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Frontiers of technology now need synchronization between remote clocks to an accuracy of 
about a nanosecond. Rate changes ar is i i  from the velocity and gravitational potential of a transported 
clock used for synchronization of a network must be accounted for. In addition, one cannot assume 
that the carth is an inertial frame, i.e., not spinning. If classical Einstein synchronization is used, 
where from the midpoint between clocks at A and at B, one simultaneously sends light pulses 
to A and B to synchronize them, two problems arise. First, the synchronization process will not 
be transitive; i.e., if A is synchronized with B and B with C. then A wiU not necessarily be 
synchronized with C. Second, starting at a point on the equator and transporting a portable clock 
eastward (westward), while establishing a synchronized time end on the way, will result in a 
discontinuity upon returning to the original point of about -200 ns (+200 ns); minus (-) means 
that the portable clock will be late. This paper will discuss the construction of a coordinate clock 
network on the earth's surface which does not have these problems; i.e., synchronization is transitive, 
and there is no discontinuity. This may be done by adjusting clocks to read coordinate time on 
an underlying nonrotating local inertial frame. The theoretical and practical implications of setting 
up such a coordinate clock network using either electromagnetic signals (e.g., laser, Loran-C) or 
portable clocks will bc discussed. It will be shown how this network may be applied in making 
UTC or any other global scale more useful for statwf-the-art navigation and communication systems. 

INTRODUCTION 

The clock accuracy currently needed at different 
locations on the earth's surface or on board satellites 
poses some interesting problems because of relati- 
vistic effects. Unfortunately, not all that has been 
published on this topic has been correct, ikd a 
significant amount of confusion exists in the field. 
There is need for a treatment which addresses this 
topic with operational applications in view and with 
sufficient completeness to provide a useful working 
document. We shall in this paper consider relativis- 
tic corrections to time synchronization procedures 
of the order of or greater than 1 ns s = 
1 ns) or to a normalized frequency accuracy of 

which should satisfy most user needs for 
several years to come. 

A spatially distributed set of clocks, synchronized 
by portable clocks or electromagnetic signals, with 
rates adjusted to maintain synchronization, com- 
prises a coordinate time system. In establishing such 
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a system the accuracy of today's clocks and of 
time comparison techniques requires that relativistic 
effects due to the differences in gravitational poten- , 

tial and velocity of the clocks, even if they are 
stationary on the surface of the earth, be taken 
into account. The time dispersion of a good clock 
ensemble over a few days, the time errors in a 
state-of-the-art clock transportation, and the time 
errors in communicating time by satellite techniques 
are all of the order of a few nanoseconds. In contrast 
the relativistic time corrections associated with the 
spinning earth may be larger than 200 ns, and other 
relativistic effects may be of this order or even 
much larger in the case of satellite synchronization. 
Table 1 summarizes the accuracy capabilities of 
some of the state-of-the-art techniques. From this 
table it can be seen that it may soon be necessary 
in some special situations to include relativistic 
effects to subnanosecond accuracy. 

It has been shown [Ashby, 1975; Hafele and 
Keating, 1972a, b]  that for nanosecond accuracies, 
one cannot assume that the earth provides an inertial 
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TABLE 1. Time transfer accuracv - ~ 

Method Accuracv. ns Tvuical Distance. km Reference 
__ ~~~ 

Portable clock 4 
VLBI 0.1’ 

~~ 

3,000 
15,000 

Reiss [ 19761 ; Rueger [ 19781 ; Williams [ 19761 
Fanselow [ 1977; Rogers et al. [ 19781 ; Schilizri and 

Campbell [ 19781 
Laser shuttle 0.6’ 600 Reinhardl et al. [I9771 
GPS 100 (I*) worldwide Anderle [ 19781 ; Buisson et al. [ 19771 ; MacDoran 

[ 19781 ; Rutman [ 19781 ; Schuchman and Spiker 
[ 19771 

TV network 20 150 Lavanceau and Shepard [ 19771 
Clock flyover 10 ( I*)  
Laser geodimeter 0.01’ 50 J. Levine (personal communkation, 1978) 

‘Theoretical potential accuracy. 

8.000 Besson [ 19701 ; Reisse [ 19761 ; Williams [ 19761 

frame, i.e., that it is not spinning. Consider arotating 
reference frame equipped with a network of stan- 
dard clocks at rest in that frame. Synchronization 
of the network by means of the usual Einstein 
procedure is not self-consistent; for example, start- 
ing at a point on the earth‘s equator and carrying 
a portable clock eastward (westward) while estab- 
lishing a synchronized set of clocks on the way 
will give rise to a discrepancy upon returning to 
the original point of about -200 ns (+200 ns); minus 
(-)means the portable clock will be late. This effect 
is due to rotation. 

In principle, to obtain a coordinate time system 
without such discrepancies, one may introduce a 
new ‘coordinate time’ grid in the following way. 
Imagine an underlying nonrotating frame, or local 
inertial frame unattached to the spin of the earth, 
but with its origin at the center of the earth (geocen- 
tric). In this nonrotating frame, introduce a fictitious 
set of standard clocks available anywhere, all of 
them being synchronized via the Einstein procedure, 
and let them run at agreed upon rates such that 
synchronization is maintained. Now, introduce the 
rotating earth with a set of standard clocks distrib- 
uted around the earth. To each of these standard 
clocks a set of corrections may be applied to 
generate ‘coordinate clock time’ such that at each 
instant the coordinate clock is synchronous with 
the fictitious standard clock at rest in the local 
inertial frame, whose location coincides with the 
earth-based standard clock at that instant. This set 
of clocks will therefore all be keeping Coordinate 
time. In other words, coordinate time is equivalent 
to time measured by standard clocks in the local 
inertial frame. This is illustrated in Figure 1, in 
which the coordinate time is indicated as resulting 
from relativistic corrections applied to the elapsed 
time measured using standard clocks on the spinning 

earth. We will discuss the practical implementation 
of the coordinate time concept in what follows. 

The process of implementing such a coordinate 
time system is complicated by the presence of the 
gravitational fields of the earth, sun, and moon 
and by the motion of the earth‘s center, as well 
as by a variety of motions that clocks of interest 
can have. The center of mass of the earth-moon 
system is falling in an elliptical orbit around the 
sun; the earth not only orbits about this center 
-of mass but spins on its axis, and clocks in airplanes 
or satellites have additional motions about the earth. 
All these effects must be considered in calculating 
relativistic corrections to be applied to standard 
clocks near the earth’s surface to arrive at a coordi- 
nate time system. Because of these effects, the 
local coordinate time discussed in this paper differs 
from the classical coordinate time of general rela- 
tivity (as it occurs, for example, in the Schwarzs- 
child metric), which provides an idealized theoreti- 
cal model for ephemeris time. 

If the solar system were isolated from the gravita- 
tional effects of other masses, we could consider 
readings of standard clocks which are distant from 
the solar system and at rest with respect to its 
barycenter as corresponding to the ideal ephemeris 
time mentioned above. Thomas [ 19751 and Mover 
[ 19761 have studied the relationship between this 
time and the time of an atomic clock fmed on the 
earth. Thus expressions for effects such as annual 
terms arising from the earth’s orbital motion are 
available. However, these are not in a form conve- 
nient for the discussion of time transfer between 
different clocks near the earth’s surface, where 
seasonal effects common to all clocks are of less 
importance than effects arising from earth rotation 
or clock motion. 

A standard clock falling along with the center 
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Fig. 1. Obtaining local coordinate time by correcting proper time 
readings on standard clocks for relativistic effects. 

of mass of the earth would beat at a rate which 
disagrees with the rate of ideal ephemeris time 
because of Doppler shifts and gravitational red 
shifts, which both vary with time. The readings 
of such a clock may nevertheless be used as a 
reference for the introduction of coordinate time 
based on a local inertial frame, with standard clocks 
in the neighborhood of the earth synchronized with 
this reference clock. Then in the local frame the 
gravitational potential differences due to the sun’s 
mass can, for purposes of time synchronization, 
be neglected over a region large enough to include 
the earth-moon system (see Appendix A). 

The gravitational effect of the earth’s mass and 
the rotation of the earth introduce additional small 
shifts in the rates at which standard clocks on the 
earth’s surface beat relative to the above mentioned 
reference clock. Such effects are common to clocks 
at rest at mean sea level and can be suppressed 
by appropriate redefinition of the rate at which 
Coordinate clocks beat. 

Adoption of a local coordinate time system such 
as that proposed here would have significant advan- 
tages in the elimination of ambiguities in clock 
comparisons. The proposed system has the property 
of transitivity, path-dependent effects on time 
transfer by portable clocks and electromagnetic 
signals are properly accounted for, and the different 
types of time transfer processes are in agreement. 

METHODS OF ESTABLISHING A COORDINATE TIME 
GRID 

Synchronization by portable clocks 
Suppose that having selected a reference point 

on the geoid (the geoid is the equipotential surface 
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at mean sea level), standard clocks are transported 
from point to point on the earth’s surface. Let the 
infinitesimal increment of proper time measured 
on the standard clock be denoted by ds (in seconds) 
and the corresponding increment of coordinate time 
by dt (in seconds). Then the elapsed coordinate 
time during the process of transport may be calcu- 
lated from the equation (derivations of results given 
in this section may be found in Appendix A): 

] (1) 
wu, YE cos 4 

C2 
+ +<V/C)’ + 

where g(+) is the acceleration of gravity, v is the 
ground velocity of the clock having an eastward 
component v,, h is the altitude above the geoid, 
w is the angular velocity of rotation of the earth, 
a,  is the earth’s equatorial radius, and 4 is the 
geographical latitude. The standard clock readings 
are thus corrected according to (1) for red shift, 
ground speed, and earth rotation in order to arrive 
at coordinate time. Let us consider each term 
individually for the moment, though in practice it 
is necessary to account for all three terms. In (1) 
the constant rate differences due to the earth‘s 
gravitational potential on the geoid have been sup- 
pressed. 

Clock at rest with respect to the earth (red shifi.  
Note that for a clock at rest on the surface of 
the earth, v = v E  = 0, and (1) reduces to 

At = As( 1 - y) 
so that a standard clock at rest on the earth’s surface 
needs only to have its rate corrected for the red 
shift before being used to measure elapsed coordi- 
nate time at that point. The fractional red shift 
correction is 1.09 x lO-I3/km. 

Clock with significant ground speed (time dilation 
or second-order Doppler shift). For a typical jet 
plane speed (270 m/s  = 604 mph) the time dilation 
effect represented by the term $(v/c)’ in (1) is 
a normalized correction of 4 x In an 8-hour 
flight the coordinate time would advance only 12 
ns. In a satellite or rocket, however, this term could 
be an order of magnitude larger. 

Infinitesimally slow transport on the geoid (earth 
rotation). In the limit as v + 0 and for h = 0, 
(1) reduces to 
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At = As + ( w a , / c 2 )  $ dsv,cos+ (3) 

Example I :  Transport along a meridian; then 
v E  = 0, and so we could use this result to synchronize 
coordinate clocks over the entire surface of the 
earth by selecting one location as a reference and 
transporting a standard clock slowly along a meridi- 
an to one of the poles and then back along another 
meridian to an arbitrary position on the earth’s 
surface. The proper time elapsed on the transported 
clock would read coordinate time. 

Transport along a parallel of lati- 
tude; then v = v E ,  and 5 dsv,  cos+ = L cos+, 
where L is the distance traversed eastwards. The 
coordinate time elapsed will be 

(4) 

If the portable clock is brought back to the starting 
point so that its path describes one complete circuit 
on the earth’s surface, then an alternative form 
of (4) is 

( 5 )  

where A, is the area enclosed by the path as 
projected on the equatorial plane, considered posi- 
tive if it is traversed in the sense of rotation of 
the earth. Note that the correction term in (4) and 
(5 )  is independent of velocity, provided that the 
velocity is small. This result implies that the proper 
time elapsed on a standard clock carried eastward 
around the globe will be 

Example 2:  

At = As + wa,  L cos +/c2  

At = A s  + 2wAE/c2 

27roa: cos2+/c2 = 207.4 cos2+ ns (6) 

less than that on a standard clock which remains 
at rest, while a standard clock carried slowly west- 
ward in the geoid would lead a standard clock which 
remained at rest by 207.4 cos2+ ns. 

Synchronization by direct transmission of 
electromagnetic signals 

Consider synchronization by means of transmis- 
sion of electromagnetic signals more or less parallel 
to the earth’s surface, as in a television transmission. 
The coordinate time elapsed between transmission 
and reception may be expressed as follows: 

(7) 

where $ d a  is the proper length, or standard dis- 
tance, measured between the two clocks. The only 
significant effect is due to rotation of the earth. 
The eastward component of the light velocity is 
C E .  

At = $ da(1  + w a , c , c o s + / c 2 ) / c  

Example 1 : Light signals sent along a meridian; 
for this case the eastward velocity of the light, 
c E ,  is zero, and the elapsed coordinate time is 

Example 2: Signals sent along a parallel of 
latitude eastward; then 

At = ( 1  + w a ,  cos+/c)  d u l c  (9) 
path 

It should be noted that for 1-ns accuracy the proper 
distance along the path in the first term df the 
above equation must be known to an accuracy of 
30 cm or better. 

For the case of transmission over a distance of 
160 km the second term in the above equation 
for a latitude of 40’ is 0.7 ns, which in terms of 
fractional error is The laser geodimeter, which 
uses two-way microwave transmissions for syn- 
chronization, has design goals of 5 x lo-’ (J. 
Levine, personal communication, 1978). 

Synchronization by two-way satellite transponder 

The situation is as diagramed in Figure 2. Ground 
stations A and B have clocks which are to be 
synchronized by transmission from A to a tran- 
sponder aboard an orbiting satellite, thence to station 
B. This is immediately followed by transmission 
back from B to the satellite and to A. As viewed 
from a local inertial geocentric reference frame, 
the ground stations are in motion due to rotation 
of the earth with angular velocity w about the axis 

w 

Fig. 2. Synchronization via two-way transponder. A signal 
leaves ground station A at time I,, arrives at the satellite at 
time t ; ,  and is retransmitted to ground station B ,  where it 
arrives at time 1,. A signal is then transmitted back to the 
satellite, where it arrives at time 1 ;  and is retransmitted to 
the ground station A, where it arrives at time f, + 7. The 
diagram is drawn with the polar axis pointing into the paper, 
so that longitudes are measured positive in the counterclockwise 
sense (westward). 



represented by the unit vector k. The normal to 
the plane of the satellite orbit is denoted by the 
unit vector ii. The initial position of ground station 
A is denoted by the vector i, at the instant t ,  
of transmission of the first signal. The position of 
ground station B at the instant of arrival (and 
retransmission) of the signal is denoted by ?,. 
Finally, the position of the satellite at the instant 
the first signal arrives, t : ,  is denoted by ?:. D, 
is the proper distance between the initial position 
of station A and the satellite at the instant the signal 
first arrives at the satellite; similarly, D, is defined 
as the distance between the position of station B 
when the signal arrives and is retransmitted and 
the position of the satellite when the retransmitted 
signal arrives at the satellite. Let T be the coordinate 
time required for the signal to go out from station 
A and return, and let t ,  be the time of arrival of 
the signal at station B. Then it can be shown that 
(results in this and subsequent sections are derived 
in Appendix B) 

t ,  = t ,  + 47 + v'* [?, - ?: + D2(F, - i : ) / D , ]  /c2 

+o(i  + D , / D , ) F : - ~ ^ x F , / c ~  (10) 

In (lo), v' denotes the velocity of the satellite 
at time t : .  In the special case of a satellite in a 
circular orbit, with angular velocity ws in its orbit, 
the above expression simplifies to 

1 , = t , + f 7 + ~ , ( r i x F : ) * ( i , +  D 2 F , / D , ) / c 2  

+ o(1 + D 2 / D I ) F : * k ^ x  F A / c 2  (11) 

Thus the motions of the earth and of the satellite 
give rise to corrections which can be of the order 
of hundreds of nanoseconds. In the case of a 
geosynchronous satellite, w, = w, and (1 1) simplifies 
further to 

(12) 

For example, consider a geosynchronous satellite 
midway between two ground stations whose longi- 
tude difference is 90' and which are both situated 
on the equator. Under such circumstances the term 
involving os in (1 1) is zero (D, = D,). Thus only 
the motion of ground station A during the time 
of the experiment, T, gives rise to a correction, 
which is -308 ns in this example. That is, it takes 
308 ns less than half the normal trip time for a 
signal to go from station A to station B if B is 
west of A. Plots of the relativistic correction of 
(12) are given in Figure 3. If the satellite orbit has 
appreciable eccentricity, or for an extraterrestrial 

I, = I, + +T + w (i: x E )  (FA - i , ) / c 2  
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COORDINATE TIME CORRECTION I N  ns 
A =  -150' - 
I ;120" 

between ground stations 
A= longitude difference 

e= longitude difference 
between solellile and 
slal ion & -400 150. 

Fig. 3. Corrections to time transfer via two-way transponder 
on board a geosynchronous satellite for two equatorial ground 
stations. Each curve corresponds to a fured longitude difference 
between ground stations A and B, measured positive westward. 
The horizontal coordinate is the difference in longitude between 
the satellite and ground station A. measured positive westward. 

transponder in a noncircular orbit, (10) should be 
used. 

Time transfer via satellite clocks 

Consider, as in Figure 
4, the synchronization of a clock on board a satellite 
with a master ground station at A. A signal is sent 
from A at I ,  to the satellite, where it arrives at 
time t i .  It is then immediately sent back to the 
ground station, where it arrives at time t ,  + T, 
while the ground station has rotated into a new 
position. 

Transfer to the satellite. 

- 
w 

Fig. 4. Synchronization of satellite clock with master ground 
station. The signal leaves the ground station position A at time 
t A ,  arrives at the satellite at time r i ,  and is retransmitted to 
the ground station, where it arrives after a trip time 7. 
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TABLE 2. Values of constants useful in the calculation of relativistic effects [Rupp, 19741 

Constant Definition values 
7.2921 x lo-* s-’ w 

GM, earth’s mass times gravitational constant 3.9860 x IO’. m3/s‘ 
0 1  earth’s equatorial radius ‘6.37814 x IO6 m 
g (4) 
2w/c2 

rotational angular velocity of the earth 
J2 quadrupole moment coefficient for earth 1.083 x IO-’ 

acceleration of gravity on the geoid as a function of latitude + 
coefficient of area in equation (5) 

9.1803 + 0.0519 sin2+ m/s’ 
1.6227 x lo4 ns/km2 

First we should note that owing to red shift and 
Doppler effects, the satellite clock rate must be 
corrected using the following expression: 

At = ds [ I  + e / c 2  
w h  

+ 2GMJc’r - 2 G M e a ~ J , P , ( c o s ~ ) / c 2 r ’ ]  (13) 

where the last term is due to the quadrupole moment 
of the earth; Me is the mass of the earth, r is the 
radial distance of the satellite from the earth’s center 
of mass, a, is the earth’s equatorial radius, 8 is 
the colatitude, and P2(x) = +Ox2 - 1). J2 is the 
quadrupole moment coefficient; values of the con- 
stants are given in Table 2. The quantity E is the 
classical energy per unit mass of the orbiting space- 
craft due to gravitational potential and kinetic ener- 
gies and is given by 

E = f v ’ +  v (14) 

where V is the gravitational potential (see (B 11)). 

tions which are given by 
A ground-based clock is also subject to correc- 

(15) 

where V, is the effective potential on the geoid, 
including effects due to rotation. An expression 
for V, is given in (B 18). The V, term was suppressed 
in (1); in order to make (13) and (15) consistent 
with (1) the factor 1 - Vo/c2  must be absorbed 
into ds, and then (13) becomes 

At = \ d s [ l  + e / c 2  + V,/C’ 

At = 1 ds(1 - V,,/c* - g ( + ) h / c 2 )  

w h  

+ 2GM,/c2r  - ~ G M , u ~ J ~ P ~ ( c o s ~ ) / c ~ ~ ~ ]  (16) 

Effects arising from the quadrupole potential are 
a few parts in loi2. 

For synchronization of a satellite clock (see 
Figure 4) the coordinate time t :  of amval of the 
signal at the satellite is given by 

t ;  = t ,  + +r + oiL L x i, /c’ (17) 

If the ground station were not in motion due to 
the earth’s rotation, the relationship between t: 
and t, would be just t i  = t, + +T, the usual result 
of the standard Einstein synchronization procedure. 
To estimate the magnitude of this correction in a 
typical case, consider a ground station located at 
spherical polar coordinate position (a, 8, , Q,) and 
a satellite at (r: , e:, Q:). Equation (17) then reduces 
to 

ti = t ,  + f .  + oar: sine, sine:, sin(& - cp,)/c’ 

(18) 

and for a near earth satellite, war:/c2 = 33 ns. 
In Figure 5 are plotted the corrections of (17) for 
a satellite in a 12-hour equatorial orbit. 

COORDlNATE TIME lCORRECTION IN ns 

I 

1004 

1 

+= latitude of ground station 

@= longitude difference - l o o  
between satellite and 
ground station 

Fig. 5. Correction for coordinate time transfer to satellite 
clock due to earth rotation, corresponding to Figure 4. Each 
curve corresponds to a ground station at a specific latitude. 
The horizontal coordinate is the difference of longitude between 
the satellite and the ground station, measured positive westward. 
The satellite is assumed to be in a 12-hour equatorial orbit. 
(Note: the correction varies as the cosineof the satellite latitude.) 
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(20) 
To estimate the magnitude of this effect, consider 
a ground station on the equator and a satellite in 
equatorial orbit. The correction can be written 

t ,  = t :  + 47 I I  + w , i i * ( r i  x ?,,)/c2 

t, = t :  + f ~ ’  + [GM,/c2r: ]  1’2aI sin(cp, -cp,)/c 

(21) 

where ‘p, - qA is the longitude difference. For 
a near earth satellite, 

- 
Fig. 6. Time transfer from satellite clock to ground station. 

A signal originates at coordinate time t at the satellite, arrives 
at the ground at time I , ,  and is retransmitted to the satellite, 
where it arrives at time r: + 7. 

Transfer from satellite to ground station. In this 
process (see Figure 6) we imagine a signal transmit- 
ted at time t i  from a satellite at initial position 
i‘: to a ground station which is at FA at the time 
of amval tA and thence back to the satellite which 
has moved a distance 9,’ during the trip time 7’. 

Then 

[GMe/c2r’,] 1’2a,/c = 560 ns 

Theresultsobtainedin(17)and(19) canbecombined 
in several ways to describe different procedures 
for time transfer between ground stations or be- 
tween satellites. We shall discuss these from the 
point of view of transfer between ground stations. 

In this 
case, (17) is applied twice, as the experiment in- 
volves signals sent from two ground stations to 
a retroreflector on board a satellite or jet plane. 

In Figure 8, let t :  and t ;  be the times of arrival 

Lasso-type experiment [Rutman, 19781. 

of pulses originating at ground stations at tA and 
t,, respectively, and let T’ = tk - t i ,  assuming 
that T’ is sufficiently small that relativistic correc- 
tions of (16) can be neglected. Let and T~ be 
the trip times for the round trips of signals from 
A and B, respectively. Then the coordinate time 
of the clock at B is related to the coordinate time 
of the clock at A by 

t, = r:, + +TI - v’ (i; - i , ) / c 2  (19) 

Plots of the relativistic corrections of (19) are given 
in Figure 7 for a geostationary satellite. For a 
satellite in a circular orbit, v’ .‘: = 0. Then if 
the normal to the orbit is n̂  and the satellite has 
angular velocity w, in its orbit, (19) reduces to 

COORWATE TIME CORRECTION IN nr 
Y tB = 1, + f(T, - TB) + 7’ 
t 

(degrees) 

+= btilude d qround-station 

between satellite and 
gmund station i 

+ w(F:-Lx i, - i‘B * k x  i B ) / C 2  (22) 

Flyover [Besson, 19701. Next we consider as 
in Figure 9 time transfer by means of a transported 
clock in a satellite or jet plane in which the moving 

Fig. 7. Correction for coordinate time transfer from geo- 
synchronous clock to ground station. Each curve corresponds 
to a ground station at a specific latitude. The horizontal coordi- 
nate is the difference of longitude between the satellite and 
the ground station, measured positive westward. 

Fig. 8. Lasso-type experiment involving retroreflectors on 
board a satellite or airplane [Rutmon, 19781. Signals are sent 
from two ground stations A and B, at times t ,  and t , ,  respec- 
tively, to the satellite where they amve at t: and t ;  and are 
then sent back. 
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- 
w 

Fig.'9. Time transfer between remote ground stations using 
electromagnetic signals between ground stations and a clock 
flying overhead [Besson, 19701. 

clock at A' is set by means of signals from ground 
station A, then the clock moves to B', and thence 
sends a signal to B and back. Let t ,  be the departure 
time of the signal from A, t: its arrival time at 
the clock at A', t ;  the departure time of the signal 
from B', and t ,  the arrival time at B. Let 7 = 
t ;  - t i ,  and let T~ and T; be the round trip times 
of the signals. Then 

t~ = t ,  + T + f(T, + TL) 
+ w ? ~ * ~ ^ x F , , / c ~ +  C*(?,-?5)/c2 (23) 

where v' is the velocity of the satellite at i';. 
The time T is subject to relativistic corrections 

according to (16) or (l), depending on whether the 
clock is transported by jet or by satellite. In order 
for relativistic corrections to the time T to be 
negligible (corrections of <1 ns) so that all that 
is required of the moving clock is that it be stable, 
then for typical jet plane speeds (270 m/s) the most 
important term is due to earth rotation. The relativ- 
istic corrections in this case are negligible if 7 < 
12 min. Besson [ 19701 and coworkers were evident- 
ly the earliest to explicitly consider relativistic 
corrections in this type of experiment. 

A very similar experi- 
ment to the flyover is one in which, as in Figure 

Modfied clockjlyover. 

- 
w 

Fig. 10. Time transfer between remote ground stations where 
the directions in which the electromagnetic signals are sent are 
the reverse of those in Figure 9. 

Fig. 1 1 .  Transfer between remote ground stations with satellite 
-I,-t used as reference. 

10, the signals are sent in reverse order compared 
with the ordinary flyover. Let a synchronizing signal 
be sent from the satellite clock at t i  to ground 
station A, arriving at t,, and let ground station 
B send a signal to the satellite clock at t,, arriving 
at t ; ;  7: and 7, are the signal trip times. Let T' 
= t ;  - t : .  Then for coordinate time at B, 

t ,  = t, + T' - f(4, + T ~ )  

- Go(?, - ?L)/c2 - w i ' , - & x  ?,/c2 (24) 

Fi- 
nally, we consider synchronization of ground sta- 
tions by transmission of signals from an orbiting 
clock. The notation is indicated in Figure 11, with 
7; and T; the round trip times of the signals which 
leave the satellites at t :  and t ;  and arrive at the 
ground stations at t ,  and t ,  . Then from (19); 

Synchronization via master satellite clock. 

t ,  = t ,  + 7' + $(T', - TL) 

+ f L * ( r ' L  - FS) /c2  - GL*(ii - r',)/c2 (25) 

where r' = t ;  - t : .  
One-way satellite transmissions. The proce- 

dures previously discussed are not applicable to 
synchronization by means of a GPS satellite, which 
involves transmissions directly to a ground station 

r' 

c-) 
w 

Fig. 12. Corrections due to earth rotation for one-way satellite 
transmissions, such as in the GPS system [Schuchman and 
Spiker, 1917; Buisson et al., 19171. 
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without a return signal. In this case, position in- 
formation relating to the satellite is transmitted with 
the synchronizing signal. If the position of the 
ground station is accurately known, then the coor- 
dinate clock at the ground can be set by taking 
account of the motion of the ground station during 
the propagation time T of the signal from the satellite 
to the ground station. In Figure 12, let r': be the 
position of the satellite at the instant of transmission 
and be the position of the earth station at the 
same instant. The difference between 7 and the 
time r' it would have taken for the signal to 
propagate if the ground station had not moved is 
given by 

7=7' - w F : * l x  ? * I C 2  (26) 

This is similar in form to the result obtained in 
(17) except for a sign; the behavior of this correction 
can thus be inferred from the plot of Figure 5. 

EXPERIMENTS IN CLOCK SYNCHRONIZATION 

In this section we shall briefly review some recent 
experimental work which is particularly relevant 
for the implementation of a coordinate time scale 
as discussed in this paper. 

Past experiments 

The Hafele and Keating [1972a, b] experiment. 
This particular experiment is a classical one in terms 
of verifying the relativistic effects resulting from 
the spinning earth because the results clearly show 
the significant (=200 ns) discontinuities resulting 
when one develops a Coordinate time scale using 
a reference frame tied to the spinning earth, treating 
it as though it were an inertial frame. From this 
experiment it becomes clearly evident that one 
should look for alternative reference frames. The 
geocentric local inertial reference frame proposed 
[Ashby, 19751 and developed in this paper in an 
operational direction avoids the ambiguous discon- 
tinuity problems cited above and provides a coordi- 
nate grid for the earth and for jets and satellites 
in the vicinity of the earth at the 1 ns or better 
accuracy level. 

In principle, one could interpret the Hafele-Keat- 
ing experiment, using (l), which is based on a 
geocentric inertial coordinate system, to show that 
as the clocks circumnavigated the earth, their geo- 
centric coordinate time would agree before and after 
the trip, within the uncertainties due to time disper- 

sion in the clocks and due to error in the knowledge 
of the flight path. It is probably worth restating 
at this point that the size of the correction due 
to earth rotation which is required to generate 
coordinate time for a clock returning to its point 
of departure is proportional to the projection on 
the equatorial plane of the circumnavigated area, 
using the usual geocentric coordinate. The propor- 
tionality coefficient is 1.6227 x ns/km2, and 
the sign of the correction is positive (negative) when 
the area is circumscribed clockwise (counterclock- 
wise) as viewed from the south pole. The Hafele- 
Keating data nicely support these conclusions. 

In an earlier experiment, Besson [1970] and 
coworkers investigated relativistic correction in a 
fight which retraced its path in such a way that 
the projected area was zero. The resulting offset 
was due to red shift and Doppler effect; the correc- 
tion of (1) due to earth rotation vanished. 

Laser pulse Jynchronization of flying clocks. 
Alley and coworkers [Reisse, 1976; Williams, 19761 
performed an experiment corresponding to the situ- 
ation diagramed in Figure 4 with an ensemble of 
clocks in a jet aircraft and another on the ground. 
A laser pulse was sent from the ground to a 
retroreflector and detector aboard the aircraft, and 
time transfers from the ground station to the aircraft 
were repeatedly made. In this case the largest effect 
is from the gravitational term in (1). Since the 
aircraft was only approximately 15 km east of the 
ground station, or less, the term arising from earth 
rotation in (18) is too small to be detected. Expected 
offsets of the flying clock obtained by applying 
the path integral in (1) were of the order of 45 
ns; actual time transfers using the laser agreed with 
the expected offsets to about 1.5%. 

The Vessot gravitational red shgt rocket probe. 
This experiment [ Vessot et al., 19761 featured 
a state-of-the-art hydrogen maser frequency stan- 
dard, which exhibited about a part in lOI4 frequency 
stability during its rocket trip. The trip lasted about 
8,000s, going from Wallops Island (37.8'N, 75.5OW) 
on the east coast of the United States to a point 
in the Atlantic Ocean (29.3'N, 47.5OW) and reaching 
at apogee an elevation of about 10,OOO km. The 
primary tracking station was at Merritt Island 
(28.5'N, 80.7OW). A rough estimate of the size of 
the correction implied by (18) is =21 ns at apogee. 

To develop the theory for the experiment, Vessot 
et al. [ 19761 chose a nonrotating geocentric coordi- 
nate system. The theory predicted up to about 4 
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TABLE 3. Data for portable clock trip from USNO to NBS and return 
Measurement Result, ns Time, UTC Date 

PC - UTC(USN0, system 1) 2,448 1511 Aug. 25, 1917 
PC - UTC(USN0, system 1) 2,458 1211 Aug. 26, 1977 
PC - UTC(NBS) 2,729 2007 Aug. 26, 1977 
PC - UTC(USN0, system 1) 2.488 0313 Aug. 27, 1977 
PC - UTC(USN0. system 1) 2,506 2146 Aug. 21, 1977 
PC - UTC(USN0, system 1) 2.535 1116 Aug. 29, 1977 

x lo-'' fractional frequency change at apogee 
primarily due to the red shift, and experiment agreed 
with theory to about the 1 x 

Though the experiment was not a clock experi- 
ment (the maser was stabilized after launch), one 
can still integrate the frequency to infer time depar- 
tures. The maser advanced about 0.15 ns during 
the first 30 min of observation and advanced again 
about 0.1 ns during the last 10 min with respect 
to the predicted values. The latter departure is 
believed to be due to error in the orbit determination 
during that time. Effects due to the moving refrac- 
tive medium associated with the spinning earth are 
currently being investigated (R. Vessot, personal 
communication, 1978), which may further improve 
the precision of the measurement. 

level. 

A recent portable clock trip 
During August 25-29, 1977, a high-performance 

cesium portable clock (PC) was transported from 
the U.S. Naval Observatory (USNO) in Washing- 
ton, D.C., to the National Bureau of Standards 
(NBS) in Boulder, Colorado, and back. Table 3 
gives the resulting six measured time differences 

2500 

2400 

between the PC and two different time scales. The 
comparisons with USNO are plotted in Figure 13. 
It should be kept in mind that the UTC scales can 
be considered to measure elapsed coordinate time, 
since, for example, the rate of UTC(NBS) is adjust- 
ed to correct for gravitational red shift according 
to (2) in order to maintain synchronization. 

To obtain a comparison between the UTC(USN0) 
and UTC(NBS) time scales, the data can be pro- 
cessed in several ways. In keeping with the point 
of view adopted in this paper the PC is regarded 
as a standard clock from which elapsed proper time 
may be read, while (1) is used to calculate the elapsed 
coordinate time. 

We will consider two possible options. The first 
is extrapolation: for the prediction times of interest 
the best model for the time dispersion of a cesium 
beam frequency standard is random walk of the 
time fluctuations. For example, white noise fre- 
quency fluctuations 

12 1/2 
7 Ux('T) = TU,,(T) = 5 x 10- 

is the confidence estimate for this particular PC. 
The optimum prediction algorithm for this case is 

PC - UTC( USNO 1 

I 

2 5  26 27 28 29 
AUGUST 1977 

Fig. 13. Comparison of portable clock time minus UTC(USN0) Coordinate time before and after trip from 
Washington, D.C., to Boulder, Colorado, and return. 



simply an extrapolation of the mean frequency from 
the closest time measurement to the point of predic- 
tion. (Quite often in practice systematic deviations 
are larger than random deviations; however, we 
will ignore the systematic deviations for the mo- 
ment.) Using (USNO system l) as the reference 
coordinate time scale, one calculates from measure- 
ments 1 and 2 in Table 3 the mean normalized 
frequency offset of the PC as +1.3 x 
Extrapolating from measurement 2 to 3 gives rise 
to a PC correction of -3.7 ns; Le., the PC gains 
3.7 ns during the interval 2-3. 

The elapsed coordinate time during this interval, 
from (l), contains three relativistic corrections that 
need to be added: frst, -gh/c2,  which amounts 
to -12.4 ns for a 3-hour flight from Dulles airport 
(Washington, D.C.) to Stapleton (Denver, Colorado) 
at a height of 10.5 km (34,400 feet). In other words 
the PC will gain owing to the red shift effect, and 
12.4 ns should be subtracted from its time to bring 
it into agreement with coordinate time. The second- 
order Doppler term f(v/c)’ amounts to +4.4 ns 
for this situation at a ground speed of 270 m/s  
(604 mph). For the above path the last term in 
(1) yields a correction of -9.6 ns east to west and 
+9.6 ns west to east. Combining allof the coordinate 
time corrections for the PC during the trip west 
gives 

A2 = PC(2007 UT) - PC(1217 UT) - 3.7 ns 

- 12.4 ns + 4.4 ns - 9.6 ns 

= PC(2007 UT) - PC(1217 UT) - 21.3 ns (27) 

Therefore the exprapolated coordinate time trans- 
ferred from USNO with the PC at the time (2007 
UT) of comparison with NBS is 

UTC(USNO,2007 UT) = UTC(USN0, 1217 UT) + A t  

(28) 

Subtracting measurement 2 from measurement 3 
and adding (27) and (28) yield 

UTC(USN0, system 1)  - UTC(NBS) = 249.7 ns 

(29) 

at 2007 UT on August 26, 1977, for the forward 
extrapolation. 

Similarly, one may extrapolate backward to mea- 
surement time 3 using the measurement time interval 
4-6 to determine the mean normalized frequency 
offset of the PC (+2.3 x Using the same 
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flight parameters but changing the sign of the 
relativistic correction due to earth rotation yields 

UTC(USN0, system 1) - UTC(NBS) = 245.4 ns 

(30) 

at 2007 UT on August 26, 1977, for the backward 
extrapolation. 

Equations (29) and (30) are independent estimates 
and can be combined in proportion to the inverse 
square of the confidence of the estimates to give 

UTC(USN0, system 1) - UTC(NBS) = 247.4 ns 

(3 1) 
at 2007 UT on August 26, 1977, for the combined 
extrapolated values. 

A second option for analyzing the data is by 
use of interpolation. As was mentioned earlier, it 
is often the case for portable clock trips that 
systematic effects in the PC are larger than the 
random fluctuations assumed above; in this case 
it is better to use interpolation. This, of course, 
requires that the PC return to its origin. One can 
then calculate the mean normalized frequency offset 
for the trip (measurement 4 - measurement 2 = 
5.6 x The assumption of symmetry for a 
trip like the above may often be a good assumption 
even in the case of systematic effects .on the PC 
and is also valid for the red shift and second-order 
Doppler corrections. Accounting for the last two 
corrections plus the PC’s average offset from before 
and after the trip predicts that the PC should have 
gained 25.6 ns during the round trip flight, when 
in fact it gained 30 ns. The 4.4-ns error is a factor 
of 4 larger than the random fluctuation and is 
probably mainly due to systematics and/or errors 
in the estimated flight altitude, velocity, and time. 

The known asymmetric term is the last correction 
in (1). Interpolating and applying this correction 
yield 

UTC(USN0, system 1)  - UTC(NBS) = 245.6 ns 

(32) 
at 2007 UT on August 26, 1977. 

Equations (3 1) and (32) are based on independent 
frequency estimates for the PC and can be further 
combined. There is no simple objective way to do 
this, as each situation will be different. In the current 
case, because of evidence of significant systematics 
the last result, (32), is probably more valid. A 
reasonable final result would therefore be 
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UTC(USN0, system 1) - UTC(NBS) = 246 -t 2 ns 

(33) 

at 2007 UT on August 26, 1977, based on the 
consistency and nature of the above experiment. 

Possible future experiments 

Geostationary satellite experiment. Starting July 
1978 a joint experiment is planned using two geosta- 
tionary satellites, CTS and Symphonie. In North 
America, NBS, NRC, and USNO will be able to 
view CTS and will participate. The BIH will partici- 
pate from Europe and will share common viewing 
of Symphonie with NRC. The approximate coordi- 
nates of CTS and Symphonie are (1 16OW, O O N )  and 
(1 1,5"W, OON), respectively. The approximate coor- 
dinates of the BIH, NBS, NRC, and USNO are: 
BIH, 3.5OW, 48.8% (Pleumeur-Bodou); NBS, 
4O.O0N, 105.3OW; NRC, 45.4ON, 75.9OW; USNO, 
38.9"N, 77.1OW. From Figure 3, one can then make 
estimates of the corrections required for generation 
of coordinate time. It is also necessary to modify 
the values obtained from Figure 3 using (12), since 
the ground stations are not on the equator. Taking 
the BIH as station A and NRC as station B gives 
an approximate correction of - 158 ns. Then using 
NRC as station A and sequentially NBS and USNO 
as station B gives approximate corrections of -67 
ns and +7.5 ns, respectively. 

Portable clocks will be carried between stations, 
concurrent with the above experiments. After 
applying coordinate corrections for the specXic 
paths taken, the portable clocks should then, to 
within the uncertainties of the measurements, bring 
agreement between geocentric coordinate time at 
the various timing centers obtained by satellite and 
obtained by portable clocks. The portable clock 
correction between the BIH and the NBS in 
Boulder, Colorado, is typically 50 ns. The accuracy 
of the experiment wiU probably be limited by the 
quality of the portable clocks used (-100 ns). 
Potentially, the experiment could be done with an 
accuracy of about 10 ns, as limited by the satellite 
and by the methods of transmission. If a high-quality 
cesium clock were used in the 'flyover' mode with 
a laser or microwave signal to provide the down-link 
to the timing centers, then the accuracy for coordi- 
nate time transfer could be better than 10 ns. 

The Lasso experiment [Rutman, 1978). The 
coordinate time corrections for one specific Lasso- 

type experiment are given by (22). The accuracy 
of this technique should be about 1 ns. For a BIH 
to PTB time comparison the geocentric coordinate 
time correction due to the spin of the earth would 
be 3.3 ns. The corrections for red shift and second- 
order Doppler shifts would have to be calculated 
after the velocity and altitude of the flight were 
known. Because of the excellent accuracy of this 
experiment, if a passive hydrogen clock in the 
flyover mode using a laser down-link were used 
for comparison, such an experiment could have 
an overall accuracy of 1 ns. 

Because of 
its great potential accuracy of 0.1 ns [Carter et 
al., 1978; Fanselow, 1977; Robertson et al., 1978; 
Rogers et al., 1978; Schilizzi and Campbell, 1978) 
a comparison between remote clocks synchronized 
by VLBI and by portable clocks or by satellite 
transmissions should reveal some large effects. For 
remote VLBI stations the last term in (1) can 
approach 100 ns as a correction to the transported 
clock time. Since VLBI data are customarily ana- 
lyzed using nonrotating coordinates, no corrections 
are required for synchronization using VLBI alone. 

In the future, VLBI is expected to operate regu- 
larly between the United States and Europe and 
possibly also between the United States, Australia, 
and Japan for determination of polar motion, crustal 
movement, and UT 1. The accuracy of comparisons 
between frequency standards laboratories may then 
be limited mainly by transfers over distances of 
3 lo00 km within continents. 

Line-of-sight microwave synchronization. The 
geodimeter is believed capable of about 0.01-ns 
accuracy in time transfer over distances of about 
50 km. If at latitude 4OoN a circuit consisting of 
four geodimeter legs arranged in a square having 
sides of 50 km were constructed, the area of this 
circuit projected on the equatorial plane is about 
1600 km2. Suppose that the geodimeter were used 
to transfer coordinate time around the circuit and 
back to the starting point. The coordinate time 
corrections required would be equal to the area 
times the coefficient of area from (5), which is 
1.6 x lop6 ns/km2. This gives a correction of 
+0.0026 ns, which unfortunately is less than the 
order of accuracy of the experiment. 

Very long baseline interferometry. 

CONCLUSION 

Because of relativistic corrections associated with 
the spinning earth it is proposed that a geocentric 
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nonrotating coordinate frame be adopted for 
purposes of comparing clocks near the surface of 
the earth. There is ample evidence, some of which 
has been cited above, to support this concept. 
Significant simplification occurs in the elimination 
of ambiguities and path-dependent effects and in 
the implementation of a coordinate time scale which 
has the property of transitivity. Accuracies of 1 
ns or better in coordinate clock comparisons may 
straightforwardly be achieved by applying correc- 
tions depending on altitude, velocity, and path of 
a portable clock. Similarly, coordinate time syn- 
chronization corrections depending upon locations 
of timing centers and satellites may be calculated 
where appropriate using results given in this paper. 

It is recommended that the geoid be used as a 
reference position for determination of the rate of 
a geocentric coordinate clock and that the UTC 
scale as generated by BIH be used to define the 
time origin and reference from which geocentric 
coordinate time will be disseminated. 

In the past the coordinate time corrections dis- 
cussed here have not generally been employed. 
First, there has not been general agreement to do 
so, and second, these corrections have not been 
of great significance, because most portable clock 
trips have been such that the return trip was over 
the same path as the outward trip, rather than 
circumnavigations of the earth, and because most 
comparisons have been between Europe and the 
United States. In the future an accurate coordinate 
time scale will be distributed over the entire globe. 
As GPS and other systems are developed, confusion 
will be avoided if such a geocentric coordinate time 
scale is adopted. 

APPENDIX A: SYNCHRONIZATION BY PORTABLE 
CLOCKS 

This analysis is carried out within the framework 
of the general theory of relativity; modifications 
which might be necessary in some other gravitation- 
al theory such as that due to Brans and Dicke will 
be quite small. The basic .assumptions and results 
of general relativity which we need are as follows. 

1. There exists a metric tensor g,,(F, v = 0, 
1, 2, 3) such that the space-time interval ds defined 
by 

-cZds2 = g,,dx”dx’ (AI) 

is invariant with respect to arbitrary coordinate 
transformations. (we use the notation and sign 

conventions of Weber [1961], in which g ,  < 0.) 

dx” is described by the vanishing of ds: 
2. Propagation of light rays from x @  to x* + 

0 = g,,dx” dx’ 

3. The proper time (in seconds) elapsed on a 
standard clock (e.g., an atomic clock) transported 
along the space-time path element dx” is given by 

(A31 

4. Of particular importance in this paper is the 
interpretation of the coordinate xo, which is a global 
coordinate time having units of length. We shall 
write for the coordinate time t in seconds, f = 
xo/c.  In the general theory it is assumed that at 
each point of space an observer can be equipped 
with a coordinate clock which can be used to 
measure the coordinate time of any event occurring 
at that point. The importance of coordinate time 
may be appreciated by considering the example of 
the gravitational‘red shift of a standard clock. 
Standard clocks will have different rates depending 
on the gravitational potential at the clock’s position. 
In contrast, coordinate clock rates will be indepen- 
dent of position if the gravitational field is static. 

5 .  The metric coefficients gLy may be calculated 
from the field equations of general relativity. Fur- 
thermore, because in the vicinity of the earth’s 
surface all gravitational fields are weak it will be 
sufficient to work in the linearized approximation 
in which 

1 
ds = - d-g,,dx” dx’ 

C 

g,, = rl,” + h,” (A41 

with qlrv = -1, 1, 1, 1) the metric tensor of flat 
space, and 

(A51 

so that squares and products of h,, are negligible. 
In isotropic coordinates, to a sufficient approxi- 

mation we have 

h,, cc 1 

-ds2 = -(I + 2 @ / ~ ’ ) ( d t ) ~  

+ (1 - 2@/c’)(dx2 + dy2 + d z 2 ) / c 2  (A6) 

where CP is the gravitational potential. In the solar 
system the only bodies we need account for are 
the earth, sun, and moon; however, the earth cannot 
be treated as a point mass because of its flattening. 
Thus we may write 
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@(i) = v, + v, + W ( i )  

where V ,  and V, are the potentials due to the 
sun and the moon, respectively, at the observation 
point i. W(?) is the potential at observation point 
i due to the flattened earth. 

When the potential of (A7) is substituted into 
(A6), the coordinate time t can be interpreted as 
ephemeris time, since a standard clock placed at 
rest sufficiently far from all masses would read 
elapsed coordinate time t .  

It is worthwhile at this point to explain in detail 
the point of view adopted in this paper. Since 
standard clocks beat at rates which are affected 
by gravitational red shifts and Doppler shifts due 
to time dilation, we shall propose that a consistent 
scheme of establishing a network of synchronized 
clocks be adopted by using standard clocks, together 
with (A6), to measure elapsed coordinate time, At. 

This may be illustrated in Figure 1, in which 
measured elapsed proper time, As, on a standard 
clock is combined with information on positions 
and velocities of the moving standard clocks, to 
produce the elapsed coordinate time At. This proce- 
dure has the advantage that, because of the global 
nature of the coordinate time xG in general relativity, 
if coordinate crock A is synchronized with coordi- 
nate clock B and coordinate clock B is synchronized 
with coordinate clock C, then A will be synchronized 
with C. 

Consider, for example, the problem of establish- 
ing a network of synchronized clocks on the surface 
of the earth. Neglect for the moment the gravita- 
tional potential. Because laboratories maintaining 
atomic time are in motion due to the earth‘s spinning, 
time transfer between laboratories will be path 
dependent. It is therefore suggested that coordinate 
clocks fixed on the surface of the earth or in motion 
in planes or satellites be adjusted to read the 
coordinate time t which would be read on clocks 
at rest in an underlying nonrotating local inertial 
frame. By such a procedure, one can obtain a 
consistent coordinate clock network in which syn- 
chronization has the property of transitivity. 

Next let us consider the effect of the sun’s 
gravitational potential, in (A7). In the literature the 
suggestion frequently recurs that a clock on board 
a satellite will undergo a periodic shift in rate owing 
to the fact that the gravitational potential of the 
sun changes as the clock moves in its orbit around 
the earth. This effect is much more subtle than 

is generally realized. Analysis of this situation using 
circular orbits shows that there are actually four 
such effects, all of the same magnitude, but with 
two of the effects having one sign and two having 
the opposite sign, hence the net effect to quite 
a high degree of accuracy is negligible because of 
the mutual cancellation of these four effects. 

Tfie fust of these effects is the gravitational red 
shift. Imagine a local reference frame which main- 
tains, say, the x axis pointing toward the sun. Of 
two clocks at different positions along the x axis 
the one closer to the sun should beat at a slower 
rate due to gravitational red shift. The fractional 
amount by which the closer clock is red shifted 
is gsAr/c2, where g, = GM,/ r: is the gravitational 
field strength of the sun at the earth’s orbit, M, 
is the sun’s mass, andr,is the orbit radius, assuming 
that the orbit is circular. Ar is the difference in 
distance of the two clocks from the sun. 

However4 since one clock is at a greater radius 
than the other, its velocity in a heliocentric system 
will be greater, and it will be red shifted more due 
to time dilation or second-order Doppler shifts. 
Let v, be the orbital velocity of the clock at radius 
r, and v = v,(l + Ar/r,) be the velocity of the 
clock at radius r, + Ar. This clock would be almost 
at rest in the local inertial reference frame. The 
fractional Doppler shift compared with a clock at 
r, will be 

- dl - v2 /c2  = v i A r / ( c 2 r s )  (AS) 

But since the orbit is determined by the condition 
GM,/rt  = v; / r , ,  the Doppler shift cancels the 
gravitational red shift to terms linear in the distance 
from the origin. Hoffman [I9611 has previously 
discussed the effect of this cancellation on clock 
rates. 

There must yet be a third effect because a local 
inertial frame does not maintain one axis pointing 
toward the sun; with respect to such a direction 
the local inertial frame rotates once a year. When 
this rotation is accounted for, an additional contri- 
bution which is of the same sign and magnitude as 
the gravitational red shift is obtained. 

There must thus exist a fourth effect because 
one of the principle tenets of relativity theory is 
that gravitational fields can be transformed away 
locally by introducing an appropriate freely falling 
inertial frame. To fmd this fourth effect it is 
necessary to carry out the actual construction of 
the local inertial frame-introduce a tetrad of mutu- 



ally orthogonal four-vectors, integrate the equations 
of motion, fmd the transformation from coordinate 
time in the heliocentric system to coordinate time 
in the local frame, and calculate the metric in the 
local frame. This is too lengthy to include here, 
but the resulting Coordinate time transformation is 
as follows: 

X” =. ( 1  - F) { ct 

where p. = GMS/c2, Xo is the heliocentric coordi- 
nate time, x and z are local rectangular spatial 
coordinates measured in the local inertial frame, 
and o2 = GMs/ r’, , with o the orbital angular speed. 
Here the coordinate y does not appear because it 
is assumed to be measured normal to the plane 
of the orbit. The prescription for constructing such 
coordinates is discussed by Munusse and Misner 
[ 19631 . Note that the transformation between t and 
Xo involves terms linear in the distances x and 

The result of these linear terms in the coordinate 
time transformation gives a correction which is of 
the same magnitude as, and of opposite sign to, 
the gravitational red shift. Hence locally, the pres- 
ence of the sun does not affect relative clock rates. 

Now let us consider the process of synchro- 
nization of clocks which are placed near the surface 
of the rotating earth, which we may now consider 
to be located with its center of mass at the origin 
of a local inertial frame. In local inertial coordinates 
with origin at the center of mass of the earth the 
metric tensor now takes the form 

(A101 

glo = 0 (A 11) 

(A121 

where W(?) is the potential due solely to the earth’s 
gravitational field. We now transform to rotating 
coordinates (x’, y ’ ,  z ’ ,  t’) by means of 

x’ = x coswt + y sinwr (A131 

y‘ = y coswt - x sinwt (A141 

z’ = z (‘415) 

t‘  = t (XO’ = f )  ( A W  

2. 

g, = - 1  - 2W(f)/c2 

g, = 6,(1 - 2W(f) /c2)  

TIME AND FREQUENCY 663 

where o is the angular velocity of rotation of the 
earth, whose value is given in Table 2. The metric 
then becomes in linear approximation 

2 
g, = - 1 - - { W(F) - f w 2 ( x t 2  + y ” ) }  (A17) 

C’ 

go1 = g,o = -Y”/C 

g, = g, = x’w/c 

g, = 6,(1 - 2 W ( ? ) / c 2 )  

(A181 

(A19) 

(‘420) 
Thus keeping only linear terms, 

-ds2 = - 1 + - ( W ( i )  - tco’(x’2 +y’z))}(dt‘)’ { :’ 
+ 2(G x f ‘ ) - d r “ d t ’ / c  + [ l  - 2W(i)/c’] 

* [(dx‘)2 + (dy‘)’ + (dz‘ )2]  / c 2  (‘421) 

The neglected terms are, for propagation of light, 
at most 

o a I  (Ax”)’ 
2 GM, --- 

c2 a, c 

and over a path length of 10,OOO km are completely 
negligible. For objects moving with speed v the 
neglected terms would be of order v / c  smaller and 
hence negligible. 

Henceforth we drop primes on the coordinates 
and take the metric to be 

I 

I -ds2 = - 1 + - ( W ( f )  - fw’(x’ + y’)) { :’ 
+ 2 ~ x  i - d f d t / c 2 +  11 - 2 ~ ( F ) / c ’ ]  

. [dx’ + dy’ + dz’] /c2 (A221 
The potential due to the earth’s flattened distribution 
of mass may, with accuracy sufficient for our 
purposes, be taken as [Cuputo, 1967; Garland, 
19651 

( 1  - [ a , / r ]  ’J2P2(cos0)} (A23) 

where 8 is the polar angle measured from the rotation 
axis and the constants M,G, J2, and a ,  can be 
obtained from Table 2. P2 is the Legendre polyno- 
mial, 

(‘424) 

To express this potential in more convenient form, 
in terms of geographical latitude + and altitude h 

Me G W ( f )  = -- 
r 

P2 ( x )  = f ( 3 2  - 1) 
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M , G  3M,GJ2  + - w 2 a l  -- above the geoid, we use the expansion 
- 

r = a ,  - a,fsin2+ + h (‘425) a: 2a: 

(A32)  

+ w 2 a ,  
where f is the flattening of the earth, defined as 
unity minus the ratio of polar to equatorial radii 
of the earth. Also, 

(1426) 
= 9.7803 + 0.0519 sin2+ 

We thus obtain for g,: 

m/s2 
cos2 0 = sin2 4 ( I  - 4f cos2 4 ) ~  sin2$ 

Then if we put 

V ( i )  = W ( i )  - tw2(x2 + y 2 )  (A271 
we have 

The term 2V,,/c2 is of order 

2 M , G / a , c 2  = 1.4 x 

For a standard clock at rest on the earth at mean 
I 2 2  - i w  r (1 - cos2e) (-8) 

The geoid is the equipotential at altitude h = 

sea level (where h = 0, the geoid in this model) 
the proper time increment ds would be roughly 

M* G 
d s =  (1 -?)dl (A34) 

and during a flight of duration 10 hours the V, 
term would produce a correction of order 50,000 
ns. This is a large correction, but it is the same 

- - c0s2e) W9) for all clocks, since nearly all available standard 
clocks are placed in fact near the geoid. Therefore 
if we redefine the rates of all coordinate clocks 

0 or r = a,( l  - f sin2+). The value of the potential 
is, to sufficient accuracy, 

{ I  + +J~(I  - 3 Cos’e)) 
Me G Vo = -- 

r 

I 2 2  

and this may be solved for r to give 

so as to absorb this term, we may write 

goo = -(I + 2g(+)h/c2) (A351 

The metric is then to sufficient accuracy I 2 2  - T w  a,( l  - sin2+)/ V, 

1 [ I + +J2 + - M G  W 2 U :  

V O  2M, G 
2 3  [ 1 - i(S + 3 J 2 )  sin2+] 

-ds2 = -(1 + 2g(+)h/c2)(dt)’ 

+ ( 1  - 2W(r‘)/c2)(dx2 i- dy2 + dz2) / c2  

+ 2 & x i * @ d t / c 2  (‘436) (A301 
It should be noted that the expressiong(4) appearing 

Identifying the above expression for the radius of 
the geoid as a function of angle with (A25) for 
h = 0, we obtain the foflowhg approximate expres- 
sion for the flatteningf: 

in (A32) and (A351 includes rotation. 
With the aid of ( A 3 6 )  we are now in a position 

to analyze Various PrOCeSSes of clock Synchro- 
nization by means of portable clock transport. 
Consider first a series of standard clocks at rest 

w2u: 33 ,  1 

2M,G 2 298 
f = -  +-=- at altitudes h = 0 (on the geoid). The proper time 

elapsed will be given by (A31)  

To obtain an expression for the acceleration of ds = dt (A37)  

This shows that by distributing a system of standard 
clocks about on the geoid at rest all such clocks 
will beat at the same rate, equal to the rate at 
which the global coordinate clocks will beat. This re- 
sult was discussed by Cocke [ 1966a, b, c] . There is, 

gravity, we calculate the expansion of v(f) to first 
order in h: 

g = % /  
a* r-o,( i -rshz+) 



of course, still the problem of initializing the clocks. 
If in (A36) the increment d? is replaced by d? 

= 3dt, where 3 is the velocity of the clock relative 
to the ground, then on solving for dt2 and taking 
a square root we obtain 

C 

Therefore on measuring the elapsed proper time 
ds on a standard clock and applying the corrections 
indicated in (A38) the elapsed Coordinate t h e  can 
be calculated. It is this sense in which Figure 1 
is intended to illustrate the approach used in this 
paper. 

An alternative form for the third term of (A38) 
may be written in vector form as 

3 * i x  Cds ‘5 c2 path 

But 3ds = d?, the change of position, and i? x 
dr‘ is the vector element of area swept out by the 
radius vector to the clock as it moves on the surface 
of the earth. Therefore this term can be expressed 
as 

(A391 
2 -  

C2 
- o d = h A E / c 2  

where A, is the projection of the area swept out 
by the radius vector from the center of the earth 
to the clock onto the equatorial plane. The area 
is considered positive if it is traversed in the sense 
of rotation of the earth [Saburi, 19761. 

For propagation of an electromagnetic signal, ds2 
= 0, and (A36) can be expressed as 

0 = ( d t ) ’ [ l  + 2g(+)h/c2 - ~ W U , C ~ C O S + / C ’ ]  

- (1 - 2W(F)/c2)(dx2 + dy2+  d z 2 ) / c 2  (A40) 

where c, is the eastward component of velocity 
of the signal. The term W ( i ) / c 2  may, for propaga- 
tion paths within about 12,000 m of the earth’s 
surface, be incorporated into the measurement of 
proper distance. The term g h / c 2  is negligible, so 
solving for dt, 

(‘441) dt = da(1 + W U , C E C O S + / C 2 )  

where 

2M, G 
d o2 = ( 1 + z ) ( d x 2  + dy2 + dz’) (A42) 
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Use of (A41) to calculate coordinate time elapsed 
along the path of an electromagnetic signal will 
give results consistent with those obtained by a 
portable clock using (A38). 

APPENDIX B: SYNCHRONIZATION BY 
ELECTROMAGNETIC SIGNALS 

In this appendix we derive results discussed in 
the text in those cases involving the synchronization 
of clocks by transmission of electromagnetic sig- 
nals, with possibly very large altitude differences 
between the locations of the clocks. The earth is 
regarded as spinning with respect to a local inertial 
frame with angular velocity w. 

Synchronization via two-way transponder 

Referring to Figure 2, the locations of ground 
station A when the signals are transmitted and 
received are ?A (at time r A )  and fA + wk x ?*T 

(at time t, + T ) ,  respectively. The location of station 
B on reception is fB. The satellite locations on 
reception of the first and second signals are denoted 
by 3; (at time t i )  and F i  + 3 ( t ;  - t i )  (at time 
t ; ) .  Here the time interval t ;  - t ;  is assumed 
sufficiently small that the velocity may be treated 
as constant. Since t ;  - t i  is typically of order 
0.2 s or less and satellite velocities are of order 
5 km/s, this should be a very good approximation. 

We first define distances D, and D, as the true 
distances of the first leg of the transmission from 
each ground station, viewed from the local inertial 
frame: 

(B 1) 

(B2) 

Then for the time of propagation from A to A’ 
we have 

D, = [(ii - F A ) ’ ]  I” 

D, = [ ( F :  + c(r; - r ; )  - r e ) ’ ]  ”’ 

c 2 ( i ;  - r , ) ’ =  ( F ;  - ?,I’ 

thus 

f a  = t ,  -k D , / c  (B3) 

For the propagation time from A’ to B, 

C2( t ,  - = ( T i  - 

= 

= D: + 2 ( F B  - i ;)* 3 ( t L  - f,) 

+ C ( t L  - t A )  - iB - C ( t L  - t A ) ) ’  

(B4) 

where on the right we have expanded in terms of 
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small corrections to the distance D,. On taking the 
square root of (B4) and carrying out the expansion 
to only first-order terms in G, the result is 

(FB - F i )  * G ( t L  - t i )  

cD2 

Now to express the coordinate time t ,  of the 
station at B in terms of the measured time T and 
the corrections, use (B9) and (B7) and eliminate 
the unknown distances D ,  and D, from the zeroth- 
order terms, leaving them only in the first-order 
corrections where approximate values can be used. 
The result is 

t ,  = t: + D , / c  + 

and combining with (B3), 

( ~ 5 )  

t ,  = t, + (Dl  + D 2 ) / c  

+ (f,  - i:). C ( t ;  - f, - D,/c)/cD, 

To make use of the above results we need 
corresponding expressions for the return transmis- 
sion from B. For the time of propagation from 
B to B’, 

c2( t ;  - t , )2  = D :  

Thus 

t ;  = t, + D 2 / c  (B6) 

The above two equations involving t and t ,  may 
be solved to yield to first order 

In this form, one can clearly see the effect of 
motion of the satellite and of the ground stations 
on the synchronization procedure. If it were not 
for these corrections, the equation would read t ,  
= t, + $7, which is what one would expect from 
the usual Einstein synchronization procedure in an 
inertial frame. 

Rate correction for  satellite clock 
~ E I  = tA + (01 + D 2 ) / C  + 21 (FB - f L ) / C 2  

t ;  = t ,  + ( D l  + 2D,) /c  + 2 1 -  (i, - i i ) / c 2  

(B7) 

(B8) 

For the final leg the propagation time from B’ to 
A is given by 

c2(t, + T - t;)’ = (i, + O T ~ X  i, 

A clock on board an orbiting satellite is subjected 
to gravitational blue shifts and Doppler shifts due 
to velocity, with respect to a clock on the ground. 
To derive the appropriate correction which must 
be applied to the standard clock in the satellite 
in order that coordinate time be obtained, we may 
to sufficient accuracy write the potential of the 
earth as - FL - 1 ( t ;  - tL) )2  

The right side of the above equation may be 
expanded in terms of small corrections to the 
distance D, . Then 

c’(t, + T -  t ; ) ’ =  0:  - h & x  i,* ?: 

- 2C-(i ,  - i L ) ( t ;  - t,) 

On taking the square root and carrying out the 
further expansion in small corrections to D i, 

f, + T - t’ ,  = D , / c  - ( w ~ k ^ x  FA. i i  
+ ?-(FA - i L ) ( t L  - f L ) ) / c D ,  

Using the results obtained in (B8) and (B3) for t ;  
and t i ,  the following expression for T ,  the total 
trip time, is obtained: 

D2 

D ,  
T = 2 ( D ,  + D 2 ) / c  + ?, - i: - - (FA - 7: ) )  

v =  -% 1 [ 1 - (:)2J2P2(c0sf3)] (B11) 

where Me is the earth’s mass, a ,  is the earth’s 
equatorial radius, 8 is the colatitude, and the term 
in J2 arises from the nonsphericity of the earth. 
Values of the constants GM,, a,, and J2 are given 
in Table 2. Also, P2(x) = f(3x2 - 1). 

From (A6) the coordinate time dt elapsed on a 
standard clock which measures elapsed proper time 
ds is then given by 

d s 2 = d t 2 [  1 +,‘i] 2v v 2  

or 

1 1 

- 2w(D, + D 2 ) L  x F A *  i ; / c 2 D ,  (B9) By conservation of energy we have 



(B14) 
1 2  T V  + V=const=E/m=E 

where E l m  is the classical energy per unit mass 
of the satellite (which can be expressed in terms 
of orbital elements). Therefore the expression for 
the coordinate time rate correction is 

or 
r r~ 

At,, = 

+ 3 r c 2  (1 -  COS^))] (B16) 

In comparing the above rate correction with that 
which is appropriate for a ground-based clock, from 
(1) we have 

Atsnd= \ d s [ l - 5 - * ]  C2 C2 (B17) 

where h is the altitude above the geoid of the ground 
station and 

(1 + +J2) - &?a: (BW 

is the effective potential on the geoid, including 
effects due to rotation. 

GMe v, = -- 
a, 

Synchronization of satellite clock 
Now referring to Figure 4, for the time t i  - 

t ,  required for the signal to propagate from the 
ground station to the satellite we have 

c 2 ( t :  - c , ) ~  = (?: - e D 2  

where D is the distance traversed from the viewpoint 
of the local inertial frame. Thus 

0319) 

For the return signal the position of the ground 
station is iA + wk x i A T .  Hence 

t :  = t ,  + D / c  

Since the correction involving T on the right-hand 
side of the above equation is small, we may expand 
as follows: 
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Thus taking the square root and keeping only 
first-order corrections, 

Thus 

To a fnst approximation, T = 2D/c ,  and this may 
be substituted into the correction term to obtain 

D 2 w  
t i  = t ,  + T -- + - i',* E x  7, 

c c2 

Using (B19) to eliminate D, the result is 

In this form the coordinate time t i  of arrival of 
the signal at the satellite clock is expressed in terms 
of the measured trip time T and a calculated correc- 
tion which can be several hundred nanoseconds. 

Synchronization of ground station 

The notation is indicated in Figure 6. Letting 
D be the proper distance between the initial position 
i'; of the satellite and the ground station It, foi 
the propagation time of the signal from A' to A 
we have 

c 2 ( t ,  - = D2 

or 

t ,  = t i  + D / c  (B22: 

Then during the propagation of the signal to the 
ground station and back to the satellite the satellite 
will have moved a distance 37, where 3 is the 
velocity. Thus 

On taking square roots and carrying out the expan- 
sion in small quantities, we obtain 

Using (B22) and (B23) to eliminate D, the result 
may be expressed as 
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Lasso-type experiment (derivation of (22)) to A, (19) gives 
The notation is explained in Figure 8. The time 

elapsed between receptions of the signals at the 
satellite is here denoted by 

0325) 
For the first signals from A to the satellite and 
back, (17) gives 

w - 6 )  
and for the second set of signals, correspondingly, 

(B27) 

Using the above equations to eliminate tk  - t: and 
express t ,  in terms of I,, we have 

T’ = t’, - t i  

= t ,  + $7, + O f ;  ‘ k  ̂ X f a / C Z  

t ;  = t ,  + +T, + o i ‘ , * Z x  i , , /c2 

t ,  = t ;  + fr; - J * ( ? ;  - i , ) / C 2  (B33) 
where 3 is the initial satellite velocity. Then for 
the second part of the transfer, (17) gives 

t : , = t B + t 7 , + O i S . k l x i * / c 2  (B34) 

Also, defrning T’ = t ;  - t:, we can solve €or t ,  
in terms of t, as follows: 

1, t ;  - i T B  - Of’, k̂  X ?n/C2 

= t : + T ‘ - f T B - O i L o k ^ X i B / C 2  

= r ,  + 7’ - +(T; + 7,) + ?*(i: - ?,) /c2 

- OF; k̂  x i B / C 2  (B35) 
t ,  = t & - +rB - af; k^ x ia /c2 which is (24) of the main text. 

Derivation of (25) 

Referring to Figure 11 and the accompanying text 
where the notation is explained, (19) may be applied 
twice to obtain 

= t i  + r’ - f ~ ,  - OF; k  ̂x i , , /c2 

= t ,  + t(7, - TB) + 7’ 

-I- w(F;*Rx FA - i L * l x  i B ) / c 2  (B28) 

This is (22) of the main text. 

Flyover (derivation of (23)) 

For the initial synchronization of a clock in a 
clock is set satellite Of jet in which the 

we have from (17) 
where 3; and f; are the satellite velocities at the 
instants of transmission r:  and r k ,  respectively. 
Then DUttinE - 

T’ = r ;  - t :  
t ;  = f, + $T* + Or‘ ; * lX  f A / C 2  0329) 

For the subsequent synchronization of the ground 
station B starting with a signal from the satellite 

t ,  = t ;  + +T; - +*(i; - i B ) / c 2  

it that 
at time t k ,  (19) gives t ,  = t ,  + 7’ + +(7’, - T;)  

+ ( J L  e(;’, - i,) - *(i; - i 
Letting 

One-way transmissions (derivation of (26)) 
7‘ = t‘, - t i  (B30) 

we can then calculate t ,  in terms of I,. First 
eliminating t ;  in favor of T’ ,  

From Figure 12 the propagation delay 7’ which 
would occur if the earth were not rotating is given 

c T = (i,, - i ; l 2  

The true propagation delay, however, will be dif- 
ferent owing to the motion O T ~ ^  x ?, of the ground 

t ,  = T‘  + t i  + +T; - J - ( i L  - i B ) / c 2  (B31) by 
2 2  

then using (B25) for t :  gives 

1, = I, + f(T, + T L )  + 7’ 

+ L x  Fa - ( i ;  - 7 B ) / c 2  (832) station during the time 7.  Thus 
2 2  where 3 is the velocity of the satellite at t;. C 7 = ( fA + WTk^ x ?A - f ; ) 2  

= (F, - i;)’- h T j ; *  k^x i, 

Thus taking square roots and expanding, 
Derivation of (24) 

The process is diagramed in Figure 10. For the 
initial synchronization, using the signal from A’ C T  = C T ’ ( 1  - W T ? i *  k X ? A / ( C T ‘ ) 2 )  
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and thus the first-order correction is 
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