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Corrections to the Breit-Fbbi formula for the ground state of 133Cs are calculated. For a recently 
proposed high-magnetic-field frequency standard, the corrections amount to a few parts in 10l2. 

De Marchi has proposed a cesium atomic-beam frequency standard based on the (MF = 
-1, AM, = 0) transition, at the  magnetic field ( B  x 82 mT) where the  derivative of the 
frequency with respect t o  B is zero; and has carried out  preliminary experiments? In order 
for this t o  be a primary frequency standard,  i t  is necessary t o  relate the measured frequency 
t o  tha t  of the  zero-field transition frequency YO, which defines the SI unit of time. The  Breit- 
Rabi formula predicts the frequency t o  be d m v o  = 8900727438.257 Hz! For higher 
accuracy, additional terms must be taken into account. 

Three corrections to  the Breit-Rabi formula have been measured for the  ground-state 
hyperfine structure of rubidium by Larson and coworkers?" These are the dipole dia- 
magnetic shift, the  quadrupole diamagnetic shift, and the  hyperfine-assisted Zeeman shift. 
These terms have not yet been measured for cesium. 

The  dipole diamagnetic shift results from a cross term between the  contact hyperfine 
interaction and the atomic diamagnetic interaction in second-order perturbation theory. 
This leads t o  a shift, proportional to  B 2 ,  in the dipole hyperfine constant A. I evaluated 
the  perturbation sum over states, including the continuum, by solving an inhomogeneous 
differential equation for the perturbed wavefunction. I used an empirical potential for the 
valence electron derived by Klapisch! The result is SA/A = 5.46 x 10-l' B 2 ,  where B is 
expressed in teslas. This leads to  an increase in the (MF = -1) field-independent transition 
frequency of 33 mHz. Previous calculations have been reported by Bende? and by Ray et 
a18 In order t o  check the method, I used Klapisch's potential to  calculate SA/A for rubidium. 
The  result is 10% below the experimental value. I estimate an accuracy of around 20% for 
the present calculation in cesium. 

The  quadrupole diamagnetic shift results from a cross term between the nuclear quadru- 
pole hyperfine interaction and the electronic diamagnetic interaction in second-order per- 
turbation theory. The interaction is diagonal in MI and MJ.  The perturbation sum over 
states is the same one tha t  appears in the calculation of the quadrupole shielding factor 
roo! Using the value y,(Cs+) = -86.88 I obtain the result 

( M I ,  MJIHQDIMI, M J )  = -4.6 x 10- 5 B 2 [3M? - I ( I  + 111 
I(2I - 1) 

The result is in hertz if B is expressed in teslas. A similar calculation for rubidium yields a 
coefficient in good agreement with experiment! For cesium, the estimate of the  coefficient 
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for the  shift is probably accurate within around 30%. However, for the special case of the 
(MF = -1) field-independent transition, the shift vanishes. The  two states involved in the 
transition are (I - l / 2 ,  -1/2) f I - 3/2,1/2))/&, in the / M I ,  M J )  basis, where + refers t o  
the  higher-energy s ta te  and - to the lower-energy state. Hence, the states are shifted by 
the  same amount,  since they have the same Mpcontent.  

The  hyperfine-assisted Zeeman shift was explained by Fortson as a third-order pertur- 
bation, in which the contact hyperfine interaction acts twice and the electronic Zeeman 
interaction acts once." Fortson gave diagonal matrix elements in the / M I ,  M J )  basis. For 
the (MF = -1) field-independent transition, it is necessary to  extend Fortson's calcula- 
tion t o  include off-diagonal matrix elements. In the I ( IJ)F,  M F )  basis, the nonzero matrix 
elements for 133Cs are 

Fortson used quantum-defect theory to  make a semi-empirical estimate for ,B in rubidium; 
it agreed with experiment within 10%. The  same method, applied to  cesium, yields ,L? = 88 
mHz/T. For the (MF = -1) field-independent transition, the shift at B = 82 m T  is 
- 2 f i p B  = -56 mHz. This estimate of the shift is probably accurate within around 30%. 

in the total  frequency, which is the projected 
accuracy of the high-field frequency standard: the larger shifts must be known within less 
than 1%. This could possibly be done by ab initio calculations or by experiments carried 
out at much higher magnetic field, similar t o  those of Larson and coworkers in rubidium. 

To achieve a theoretical error of 
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