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Abstrac t. We report the creation and full determination of several quantum
states of motion of a 9Be+ ion bound in a RF (Paul) trap. The states are
coherently prepared from an ion which has been initially laser cooled to the
zero-point of motion. We create states having both classical and non-classical
character including thermal, number, coherent, squeezed, and `SchroÈ dinger cat’
states. The motional quantum state is fully reconstructed using two novel
schemes that determine the density matrix in the number state basis or the
Wigner function. Our techniques allow well controlled experiments decoher-
ence and related phenomena on the quantum± classical borderline.

1. In trod uc tion

The ability to create and completely characterize a variety of fundamental
quantum states has long been sought after in the laboratory since it brings to the
forefront issues involving the relationship between quantum and classical physics.
Since most theoretical proposals to achieve these goals were put forward in the
® eld of quantum optics, it might seem surprising that some of the ® rst experiments
succeeding in both respects were realized on the motion of a trapped atom.
However, since both the photon ® eld of quantum optics and the motion of a
trapped atom are quantum harmonic oscillators, their couplings to internal atomic
levels (described by the Jaynes± Cummings model (JCM) [1, 2]) are quite similar
[3, 4]. In addition, for the case of a harmonically-bound atom driven by a light
® eld, there are interactions beyond the simple Jaynes± Cummings coupling,
allowing more control over the engineering and measurement of quantum states.

Section 2 will give a brief description of the interaction of a trapped atom with
light ® elds and outline the similarities to the Jaynes± Cummings Hamiltonian
studied in quantum optics. Our experimental setup and the cooling of the trapped
atom to the motional ground state are described in section 3. We then describe the
controlled preparation of both classical and non-classical motional states including
a `SchroÈ dinger-cat’ type state in section 4. The complete measurement of either
the density matrix in the number state basis or the Wigner function is covered in
section 5 and we ® nally o� er some conclusions in section 6.
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2. In te rac tion of a trappe d atom w ith ligh t ® e ld s

To describe the interaction of the trapped atom with light ® elds we make the
following assumptions which will be justi® ed below. First we assume that the
internal degrees of freedom of the trapped atom are su� ciently described by a two
level system, second that the motion of the atom bound in the trap is harmonic in
all three dimensions, and ® nally that the vibrational level spacings (trap frequen-
cies) and internal state transition frequencies are much larger than any internal or
motional relaxation rates. Starting from these assumptions we can describe the
trapped atom as a two level system with levels labeled |̄ l , and | l , dressed by the
harmonic oscillator ladders of the external motion with number states |nxnynz l . We
will consider coupling to only the x̂ dimension harmonic oscillator with number
states |nx l = |n l [n = 1, 2, . . . ¥ , see ® gure 1 (a)]. To couple the motional and
internal degrees of freedom of the trapped atom, we apply two laser beams whose
di� erence frequency matches the separation of two energy levels, as depicted in
® gure 1 (a). The beams are each su� ciently detuned from short-lived excited
electronic states, resulting in two-photon stimulated Raman transitions between
the states of interest which are formally equivalent to narrow single photon
transitions. By employing two laser beams to drive stimulated Raman transitions,
we are able to combine the advantages of strong optical electric- ® eld gradients
(allowing manipulation of the state of motion) and microwave stability of the
crucial di� erence frequency.

In the rotating wave approximation in a frame rotating with x 0, where h x 0 is
the energy di� erence of the two internal levels, the interaction of the classical laser
® eld with the two levels of the trapped atom is described by the Hamiltonian

Hint( t) = hg( s + exp [- i( d t - k ·x)]+ s - exp [i( d t - k ·x]) , (1)
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Figure 1. (a) Electronic (internal) and motional (external) energy levels of the trapped
Be+ ion, coupled by laser beams R1 and R2. The di� erence frequency of the Raman
beams is set near x 0 /2 p . 1.250 GHz, providing a two photon Raman coupling
between the 2S1/2(F = 2,mF = 2) and 2S1/2(F = 1, mF = 1) hyper® ne ground states
(denoted by |̄ l and | l respectively ). The motional energy levels are depicted by a
ladder of vibrational states separated by the trap frequency x x /(2 p ) . 11.2 MHz.
The Raman beams are detuned by ¢ /(2p ) . - 12 GHz from the 2P1 /2 (F = 2,
mF = 2) excited state. As shown, the Raman beams are tuned to the ® rst red
sideband. (b) Detection of the internal state is accomplished by illuminating the ion
with a s + polarized `detection’ beam D2, which drives the cycling 2S1 /2 (F = 2,
mF = 2) ® 2P3 /2(F = 3, mF = 3) transition, and observing the scattered
¯ uorescence. The vibrational structure is omitted from (b) since it is not resolved.
Beam D1, also s + polarized, provides spontaneous recycling from the |  l to | ¯ l state.



where g denotes the interaction strength, s + and s - are the Pauli spin matrices
describing the two level system and d the detuning of the frequency di� erence of
the two Raman beams x = x 1 - x 2 with respect to x 0, and k = k1 - k2 is the
di� erence of the two Raman beam wave-vectors. In these experiments the wave-
vector di� erence was always chosen to be parallel with the x̂-direction of the trap,
so k·x = kx and the interaction couples only the motion in x̂-direction to the
internal state of the trapped atom.

In our experiment we con® ne a single beryllium-ion in a RF-(Paul) trap [5], so
the trapping potential is not a simple harmonic potential but rather a time
dependent potential with the periodicity of the RF ® eld. Based on the full quantum
mechanical treatment of Glauber [6], several workers have studied the time
dependence of the interaction Hamiltonian (1) [7, 8]. While Bardro� et al. [7]
give a general expression for the Rabi frequencies, we restrict ourselves to an
approximate treatment in the limit where the dimensionless Paul trap parameters a
and q related to the static and RF-potential [5] are much smaller than one (in
our trap, a . 0, q . 0.14) . The main change in the full treatment is a common
scaling factor in the interaction strength (Rabi frequencies). This is already
taken into account in our experiments, since we scale all our Rabi frequencies
with the experimentally determined Rabi frequency X 0,1 (see below). In the
approximation of a simple harmonic oscillator, with creation and destruction
operators a+ and a, the interaction Hamiltonian (1) reduces to

Hef f = hg( s + exp [i h (a² + a) - i d t]+ s - exp [- h (a² + a) + i d t]) , (2)

where h = k[h /(2m x x)]1 /2, m is the mass and x x is the secular frequency of the ion
in x̂-direction. By tuning the frequency di� erence d to an integer multiple of the
secular frequency x z , d = (nÂ - n) x z , we can resonantly drive transitions from
|̄ , nl to | , nÂ l . In this case Hef f is dominated by a single stationary term. The
exponent exp[i h (a ² + a)]in Hef f contains all powers of a and a ² . Since their time
dependence (in the interaction picture) is a( t)m = ~a( t)m exp(- im x xt) , all contribu-
tions with m /= nÂ - n oscillate rapidly and average out when x x is much larger than
g. The biggest stationary term in the Lamb± Dicke limit ( k h (a + a² ) 2 l 1 /2

! 1) is
proportional to

Hef f ~ hg
h n- nÂ

(n - nÂ ) !
( s + (a² ) n- nÂ + s - an- nÂ ) , (3)

if nÂ - n > 0, and

Hef f ~ hg
h nÂ - n

(nÂ - n) !
( s + an- nÂ + s - (a ² ) n- nÂ ) , (4)

if nÂ - n < 0. In the special case of nÂ - n = - 1 ( d < 0, ® rst red sideband) we
obtain the familiar Jaynes± Cummings Hamiltonian h ( s + a + s - a ² ) . By choosing
other detunings we can realize a number of couplings beyond the Jaynes±
Cummings coupling; for example a `two-phonon’ coupling ( h 2 /2) ( s + a2+
s - (a ² ) 2) for n - nÂ = - 2 (second red sideband). The coupling strength to lowest
order in h is given by the matrix elements (Rabi frequencies)

h X n,nÂ = k ¯ , n|Hef f |  , nÂ l . hg
h |nÂ - n|

|nÂ - n|[n>(n> - 1) . . . (n< + 1)]
1
2, (5)
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where n> (n<) is the greater (lesser) of n and nÂ . The di� erences are only signi ® cant
for large n or nÂ . A `Rabi- p -pulse’ , which transfers a pure |̄ , n l state to a pure
| , nÂ l state, corresponds to applying the Raman beams for a time ¿, such that
X n,nÂ

¿ = p /2.

3. Experim e n tal se tu p and c oolin g to th e m otional groun d state

In our experiment, a single 9Be+ ion is stored in a RF Paul trap [9] with a
secular frequency along x of x x /2p < 11.2 MHz, providing a spread of the ground
state wavefunction of about D x0 º k x2 l 1 /2 < 7 nm. The |̄ l and | l levels are the
long-lived 2S1 /2(F = 2, mF = 2) and 2S1 /2 (F = 1, mF = 1) hyper® ne ground states
(see ® gure 1).

To prepare the ion in the ground state, it is ® rst `Doppler pre-cooled’ by
two beams of s + polarized light detuned by approximately one linewidth
( C /2 p = 19.4 MHz) to the red of the 2S1 /2(F = 1 and 2) ® 2P3 /2 transitions.
This cools the ion to n < 1, in the |̄ l state. To further cool the ion we use
narrower Raman transitions in order to be in the resolved sideband limit. One
cooling cycle consists of two steps. First we drive stimulated Raman transitions to
the | l state by applying a pair of travelling-wave laser beams detuned from the
2P1 /2 state [10]. These Raman beam wave-vectors point at 45 ë to the x̂-axis with
their wave-vector di� erence nearly along the x̂-axis of the trap [h x = 0.202(5)], so
the raman transitions are highly insensitive to motion in the ŷ or ẑ directions. The
beams are derived from the same laser with an acousto-optic modulator, reducing
the e� ects of laser frequency jitter. The di� erence frequency can be tuned near the
ground state hyper® ne splitting of x 0 /2 p < 1.25 GHz. The beams are detuned by
approximately 12 GHz to the red of the 2P1 /2 excited state with approximately
0.5 mW in each beam, so that the Raman transition Rabi frequency X 0,1 /2p is
approximately 200 kHz, and the vibrational structure is clearly resolved. For
cooling, the frequency di� erence is tuned to the red sideband ( d = - x x) , so that
one vibrational quantum is lost in the transfer to the | l state. The time during
which we apply the red-sideband interaction is optimized to leave the internal state
as close to a pure | l state as possible ( Rabi- p -pulse). In the second step of the
cooling cycle, we apply lasers tuned to the | l ® 2P3 /2 and 2S1 /2(F = 2,
mF = 1) ® 2P1 /2 that repump the atom to the |̄ l state. In analogy to the
MoÈ ssbauer e� ect, the recoil of the spontaneous emission process in this repumping
is absorbed by the whole trap structure with high probability, leaving the motional
state of the trapped atom unchanged. Five cycles of this two-step cooling scheme
prepare the ion in the |̄ , n = 0 l state approximately 95%of the time [10].

In the experiments described below we detect the probability of being in one of
the states | l or |̄ l . We detect P ¯ , the probability of ® nding the |̄ l -state, by
driving a cycling transition to the 2P3 /2 with s + polarized light and detecting the
emitted ¯ uorescence. The | l is not resonantly coupled to an excited state by the
light- ® eld, so P ¯ is proportional to the number of tries where we see ¯ uorescence
when we repeat the experiment. Since the application of the resonant light ® eld
e� ectively reduces the internal state to either | l or |̄ l , we can consider the internal
atomic state to be a unit e� ciency detector, even if we fail to detect the
¯ uorescence every time. The analogy with photon detection would be a 100%
e� cient detector which is read out only sporadically.
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4. Cre ation of variou s m otional state s an d m easu re m e n t of th e ir n um be r
state popu lation

4.1. Fock states
A Fock state |n l is a harmonic oscillator energy eigenstate, designated by the

number n of energy quanta. Several techniques for the creation of Fock states of
motion have been proposed, using quantum jumps [4, 11], adiabatic passage [12],
or trapping states [13]; here we use an alternate technique. Since the ion is initially
cooled to the |̄ , 0l Fock state, we create higher-n Fock states by simply applying a
sequence of Rabi- p -pulses of laser radiation on the blue sideband, red sideband, or
carrier. For example, the | , 2l state is prepared by using blue sideband, red
sideband, and carrier p -pulses in succession, so that the ion steps through the
states |̄ , 0 l , | , 1l , |̄ , 2l , and | , 2 l [14].

Once the Fock state is created, the signature of the state can be found by
driving Rabi transitions on the blue sideband. Speci® cally, the Raman beams were
tuned to the ® rst blue sideband and applied for a time t. The probability of ® nding
the |̄ l level was then measured by applying s + polarized radiation on the
|̄ l ® 2P3 /2 cycling transition and detecting the ¯ uorescence as described above.
The value of t was stepped, and the data P ( t) was acquired. The rate of the Rabi
¯ opping, X n,n+ 1 in equation (5), depends on the value of n of the Fock state
occupied. The expected signal is

P̄ ( t) = 1
2[1 + cos (2X n,n+ 1t) exp (- g n( t)], (6)

where g n is the decoherence rate between levels |nl and |n + 1 l . The measured
P ¯ ( t) for an initial |̄ , n = 0 l Fock state is shown in ® gure 2 (a) together with a ® t to
equation (6), yielding X 0,1 /(2 p ) = 94(1)kHz and g 0 = 11.9(4) 103 s- 1.

We created a series of Fock states |̄ , n l and recorded P ¯ ( t) . The measured Rabi
frequency ratios X n,n+ 1 / X 0,1 are plotted in ® gure 2 (b), showing very good agree-
ment with the theoretical frequencies corrected for the trap’s ® nite Lamb± Dicke
parameter h = 0.202. The observed increase of g n with n (we experimentally ® nd
g n < g 0(n + 1) 0.7 ) is qualitatively consistent with our view that the decoherence is
due to technical problems.

4.2. Thermal states
When the ion’s motion is not in a Fock state, P̄ ( t) shows a more complicated

structure. In this case,

P̄ ( t) = 1
2 1 + å

¥

n= 0
Pn cos (2 X n,n+ 1t) exp (- g nt)[ ], (7)

where Pn is the probability of ® nding the atom in the nth motional number state.
For example, a thermal distribution is found after Doppler cooling [15]. In this
case, the probability of occupying the nth Fock level is Pn = [nn /(1 + n)n+ 1], where
n is the average vibrational quantum number. The value of n can be controlled by
the detuning during Doppler cooling. An example of P ¯ ( t) data for a thermal state
of motion is given in ® gure 3. To demonstrate consistency with a thermal state of
motion, the time-domain data are ® tted to equation (7) with a thermal population
distribution for Pn. The signal scale and n are allowed to vary in the ® t. Values for
the base Rabi frequency X 0,1 and base decay rate g 0 (from which the other rates are
scaled using the dependence found in the Fock state data) are obtained from a

Experimental preparation and measurement of quantum states of motion 2489



separate trace of P̄ ( t) for an initial |̄ , 0l state. For ® gure 3, the ® t yields
n = 1.3 6 0.1. The inset shows the results of an independent analysis (the fre-
quency domain analysis). In this case, we directly extract the populations of the
various |nl levels. Since the Fock state parameters X n,n+ 1 and g n are well
characterized, the time-domain data can be decomposed into Fock-state compo-
nents. Equation (7) is linear in Pn, so we use singular value decomposition [16] to
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Figure 2. (a) P ¯ ( t) for an initial |̄ , 0l Fock state driven by a JCM-type interaction
provided by tuning the stimulated Raman beams to the ® rst blue sideband. The
solid line is a ® t to an exponentially decaying sinusoid. 9b) The relative Rabi
frequencies X n,n+1 / X 0,1 plotted against the prepared Fock state number n. The lines
represent the predictions of the nonlinear JCM for certain Lamb± Dicke parameters,
showing every good agreement with the known Lamb± Dicke parameter h =
0.202(5) . For h ! 1 the ratio of the Rabi frequencies is given by X n,n+1 /
X 0,1 = (n + 1)

1
2 .

Figure 3. P̄ ( t) for a thermal state. The data (points) are ® tted (line) to a superposition
of Fock states with Pn given by a thermal state distribution. The ® t allows n to vary,
yielding a value of 1.3 6 0.1. The inset shows the decompostion of the data onto
the Fock state components (bars) with a ® t (line) to the expected exponential
distribution, yielding 1.5 6 0.1.



extract the probabilities, shown in the inset of ® gure 3. The probabilities are ® tted
to an exponential, yielding n = 1.5 6 0.1. A third measure of n by comparing the
size of the red and blue sidebands [10] yields n = 1.5 6 0.2.

4.3. Coherent states
A coherent state of motion |a l of the ion corresponds to a minimum uncertainty

wave-packet whose centre oscillates classically in the harmonic well and retains its
shape. The probability distribution among Fock states is Poissonian, Pn =
|k n | a l |2 = (nn exp (- n) ) /n! with n = |a |2. As predicted by the JCM, the internal
state evolution P̄ ( t) will undergo collapses and revivals [17], a purely quantum
e� ect [2, 17].

Coherent states of motion can be produced from the |n = 0 l state by a spatially
uniform classical driving ® eld [18], by a `moving standing wave’ [19] by pairs of
standing waves [20], or by a non-adiabatic shift of the trap centre [21]. We have
used the ® rst two methods. For the classical drive, we apply a sinusoidally varying
potential at the trap oscillation frequency on one of the trap compensation
electrodes [9] for a ® xed time (typically 10 m s.) For the `moving standing wave’
creation we use two Raman beams which have a frequency di� erence of only x x.
Applying these beams couples adjacent oscillator levels within a given internal
state. In the Lamb± Dicke limit this interaction is formally equivalent to applying
the coherent displacement operator to the state of motion. The Raman beams
produce an optical dipole force which is modulated at x x [19], resonantly driving
the motion of the atom. On resonance, the magnitude of the coherent state grows
linearly with the coupling time.

In ® gure 4 we present an example of P ¯ ( t) after creation of a coherent state of
motion. Similar behaviour has recently been seen in the context of cavity QED
[22]. The time domain data are ® tted to equation (7) using a Poissonian distribu-
tion and allowing only n to vary. All other parameters (signal amplitude, signal
o� set and decoherence rate) are measured from a separate |n = 0 l Fock state trace.
The inset shows the probabilities of the Fock components, extracted using the
frequency domain analysis described above. The amplitudes display the expected
Poissonian dependence on n. The observed revival for higher n coherent states is
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Figure 4. P ¯ ( t) for a coherent state, showing collapse and revival. The data are ® tted to
a coherent state distribution, yielding n = 3.1 6 0.1. The inset shows the
decomposition of the data onto the expected Fock state components, ® tted to a
Poissonian distribution, yielding n = 2.9 6 0.1.



attenuated due to the progressively faster decay rates of the higher-n Fock states,
and for states with n * 7 we are unable to see the revival.

We can also realize a di� erent interaction by tuning the frequency di� erence of
the Raman beams to the second blue sideband: d = 2 x x. The interaction Hamilton
is then proportional to ( h 2 /2) ( s + (a ² ) 2 + s - a2) [see equation (3)] and the Rabi
frequencies [see equation (5)] are given by

X n,n+ 2 . g
h 2

2 [(n + 1) (n + 2)]12 . g
h 2

2
(n + 3

2) . (8)

Since the last relation holds within 6%for all n, the Rabi frequencies in P̄ ( t) are
almost commensurate, so P ¯ ( t) shows very sharp collapse and revival features,
similar to the two-photon cases discussed by Buck and Sukumar [23] and Knight
[24]. Our experimental result is shown in ® gure 5. The factor 3

2 in the above
approximation leads to an additional 3p phase shift between successive revivals.
This inverts the interference feature from revival to revival. In addition there are
small deviations from equation (8), because of the approximation made and the
® nite Lamb± Dicke parameter h which alters the Rabi frequencies [see ® gure 2 (b)].

4.4. Squeezed states
A `vacuum squeezed state’ of motion can be created by a parametric drive [21],

by a combination of standing- and traveling-wave laser ® elds [20], or by a non-
adiabatic drop in the trap spring constant [21]. Here we irradiate the |n = 0l ion
with two Raman beams which di� er in frequency by 2x , driving Raman transitions
between the even-n levels within the same hyper® ne state. The interaction can also
be thought of as a parametric drive induced by an optical dipole force modulated at
2 x [19]. The squeeze parameter b (de® ned as the factor by which the variance of
the squeezed quadrature is decreased) grows exponentially with the driving time.
Figure 6 shows P̄ ( t) for a squeezed state prepared in this way. The data are ® tted
to a vacuum squeezed state distribution, allowing only b to vary. The ® t of the data
in ® gure 6 demonstrates consistency with a squeezed state and gives b = 40 6 10
(16 dB below the zero point variance), which corresponds to n < 7.1.

The probability distribution for a vacuum squeezed state is restricted to the
even states, P2n = N(2n) !( tanh r) 2n /(2nn!) 2, with b = exp (2r) . The distribution is
very ¯ at; for example, with b = 40, 16%of the population is in states above n = 20.
The Rabi frequency di� erences of these high-n levels are small (see ® gure 2 (b)),

2492 D. L eibfried et al.

Figure 5. P̄ ( t) for a coherent state, driven on the second blue sideband. Since the Rabi
frequencies are almost commensurate in this interaction, P ¯ shows very sharp
collapse and revival features. The solid line is a ® t using the exact Rabi frequencies
for ® nite h . It yields n = 2.0 6 0.1.



and with h = 0.202 the Rabi frequencies begin to decrease with n after n = 20. The
levels can no longer be well distinguished by frequency to extract the level
populations.

In the above cases, we have checked our state creation through the values of the
Pn. This information is, of course, incomplete since it does not reveal the
coherences. Measurements completely characterizing the quantum state will be
discussed below.

4.5. A `SchroÈ dinger cat’ state of motion
A `SchroÈ dinger cat’ state can be taken as a superposition of classical-like states.

In SchroÈ dinger’s original thought experiment [25] he describes how we could in
principle transform a superposition inside an atom to a large-scale superposition of
a live and dead cat. In our experiment [26], we construct an analogous state at the
single atom level. A superposition of internal states (| l and |̄ l ) is transformed into
a superposition of coherent motional states with di� erent phases. The coherent
states of the superposition are separated in space by mesoscopic distances much
greater than the size of the atom.

This situation is interesting from the point of view of the quantum measure-
ment problem associated with `wavefunction collapse, ’ historically debated by
Einstein and N. Bohr, among others [27]. One practical approach toward resolving
this controversy is the introduction of quantum decoherence, or the environmen-
tally induced reduction of quantum superpositions to statistical mixtures and
classical behaviour [28]. Decoherence is commonly interpreted as a way of
quantifying the elusive boundary between classical and quantum worlds, and
almost always precludes the existence of macroscopic SchroÈ dinger cat states,
except at extremely short time scales [28]. The creation of mesoscopic SchroÈ dinger
cat states may allow controlled studies of quantum decoherence and the quantum/
classical boundary.

In the present work, we create a SchroÈ dinger cat state of the harmonic
oscillator by forming a superposition of two coherent state wavepackets of the
single trapped atom with a sequence of laser pulses. The coherent states are excited
with the use of a pair of Raman laser beams as described above. The key to the
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Figure 6. P ¯ ( t) for a squeezed state. The data are ® tted to a squeezed state population
distribution, yielding b < 40 6 10 (16 dB below the zero point variance), which
corresponds to n < 7.1.



experiment is that the displacement beams are both polarized s + , so that they do
not a� ect the | l internal state. It is this selection that allows a superposition of
internal states to be transformed into a superposition of motional states.

Following laser cooling to the |̄ l |n = 0 l state as described above, we create the
SchroÈ dinger cat state by applying several sequential pulses of the following Raman
beams. (1) A p /2-pulse on the carrier splits the wavefunction into an equal
superposition of states |̄ l |0 l and | l |0l . (2) The displacement beams excite the
motion correlated with the | l component to a coherent state |a l . (3) A p -pulse on
the carrier swaps the internal states of the superposition. (4) The displacement
beams excite the motion correlated with the new | l component to a second
coherent state |a exp ( i u ) l . (5) A ® nal p /2-pulse on the carrier combines the two
coherent states (the evolving state of the system is summarized in ® gure 7). The
relative phases ( u and the phases of steps 1, 3, and 5) of the steps above are
determined by the phases of the RF di� erence frequencies of the Raman beams,
which are easily controlled by phase locking the RF sources.

The state created after step 4 is a superposition of two independent coherent
states, each correlated with an internal state of the ion (i.e. for u = p ) ,

|W l = ( |a l | l + | - a l |̄ l ) / Ï 2, (9)

In this state, the widely separated coherent states replace the classical notions of
`dead’ and `alive’ in SchroÈ dinger’s original thought experiment. We verify this
mesoscopic superposition by recombining the coherent wavepackets in the ® nal
step 5. This results in an interference of the two wavepackets as the relative phase
u of the displacement forces (steps 2 and 4) is varied. The nature of the
interference depends on the phases of steps (1), (3), and (5), and is set here to
cause destructive interference of the wavepackets in the |̄ l state. We directly
measure this interference by detecting the probability P ¯ ( u ) that the ion is in the
|̄ l internal state for a given value of u . the signal for particular choices of the
phases in 1, 3 and 5 is
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Figure 7. Evolution of the idealized position-space atomic wavepacket entangled with
the internal states | ¯ l and | l during the creation of a `SchroÈ dinger cat’ state with
a = 3 and u = p (displacement forces in opposite directions). The wavepackets are
snapshots in time, taken when the atom is at extrema of motion in the harmonic trap
(represented by the parabolas). The area of the wavepackets corresponds to the
probability of ® nding the atom in the given internal state. (a) The initial wavepacket
corresponds to the quantum ground state of motion following laser cooling. (b) The
wavepacket is split following a p

2-pulse on the carrier. (c) The |  l wavepacket is
excited to a coherent state by the force F1 of the displacement beams. Note the force
acts only on the |  l wavepacket, thereby entangling the internal and motional
systems. (d) The |  l and the |̄ l wavepackets are exchanged, following a p -pulse on
the carrier. (e) The |̄ l wavepacket is excited to a coherent state by the displacement
beam force F2, which in general has a di� erent phase with respect to the force in (c)
(F2 = - F1 in the ® gure). The state shown in (e) is analogous to a `SchroÈ dinger cat’
state. ( f ) The | l and the |̄ l wavepackets are ® nally combined following a p

2-pulse
on the carrier.



P̄ ( u ) = 1
2 [1 - C exp [- a 2(1 - cos u )]cos ( a 2 sin u )], (10)

where a is the magnitude of the coherent states and C = 1 is the expected visibility
of the fringes in the absence of decoherence. We continuously repeat the experi-
mentÐ cooling, state preparation, detectionÐ while slowly sweeping the relative
coherent state motional phase u .

In ® gure 8, we display the measured P̄ ( u ) for a few di� erent values of the
coherent state amplitude a , which is set by changing the duration of application of
the displacement beams (steps 2 and 4 from above). The unit visibility of the
interference feature near u = 0 veri® es that we are producing superposition states
instead of statistical mixtures, and the feature clearly narrows as a is increased. We
extract the amplitude of the SchroÈ dinger cat state by ® tting the interference data to
the expected form of the interference fringe. The extracted values of a agree with
an independent calibration of the displacement forces. We measure coherent state
amplitudes as high as a . 2.97(6) , corresponding to an average of n . 9 vibrational
quanta in the state of motion. This indicates a maximum spatial separation of
4 a x0 = 83(3) nm, which is signi ® cantly larger than the single wavepacket width
characterized by x0 = 7.1(1) nm as well as a typical atomic dimension ( . 0.1nm) .
The individual wavepackets are thus clearly separated in phase space.

Of particular interest is the fact that as the separation of the cat state is made
larger, the decay from superposition to statistical mixture (decoherence) becomes
faster [29]. In the experiment, decoherence due to coupling to a thermal reservoir
is expected to result in a loss of visibility in the interference pattern of
C = exp (- a 2¸t) where ¸ is the coupling constant and t the coupling time. The
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Figure 8. P ¯ ( u ) interference signal with increasing values of |a |. The data are ® tted to
equation (10), yielding a = 0.84, 1.20, 1.92 and 2.97. The ® t in curve (d) includes a
term to account for the loss of contrast.



exponential reduction of coherence with the square of the separation ( a 2 term)
undelies the reason that bigger `cats’ decay faster. In ® gure 8 (d), the observed loss
of contrast at the largest observed separation may already indicate the onset of
decoherence. Decoherence due to radiative coupling has been observed in cavity
QED [29]. The precise control of quantum wavepackets in this version of
`SchroÈ dinger’s cat’ provides a very sensitive indicator of quantum decoherence,
whose characterization is of great interest to quantum measurement theory and
applications such as quantum computing [30] and quantum cryptography [31].

5. Com ple te quan tu m state m e asu re m e n t

The controlled interaction of light and RF electromagnetic ® elds with the
trapped atom allows us not only to prepare very general states of motion, but also
to determine these quantum mechanical states using novel techniques. Few
experiments have succeeded in determining the density matrices or Wigner
functions of quantum systems. The angular momentum density matrices of the
substate in principal quantum number n = 3 were measured in collisionally
produced atomic hydrogen [32]; the Wigner function and density matrix of a
mode of light were experimentally mapped by optical homodyne tomography [33,
34]; the Wigner function of the vibrational degree of freedom of a diatomic
molecule was reconstructed with a related technique [35]; and, more recently
the Wigner function of an atomic beam passing through a double slit was
reconstructed [36]. Here we present the theory and experimental demonstration
of two distinct schemes that allow us to reconstruct both the density matrix in the
number state basis and the Wigner function of the motional state of a single
trapped atom [37]. For other proposals to measure the motional state of a trapped
atom, see this issue and [38, 39]. As described above, we are able to prepare a
variety of non-classical input states [14] which can, for example, exhibit negative
values of the Wigner function. Also, comparing the results of the state determina-
tion with the state we intended to produce can give an idea of the accuracy of the
preparation.

Both of our measurement techniques rely on our ability to displace the input
state to several di� erent locations in phase space. Speci® cally, a coherent displace-
ment [14, 18] U(- a ) = U ² ( a ) = exp ( a *a - a a ² ) (- a is used for convenience
below) controlled in phase and amplitude is used in our schemes. We then apply
radiation on the blue sideband to the atom for a time t, which induces a resonant
exchange between the motional and internal degrees of freedom (see section 2). For
each a and time t, the population P ¯ ( t, a ) of the |̄ l level is then measured by
monitoring the ¯ uorescence produced in driving the resonant dipole cycling
transition (see section 2). For these experiments the internal state at t = 0 is
always prepared to be |̄ l for the various input states, so the signal averaged over
many measurements is

P ¯ ( t, a ) = 1
2 1 + å

¥

k= 0
Qk( a ) cos (2 X k,k+ 1t) exp (- g kt){ } . (11)

Without the coherent displacement we would just recover the previously discussed
P ¯ ( t) signal (equation (7)) and would ® nd the populations of the motional
eigenstates only. But since we repeat these measurements for several magnitudes
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and phases of the coherent displacement, we are able to extract information about
the o� -diagonal elements of the density matrix and can also reconstruct the
Wigner function from the measured displaced populations Qk( a ) .

5.1. Reconstruction of the number state density matrix
To reconstruct the density marix q in the number state basis, we use the

relation

Qk( a ) = k k|U ² ( a ) q U( a ) |k l = k a , k|q |a , k l , (12)

where |a , k l is a coherently displaced number state [40]. Hence every Qk ( a ) is the
population of the displaced number state |a , k l for an ensemble characterized by
the input density matrix q . Rewriting (12) we get

Qk( a ) =
1
k! k 0|a

kU ² ( a ) q U( a ) (a² ) k|0l

=
1
k! k a |(a - a ) k

q (a² - a *) k|a l

=
exp (- |a |2 ) |a |2k

k! å
¥

n,m= 0 å
k

j, j Â = 0

( a *) n- j a m- j Â

n!m!

´ (- 1) - j- j Â
k
j[ ] k

jÂ[ ][(m + j) !(n + jÂ ) !]
1
2 q n+ j Â ,m+ j . (13)

To separate the contributions of di� erent matrix-elements q n,m, we may displace
the state along a circle,

a p = |a | exp [i( p /N)p], (14)

where p Î {- N, . . . , N - 1}. The number of angles 2N on that circle determines
the maximum number of states nmax = N - 1 that can be included in the recon-
struction. With a full set of populations of the state displaced along 2N points on a
circle we can perform a discrete Fournier transform of equation (14) evaluated at
the values a p , and we obtain the matrix equations

Q
( l)
k º

1
2N å

N- 1

p= - N
Qk( a p) exp[- il( p /N)p]

= å
¥

n= max(0,- l)
g

( l)
kn q n,n+ l, (15)

with matrix elements

g
( l)
kn =

exp (- |a |2) |a |2k

k! å
min(k,n)

j Â = 0 å
min(k,l+ n)

j= 0
|a |2(n- j- j Â ) + l

´ (- 1) - j- jÂ
k
j[ ] k

jÂ[ ] [( l + n) !n!]
1
2

( l + n - j) !(n - j Â ) !
(16)

for every diagonal q n,n+ l of the density matrix. To keep the matrix dimension ® nite,
a cuto� for the maximum n in (15) is introduced, based on the magnitude of the
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input state. For an unknown input state an upper bound on n may be extracted
from the populations Qk ( a ) . If these are negligible for k higher than a certain kmax

and all displacements a , they are negligible in the input state as well, and it is
convenient to truncate equation (15) at nmax = kmax . The resulting matrix equation
is overcomplete for some l, but the diagonals q n,n+ l can still be reconstructed by a
general linear least squares method [16].

5.2. Reconstruction of s-parameterized quasiprobability distributions
As pointed out by several authors, s-parametrized quasiprobability distribu-

tions F( a , s) have a particularly simple representation when expressed in popula-
tions of displaced number states Qk( a ) [40, 41, 42, 43].

F( a , s) =
1
p å

¥

n= 0
[(s + 1) /2]n å

n

k= 0

(- 1) k n
k[ ]Qk( a ) . (17)

For s = - 1 the sum breaks down to one term and F( a , - 1) = Q0( a ) / p gives the
value of the Q quasi-probability distribution at the complex coordinate a [44].
Also, for s = 0, the Wigner function F( a , 0) = W ( a ) for every point a in the
complex plane can be determined by the single sum

W ( a ) =
2
p å

¥

n= 0

(- 1) nQn( a ) . (18)

In our reconstruction, the sum is carried out only to a ® nite nmax , as described
above. Since truncation of the sum leads to artifacts in the quasi-probability
distributions [45], we have averaged our experimental data over di� erent nmax .
This smoothes out the artifacts to a high degree.

In contrast to the density matrix method described in section 5.1, summing the
displaced probabilities with their weight factors provides a direct method to obtain
the quasi-probability distribution at the point a in phase space, without the need
to measure at other values of a . This also distinguishes the method from preceding
experiments that determined the Wigner function by inversion of integral equa-
tions (tomography) [33, 35].

5.3. Experimental results
The coherent displacement needed for the reconstruction mapping is provided

by a spatially uniform classical driving ® eld at the trap oscillation frequency. This
® eld is applied on one of the trap compensation electrodes [9] for a time of about
10 m s. The RF oscillators that create and displace the state are phase locked to
control their relative phase. Di� erent displacements are realized by varying the
amplitude and the phase of the displacement oscillator. For every displacement a ,
we record P ¯ (t, a ) . Qn ( a ) can be found from the measured traces with a singular
value decomposition (see section 4.2). To determine the amplitude |a | of each
displacement, the same driving ® eld is applied to the |n = 0l ground state and the
resulting collapse and revival trace is ® tted to that of a coherent state (see section
4.3).

The accuracy of the reconstruction is limited by the uncertainty in the applied
displacements, the errors in the determination of the displaced populations, and
decoherence during the measurement. The value of the Wigner function is found
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by a sum with simple error propagation rules. The density matrix is reconstructed
by a linear least-squares method) and it is straightforward to calculate a covariance
matrix [16]. As the size of the input state increases, decoherence and the relative
accuracy of the displacements become more critical, thereby increasing their
uncertainties.

In ® gure 9, we show the reconstruction of both the number state density matrix
(a) and surface and contour plots of the Wigner function (b) of an approximate
|n = 1l number state. The plotted surface is the result of ® tting a linear interpola-
tion between the actual data points to a 0.1 grid. The octagonal shape is an artifact
of the eight measured phases per radius. The white contour represents W ( a ) = 0.
The negative values around the origin highlight the non-classical character of this
state. The Wigner function W ( a ) is rotationally symmetric within the experi-
mental errors as con® rmed by our measured values. Therefore we averaged sets of
data with the same value of |a |. The averaged points are displayed in ® gure 9 (c),
together with a radial slice through the theoretical Wigner function for a pure
number state (dashed line) and a thermally contaminated state (solid line) assum-
ing the ion is prepared in a thermal distribution with a probability of ® nding it in
ground state of only < 90%after cooling and prior to the preparation of the |n = 1 l
number state. This was independently veri® ed to be the case in our experiment by
comparing the magnitude of red and blue sidebands after Raman-sideband cooling
to the ground state [10]. Again the large negative part of the Wigner function
around the origin highlights the fact that the prepared state is non-classical.

In contrast to the number state, the state closest to a classical state of motion in
a harmonic oscillator is a coherent state. As one example, we have excited and
reconstructed a small coherent state with amplitude |b | < 0.67. The experimental
amplitude and phase of the number state density matrix are depicted in ® gure 10.
The o� -diagonal elements are generally slightly smaller for the experiment than
we would expect from the theory of a pure coherent state. In part this is due to
decoherence during the measurement, so the reconstruction shows a mixed state
character rather than a pure coherent state signature. This view is further
supported by the fact that farther o� -diagonal elements seem to decrease faster
than direct neighbours of the diagonal.

The reconstructed Wigner function of a second coherent state with amplitude
|b | < 1.5 is shown in ® gure 11. The plotted surface is the result of ® tting a linear
interpolation between the actual data points to a 0.13 by 0.13 grid. The approxi-
mately Gaussian minimum uncertainty wavepacket is centred around a coherent
amplitude of about 1.5 from the origin. The half-width at half maximum is about
0.6, in accordance with the minimum uncertainty half-width of [ln(2) /2]12 < 0.59.
To suppress truncation artifacts in the Wigner function summation (18) [45], we
have averaged over nmax = 5 and nmax = 6.

We have also created a coherent superposition of |n = 0 l and |n = 2l number
states. This state is ideally suited to demonstrate the sensitivity of the reconstruc-
tion to coherences. the only non-zero o� -diagonal elements should be q 02 and q 20 ,
with a magnitude of |q 02| = |q 20 | = [q 00 q 22]

1
2 < 0.5 for a superposition with about

equal probability of being measured in the |n = 0 l or |n = 2 l state. In the
reconstruction shown in ® gure 12 the populations q 00 and q 22 are somewhat
smaller, due to imperfections in the preparation, but the coherence has the
expected value of |q 20 = |q 02| < [q 00 q 22]12.

For a known density matrix one can also ® nd the Wigner function by
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Figure 9. (a) reconstructed number state density matrix amplitudes q nm for an
approximate |n = 1 l number state. The coherent reconstruction displacement
amplitude was |a | = 1.15(3) . The number of relative phases N = 4 in equation (14),
so nmax = 3. (b) Surface and contour plots of the Wigner function W ( a ) of the
|n = 1 l number state. The white contour represents W ( a ) = 0. The negative values
around the origin highlight the non-classical character of this state. (c) The Wigner
function of the |n = 1 l number state is rotationally symmetric: W ( a ) = W ( |a |) . In
this ® gure we show a radial slice through this function for a pure number state
(dashed line) and a thermally contaminated state (solid line) which assumes the ion
is in the ground state only < 90%of the time after cooling. This was independently
veri® ed after sideband cooling [10]. The dots are experimentally determined values
of the Wigner function, averaged for equal |a |.
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Figure 10. Experimental amplitudes q nm and phases H ( q nm ) of the number state density
matrix elements of a | b | < 0.67 coherent state. The state was displaced by |a | < 0.92,
for N = 4 in equation (14).

Figure 11. Surface and contour plots of the reconstructed Wigner function of a
coherent state. The approximately Gaussian minimum uncertainty wavepacket is
centred around a coherent amplitude of about 1.5 from the origin. The half-width at
half maximum is about 0.6, in accordance with the minimum uncertainty half-width
of [ln(2) /2]

1
2 < 0.59.

Figure 12. Reconstructed density matrix amplitudes of an approximate
1 / Ï 2( |n = 0 l - i|n = 2l ) state. The state was displaced by |a | = 0.79 for N = 4 in
equation (14). The amplitudes of the coherences indicate that the reconstructed
density matrix is close to that of a pure state.



expanding equation (18) in the number state basis,

W ( a ) =
2
p å

¥

n= 0

(- 1) n å
¥

k,l= 0
k a , n|k l q kl k l|a , n l , (19)

with the matrix elements given by ( l > n) [46]

k l|a , nl = [n! /l!]12 a l- n exp (- 1 /2|a |2)L ( l- n)
n ( |a |2) , (20)

where L ( l- n)
n is a generalized Laguerre polynomial. Using this approach we have

generated a plot of the Wigner function using our density matrix data. The result
is shown in ® gure 13 together with the theoretical Wigner function for a
1 / Ï 2( |n = 0 l - i|n = 2 l ) state. The di� erences can be traced to the imperfections
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Figure 13. Comparison of the Wigner function of an approximate 1 / Ï 2( |n = 0 l -
i|n = 2l ) state transformed from our experimental density matrix data (a) with its
theoretical counterpart (b).



in the preparation also visible in ® gure 12; the small but non-zero values of |q 11|
and |q 33 | and the respective coherences lead to the di� erences in the central feature
of the Wigner function.

Finally, we have generated a thermal state by only Doppler-cooling the ion.
The reconstruction of the resulting state is depicted in ® gure 14. As expected,
there are no coherences, and the diagonal, which gives the number state occupa-
tion, shows an exponential behaviour within the experimental errors, indicating a
mean occupation number n < 1.3.

6. Conc lu sion s

The interaction of a trapped atom with classical light ® elds can lead to
experimental situations that allow us to coherently prepare a multitude of quantum
states, both classical-like and non-classical in character. Since the interaction can
be tailored to resemble the Jaynes-Cummings model, the system is suited to
realizing many proposals originally introduced in the realm of quantum optics and
cavity quantum electrodynamics. One special application is the preparation of a
state where the internal degree of freedom is entangled with two coherent states,
with a separation in phase space much bigger than their spread. This state, bearing
many features of `SchroÈ dinger’s cat’ , is well suited for the study of decoherence
phenomena on the boundary of quantum and classical mechanics such as the
decoherence of mesoscopic objects. Such studies are especially interesting in our
system since we should be able to engineer di� erent couplings and reservoirs by an
appropriate choice of the interaction Hamiltonian [47].

Our level of control in the preparation of the states also allows us to prepare the
same state many times to a high accuracy. By extending our techniques to several
simultaneously trapped ions, we should be able to controllably prepare and
manipulate their combined state and thus implement simple quantum logic
gates [48, 49]. The techniques described here for characterizing the quantum
state of motion, combined with a Ramsey-type spectroscopy on the internal states,
seem to lead to a method for completely measuring the internal and motional states
of several simultaneously trapped ions (for an alternative method see [50]). Apart
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Figure 14. Reconstructed density matrix of an n < 1.3 thermal state. This state was
displaced by | a | = 0.78, for N = 4 equation (14). As one would expect for a thermal
state, no coherences are present within the experimental uncertainties and the
populations drop exponentially for higher n.



from detecting quantum correlations in these states, this might be a useful way to
fully characterize simple quantum logic gates [51].
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