration of sym-
athetic cooling usingBe™ and 2*Mg™ appears well within
e reach of current experimental technique.

each other. For three ions witf'Mg™ in the center, we
requirew,o(Be*)=27x27.6 MHz to obtaine=1.1e,, and
the spacing between the cold transverse zigzag mode and
nearest neighbor is only 560 kHz. Reversing the roles of the
ions, we finde=1.1¢; at w,o(l\/_lg*)=27'r><'14.7 MHz with ACKNOWLEDGMENTS
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