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1. Abstract 

I discuss a novel technique for periodically extending 
by reflection an ordered series of phase-difference 

{xk.} to yield estimation of new 
frequency and time variances having improved long- 
term confidence and the same mean as the Allan 
variance. In addition, I describe a correction to a 
negative bias in the sample variance based on the actual 
number of observations in the measurements at long 
term. 

Keywords: two-sample frequency variance; time 
variance; Allan variance: TOTAL variance 

2. Background 

This paper assumes some familiarity with the Allan 
variance and five common noise models (white phase 
modulation, WHPM; flicker of phase modulation, 
mPM; white frequency modulation, WHFM; flicker 
of frequency modulation, FLFM; random walk of 
frequency modulation, RWFM) present in frequency 
standards, clocks, and synchronization systems [Refs. 
3,211. It is widely recognized that a trend (given by a 
slope in log coordinates) in the autocogelation function 
and hence its Fourier transform syaXfm has a 
correspondence to a trend (given by p )  in the two- 
sample frequency variance [Refs. 3,10,21]. This 
power-law correspondence between = and p means 
chat. in general, procedures for better estimation of the 
power-law type in the f-domain have a parallel in the t- 
domain [Ref. 21. For those in the business of operating 
cxt"nely precise clocks and oscillators, a principal 

is characterizing the frequency stability of the 
relative to other devices and for comparison 

with the device's own history. Thus pertinent 
hcter izat ions often refer to changes over relatively 
long segments of time. 

One of the " m e n d e d  ways to estimate the stability 
lUs been the two-sample frequency variance known as 
$ *'Ian variance and corresponding statistic given by 
( > denote infinite time average) 

consecutive phase differences {x,.}("primed" indexes 
means 5,-spacing); then {yk}, k = 1,2,3 ...., M are 
fractional frequency differences averaged over interval 
mro = 5. Hence 0; is implicitly dependent on 
dimensionless quantity m, a scale parameter which for 
efficiency can be limited to rational powers of 2, Le., 
2'=m, i=0,1,2,3 ,... ; (see for example, [Ref. 11). 

A record of residual fractional frequency fluctuations 
implies that we have administered some form of trend 
removal (detrending). The removal of a trend such as 
drift is done electronically (as a voltage steering 
correction in a clock or oscillator synchronizing servo, 
for example), computationally (as a regression to an 
internal estimate of a continuous polynomial), or even 
mechanically (as a thermally-compensated cavity, for 
example). The response of the two-sample Allan 
variance eq (1) at long term is highly variable with 
forms of detrending and exhibits a negative bias [Refs. 
4,8,13,17,23,24]. In cases where the last point is 
obviously false as judged by the rest of a,(r) plot, it is 
thrown out. Worse, however, if it seems plausible and 
is judged somehow as "okay," it is retained and can be 
used to conform to some expected or suitable long-term 
behavior. 

Realizing this, I introduce a new variance which has 
the same mean as the Allan variance eq (1) but re- 
expresses deviates in terms of an averaged combination 
of "in-phase'' and "phase-shifted" sampling functions 
[Ref. 111 The new variance takes the traditional Allan 
variance and its single 2 sample function and combines 
it with an orthogonal 3 sample function proportioned so 
that its averaging time T is taken out of the 25 
sampling-interval's middle (not just the first half and 
second half). The comparison is shown in fig. la and 
lb. This increases the effective number of independent 
observations from one to two in the sampling interval 
thus increasing the number of degrees of freedom 
which I' l l  discuss in a moment. Even more crucial 
however is that sensitivity to removing drift from a 
segment of data in process (detrending) is eliminated in 
this variance. The new variance is given by 

- 
where if {yk.). k' = 1.2.3 ,..., N-1 are fractional 
*mY differences averaged over to derived from N 
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where the average frequency is taken over 512 rather 
than t as in eq (1). All possible tho = m time shifts 
(1.e.. meaning deviates in the statistic are maximally 
overlapped) in addition to two shifts (separated by t / 2  



only as in eq (2)) result in smoothed estimates of the 
new variance at long term. The sampling functions are 
shown in fig. IC. The smoothed estimate to eq ( 2 ) ,  
called TOTALVAR, uses a novel data manipulation 
which simplifies the procedure and which maximally 
uses data at hand. 

To begin, an estimate to eq (2) has an equivalent 
description in signal processing as an "in-phase'' and 
"phase-quadrature'' discrete functional component 
separation. The variance component having the 3 
sample function is computed by shifting the process's 
observation window by r/2(=m/2), for the "phase- 
quadrature" variance and adding this to the Allan 
component or "in-phase" variance [Ref. 111. This 
yields a combination of sample statistics given by 

where, in terms of phase data {xk.} spaced by T, , 
hence the "primed-k" index (t is the running time in 
seconds) 

and 

x, ,  x2, ... x N  is wrapped such that x, = xFmndN for < < 1 
and < > N ,  i.e., xI=xN+,  which reindexes to xN It is 
important to point out that shifting the data and using 
a wrap (circularizing {x,.}) is equivalent to changing 
the sampling function and merely SimDlifies the form of 
the sample variance eq (3) corresponding to eq (2) 
[Ref. 61. There is no assumed extension of the 
original observed data; the wrap (or implied extension) 
is a computational procedure. 

The treatment of changes in systematics (Le., non- 
stationary second increments of { x,.}) has been 
addressed [Refs. 12,131. This has resulted in a wrap of 
series {xk.} which reflects about the last value of the 
series rather than simply wraps the data about an axis. 
This pictorially is shown in fig. 2 and is discussed in 4 
below. The final procedure is as follows with notation 
change xk. = x(k') to distinguish a different (extended) 
set {x(,}: 

For x(1) *..., x(N), remove a slope and constant 
(endmatching procedure) to produce x u ( l )  ,..., x,(N), 
where x0( l )  = x,(N) = 0. Adjoin x,(N+I)  ..... x,(2N-I),  
where x , (Ni j )  = -xU(Nj ) ,  j = l  lo N-1 .  For P m t , ,  
TOTALVAR (with square-root as TOTALDEV) is 
given by 

TOTAL FREOUENCY VARIANCE: 

" = I  

Notice that n+m stops just short of N; that avoids 
identically zero second difference. 

The evolution of a time error over T ( T ~ E  
VARIANCE) between clocks is defined as the 
frequency variance times (r2.constant) and is Calculated 
using the same procedure as eq (4) with a slight 
modification which distinguishes levels of phase 
coherence, namely WHPM and FLPM [Ref. 211. 
Determining phase coherence is important particularly 
in synchronous networks which need to characterize 
time coherence in the long term in addition to the more 
relaxed but less meaningful requirement of frequency 
coherence. Phase coherence, in a statistical sense, is 
inferred by the trend in the variability (convergence 
property) as a function of r-averaged phase. Thus we 
construct TOTAL-TVAR (with square-root as TOTAL- 
TDEV) as 

TOTAL TIME VARIANCE: 

(5 )  
N - m - l  

[ ~ ~ ( n )  - 2 ~ , ( n + m )  + ~ , ( n + 2 m ) l * .  
" = I  

A summary of methods of improved estimation applied 
to eqs (4) and ( 5 )  are presented next. 

3. Endpoint Matching 

Often we remove at least a regressed linear slope in an 
ordered set of time-difference measurements given by 
{xk.}. In practice this removes an overall frequency 
difference but instead of removing a regressed linear 
slope, there is a case for removing a linear slope 
designed to match the endpoints of time series {xk.}. 
This has other advantages in the context of the data 
extension procedure of eqs (4) and (5). 

A series {xk.) represents the finite observation of 
ordered random variables. All observations are made 
through an observation window function which (unless 
otherwise noted) is rectangular in shape. Treating the 
series as a function over a finite interval, one 
commonly determines rate and drift using regression 
analysis of x(t) or its derivative y(t). Subsequent 
removal of a chosen model of trends can significantly 
alter an essential characteristic of the original series of 
measurements particularly at long-term for non-white 
noise types [Refs. 4.51. By using a circular 
representation of a finite time series, one can 
arbitrarily time shift any chosen observation window or 
sampling function such as shown in fig.1 [Refs. 
6,11,141. In the moved-window case, the beginning 



of the series {xt'} are somewhat matched 
given by the trend removal, correlation. finite physical 
boundaries, and measurement-system bandwidth of the 
measured series. However, the turn-on/turn-off 

of the window, becomes an artifact which is 
not ,,presentative of the functional "roughness" or 
.smoothness" of the series and as such should be 
eliminated by a removal of linear slope which matches 
the endpoints prior to CalCUk3ting a measure of such 
quantities as variance. If the incremental differences 

this methodology does not change the 
linear combinations of incremental differences 
@nmined in eqs (4) and (5 ) .  

4. Reflected Time Series 

wrap procedure implies an extension of the data by 
be original series which of course has identically 
diibuted statistics, that is, the circularized series has 
be  =me variance as the original series. To reduce 
&point turn-off transients, a source of what is called 
in Sigd processing "leakage" [Refs. 15,181, we apply 
a endpoint match. We also desire smooth derivatives 
in h e  extension to properly estimate low-frequency 
mise components in whatever statistic we choose. 
This is particularly important in handling RWFM and 
drift. Frequency variances are not affected by reversing 
the direction of the series of measurements. Therefore, 
reflecting and wrapping the time series about the first 
and last points (both made to equal 0 as shown in 3 
above) implies that we have made the most prudent 
assumptions and practical extensions of the time series 
in order to reduce transients, and hence reduce leakage. 
Figure 3 which shows series {xk.} reflected about the 
hst point, represents simulated RWPM (or equivalently 
WHFM). We construct a new sequence of numbers 
which reflect about the last point (zero) however again 
I clarify that this construction is not a real extension; it 
is a mnvefience in calculating a maximally-overlapped 
atimate of the new 3-sample~-sample variance 
suggested here. 

5. Nomahation of Sample Variance and Effective 
of Reedom (edf) 

IllustratiOq: We start with the sample mean of a 
Of discrete variables indexed by k' as given by 

M ' = ' Xk/, k'=1,2,3 ,... M. 
k'.,  

The mathematical form of the standard sample variance 
Ofthe mean looks very much like the sample mean, an 

but in fact it is not an average, i.e., a sum of 
mbers divided by the total number of numbers as in 

The sample variance is sometimes described as 
a sum of deviates divided by (or "scaled" by) the 
med number of degrees of freedom, often believed 
lo be M. the total number of deviates. But the 

deviates are always some "difference" 
quantity derived from the grand mean of the set of 
Tadom variables (recall the basic measure is 
v h " )  and there can never be any more than M-1 

d'*erences that are "independent observations" (M-1 

degrees of freedom). Calculating the variance implies 
that M (the number of samples) is at least two. 
Random variables may be differenced relative to a non- 
zero mean (or an assumed or actual zero mean), 
relative to a starting, ending, preceding, or following 
random variable, or for that matter any quantity 
derived from the set of M variables. Starting with 
independent random variables, any variance which 
properly preserves independence should have a scaling 
or normalization factor given by M-1. Division by 
this scaling factor yields a sample variance often called 
an "unbiased estimate," and the scaling factor is the 
number of indeoendent observations. 

Therefore, if X = 0, the normalized variance (or 
variation) about a zero mean is given by the mean- 
square deviates as: 

(7) 

Recall that the actual number of observations is M in 
our quest to find some "true" mean which we don't 
know but which the finite grand or sample mean 
estimates. Therefore we can assume M independent 
observations (M degrees of freedom) to the extent that 
the sample mean estimates the true mean. For a white 
(WH) process, the sample mean whose variability 
decreases as M is the optimum estimate of the true 
mean, thus M degrees of freedom yields an unbiased 
estimate of its variance. For a random walk (RW) 
process, there is no true mean, nevertheless there is a 
sample (moving) mean, the bias on its variance is 
readily calculable and tum out to be small (an error by 
a worst case factor of 1.5 at r=T/2 for the two-sample 
frequency variance). If we can judge the noise type, 
hence correct for bias at long term, then we have 
essentially M degrees of freedom. Noise type can be 
determined from empirical data by its normalized 
autocorrelation function discussed next. 

5.2 Effective Number of Indeoendent Observations 
(&Q: Barnes [Refs. 3,10,21 J did extensive work on 
estimation of the two-sample frequency variance, and 
introduced bias functions and fractional degrees of 
freedom. Small-sample statistics in which t-T/2 was 
not treated as a special case is the main subject at hand. 
In order to treat this case, I very briefly introduce 
concepts of self-similarity, or the autocorrelation 
function. Wherey, are frequency deviations averaged 
over T, we can relate an autocorrelation to the two 
sample variance [Ref. 251. We have in simplified form 

%,V, + I 

w:, wherer ,  = - 



The coefficient rr is a good approximation to the 
normalized sample autocovariance (autocorrelation) 
given by 

where the x, are deviations from the mean of the series 
considered, and L denotes the lag between the values of 
the product. It has often been found adequate to 
assume that the correlation between more distant values 
arises solely from that between the directly neighboring 
values; if that correlation is R, the correlation 
coefficient rL of values L time units apart becomes 
equal to RL [Ref. 161. 

The assumption for WHFM is that the normalized 
autocorrelation of average frequency deviations yields 
r,=O everywhere except at K=O where To= 1. A non- 
zero autocorrelation in a series “reddens” its spectrum 
of deviations S,#)=C hJ“ , giving a greater share of 
the total variability to longer periods and a smaller 
share to shorter ones [Ref. 71. Processes where < O  
contain memory in the sense that correlation between 
long time intervals arises from values at the shortest 
interval denoted as t, [Ref. 51. As a consequence, the 
variability of sample averages of frequency deviations 
with memory (approaching RWFM) decreases more 
slowly with increasing sample size than does that of 
averages from a white series without memory wef.221. 
Thus the number of independent observations is 
expressed as an effective number of degrees of freedom 
led’ smaller than the actual number used in the 
summand of the sample variance [Ref. 201. This 
effective number of independent observations (edfi is 
essentially the number of equivalent degrees of freedom 
based on the autocorrelation function in the samples 
themselves. We have 

(e&l = (M-€,(M)) (10) 

where E depends on M and autocorrelation properties, 
subscript y designates the type of sample frequency 
variance, and (edfl can be fractional, i.e., non-integer. 
To be concise, I limit the discussion to M = 2  which 
turns out to be the most interesting case (longest term) 
representing t=T12. 

Properties of the distribution of the usual Allan- 
deviation estimate have been studied using fractional 
degrees of freedom on the confidence interval [Refs. 
9,101. Similar studies can also be applied to the actual 
time series, since there is a correspondence between 
these distribution properties and the underlying noise 
process of the data. Keep in mind that the two-sample 
frequency variance is a time-averaged, standard-sample 
variance against a previously measured mean. Its 
square root defines a relative uncertainty on this t- 
averaged mean. Thus the sample Allan deviation is an 
uncertainty of a sample mean frequency decomposed by 
t averaging times. The underlying noise type defines 
the trend in this uncertainty. Moreover the number of 
degrees of freedom in the underlying noise type has a 
correspondence to the degrees of freedom in the 
uncertainty. In this form for the Allan variance, 
eAvAR(2) can only range from 1 to 1.5 corresponding to 

WHFM to RWFM respectively since R W m  as an 
integral of WHFM. This is because the means of 
segments of data will converge to the grand mean only 
half as fast for RWFM VS. WHFM. 

5.3 Actual Number of Observations (u: The sample 
Allan variance is useful as a power-law (Octave-band) 
spectral estimator but is time-shift (phase) sensitive and 
depends on where we start the calculation with respect 
to data in process. For large data sets and small scale 
values of m, the odd and even values of index k 
overlap and average together in eq (1) for a fairly 
accurate estimation of a broadband spectral distribution 
of variance of first differences of average frequency. 
The division by 2(M-1) which corresponds to 2m-m-1) 
in eqs (4) and ( 5 )  is arguably due to overlapping two 
sets of deviates and has constant “2“ only for WHPM, 
FLPM, and WHFM but ought to approach M-1 (or N- 
m-1) for an accurate estimate in the statistic as mr, + 

T/2, since the first and last deviates do not overlap. 
However, at the largest scale, the estimate is negatively 
biased for non-WHFM (i.e., FLFM and RWFhQ 
because there is only 1 (not 2) “two-sample” sample. 
This reason causes an estimation error at long term in 
virtually all cases in which the noise is no longer 
WHFM but is FLFM or RWFM even though the 
estimation is supposedly unbiased even at these large t 
values (or equivalently large values of m). 

For the statistic TOTALVAR given in eq (4), there is 
considerable overlap in the summation. It is widely 
known that this effectively smooths the estimate [Refs. 
10-121. But the number h of actual observations (hence 
the scaling factor) has not changed and remains a 
straightforward calculation giving 

N-1 
m 

N-1 
nt 

[2(l0g2(--)) - 11 

(b2-) 

(11) h =  ( N - m  -1). 

We find in simulation studies that eq (1 1) should be 
applied for RWFM, and not at all for WHFM [Refs. 
12,191. This suggests that the division by 2(M-1) 
ought to approach M-1 because of the effects of 
correlation and not necessarily because of a connection 
with the actual number of observations as discussed 
above. Nevertheless, if h is the actual number of 
observations, note that for large M values, (edn 1 h, 
but that for small M, (ed’ becomes increasingly 
sensitive to the value of E .  A table of values of M, 
and corresponding eAVAR for various noise types IS 

planned for future work. For the purpose here, we 
find that in the presence of RWFM, substituting 2(N- 
m-1) in eqs (4) and (5) by h in eq (1 1) above removes 
a negative bias in estimates of sample frequency 
variance at long averaging times. 

6 .  Conclusion 

I have introduced new statistics of frequency and time 
variances which yield improved estimation of both 
frequency stability and noise type, particularly at long 
averaging times. An initial procedure involves 
regressing to global basis functions such as orthogonal 
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-?ials. This procedure of detrending assumes 
res,dua[s are white phase noise. Unfortunately 

cbe variations usually exhibit systematic effects 
w n c y  

ventually change and are interpreted as arising 
lbrl e from a divergent noise type hence non-stationary 
@,,le frequency variance. Hence in the case of the 
(wo-sample Allan Variance the effective number of 
Mrvatiom (equivalent degrees of freedom) is slightly 

by factor E which ranges from 1 in the 
pnsence of WHFM to 1.5 for RWFM for the largest 
f.vaiue at T12. 
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