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Abstract

This paper reports the development of a program
to derive a first order correction to initial
estimates of local coordinates and local clock
bias from GPS time using a single channel GPS
receiver of the C/A code. The program measures
sequentially the local minus GPS time via four
different satellites based on an initial esti
mate of local coordinates. Then using these
measurements along with known locations of the
satellites the first order corrections to the X,
Y, and Z coordinates and the local time bias
from GPS time are obtained. With reasonable
geometry the first order correction is theoreti-
cally good to one meter if the initial estimate
of coordinates is within 3 km of the correct
values. Over a very short 15 m baseline we found
a 2.7 m differential position location error.
Over a long baseline using a poor geometric
satellite configuration the differential navi-
gation solution was apparently within 20 m of the
true values. Absolute position location rela-
tive to a first order survey point was off by
only 7.2 m, and this without including iono-
spheric corrections to transmission delays to
the satellites. -

Program

The purpose of this program is to provide
coordinates as support for GPS common view time
transfer. Thus, differential position location,
f.e., relative positioning, is more important
than absolute position location. Local coordi-
nates should be known to 3 km and we want to
solve accurate to 5 m. So, in our solution we do
only a single first order correction. We do not
iterate. In solving for position we solve for
both spatial coordinates and time bias. Thus,
the navigation program can itself be used for
time transfer.

The program uses measurements, via four
different satellites, of the local clock bias
from the GPS time scale to derive a first order
correction to local coordinates and mean clock
bias. Measurements are made sequentially on the
four satellites. These four values are used to
_solve to first order for the user's space-time
position as discussed in the appendix. The
first order correction itself is accurate to 1m
if the initial estimate is within 3 km.

After the first solution for position
tocation, local minus GPS measurements can still
be continued. After each measurement another
first order correction is applied to the same
initial position estimate using the four most
recent time bias measurements. This can be
continued as Tong as the four satellites are up.

These are not entirely independent in that each
measurement is used in four solutions.

Results

The most important vesults are in terms of
the accuracy for differential navigation. The
navigation program was run during different
periods for two different antenna locations of
15.8m apart. Each soiution was run using the
same satellite during about the same geometric
configurations each night. The GDOP for this
data was never more than 3.0. The data using
the first antenna location is from 6 separate
days in a 16 day period. For the second loca-
tion we have data from 10 separate days in a 30
day period. The overall RMS of the data for the
first location is 3.5 m. For the second location
the overall RMS of the data is 6.3 m. The dis-
tance between the two locations from the naviga-
tion solution is 18.5 m. This differs from the
measured distance of 15.8 mby 2.7 m.

Differential navigation was done on a
lTonger baseline of the order of 1500 km, from NBS
in Boulder, Colorado to a tracking station of
JPL at Goldstone, California. It was not possi-
ble to do simultaneous navigation at the distant
locations using four satellites in a good geome-
tric configuration. Also we did not have a
consistent coordinate system to compare against
at both locations. In terms of absolute posi-
tion location the values found were poor; a
result of GDOPs from 10 to over 100. The peak
to peak variation in Jocation values vary over
200 m. But the RMS of the differential values
was only 22.66 m. The results were checked by
viewing local clock minus GPS time measurements
of both locations for a variety of satellite
elevations and azimuths to see if the measured
clock bias, based on™ the position given by
differential navigation, depended on satellite
position. This analysis verified that the dif-
ferential solution was accurate to about 20 m.
The figure shows graphs of the last three digits
of the X, Y, and Z coordinate values versus
solution number for the Boulder and Goldstone
receivers from 18 solutions performed simultan-
eously at the two locations over a 36 minute
period. The variation in height of the graphs
with solution number shows the effect of a poor
GDOP. Thus the actual values given for the
coordinates from the navigation solutions are
poor. The correlation between the values given
for Boulder and Goldstone for the X, Y, and Z
coordinates suggests the accuracy of the differ-
ential navigation between the two position
solutions, whose RMS was 22.66 m.
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Figure:

The last three digits of
coordinate values from
consecutive navigation
solutions done simulta-
neously at Boulder,
Colorado and Goldstone,
california. Absolute
position location varies
greatly, due to poor sat-
ellite geometry, but diff-
erential positioning is
more highly correlated.




The accuracy of the navigation solution for
absolute position location is hard to determine
so far since we have used no corrections for the
jonosphere yet. These will be included in the
next version to appear about January 1983. For
now we can say that the coordinates from the
first order survey for Boulder differ from the
mean of the 10 solutions by:

Survey-Solution RMS for solutions

X +.4m 2.2 m
Y +6.6m 4.2 m
z -2.4m 4.1m

These results indicate that the error is largely
down from the zenith, as we would expect due to
jonospheric effects. In any case, the solution
is within 10 m of the first order survey point.

Appendix: The Accuracy of the First Order Cor-
rection

The navigation solution itself has also been

derived elsewhere. (1) The basic equation is the

simple relatjon that ift is user's position

vector, and L is the i= sstel]ite's position
i

vector then thé range vector satisfies

1 R=3-%
We assume $. is correct and known, and_ try to
find giveﬁ an initial estimate L I SN §

Using this we estimate the range vector:
Bo=t - =% -1-a

If we write R', = R, + Aﬁi, S0 Aﬁi is the range
error vector then

If we subtract equation (1) from this we have
Ry =-a% .

So Aﬁi is independent of i and we may omit the
index. We therefore have

(2) ARk=-a% .

We assume the satellite clock correction is
exact. So, when we measure the time interval
from the local clock 1 pps to the received 1 pps
we measure exactly the transmission time of the
signal plus the local clock bias. With our
third and final assumption that the propagation
velocity of the signal is known, we have that
our measurement is exactly the range scalar to
the satellite, Py plus the local clock bias b.
Thus we measure:

B, =p;t b.

In the solution, we correct our measurement by
computing the slant range based on our estimated
coordinates, and estimating our clock bias. We
have estimates:

(] -
P § =Pyt opy
b'=b+ab.

Then the number we actually use in the naviga-
tion solution is

(3) m'i = mi-p'i‘b‘ = - Api-Ab

e solve for AX and Ab by solving for
AR=-AX to first order. We do this as follows.
Define the two unit vectors in the directions of
the true and estimated range vectors:

1

| - 1
e, = [ i/p i
LI =

So e . R" p‘i

and (1) e'y - (Ki +AR) = Py * 4oy -

Now e'. - R. equals the magnitude of s.
time% the codine &f the angle, ei, between 'i
and i

e'i . ﬁi = p4 cos(ei).
Substituting in (4) we find

ey - R = p,(1-cos(6;)) + Ap;.

With (2)

", = - - -

e'y - (&%) = -ap; - py(1-cos(8;))
Our approximation is

-1.9 2
cos(ei) =1 3 *+...= 1.

We use
' . = -
e, ax Api'

Since our corrected measurement is of the form
3) m'i = -bp; - aAb

we use

(5) e'y - BX - ab=m',
Equation (5) consists of the corrected measure-
nint, m'., on the right hand side, the unknowns,
AX and on the left hand side and the unit
vector e'. on the left hang side based on the
known satdilite position, 5., and the estimated
user position, X'. We have one such equation
for each of four different satellites. We may
write these four in matrix form

A XX =n'

e Sy S I}
1

€ax © 4y €4 -1
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Ax my
M:Ay m':m'z
Az m:3
ab "ad .
We then solve
a=ale

How good is this? The exact solution is
sx=alw Al

where

p,(1-cos(8,))
p5(1-cos(8;))
p3(1-cos(63))
pg(1-cos(8,))

So the errgr depends on A 1 and cos ©.. The
rows of A ~ form row vectors whose majhitudes
equal the geometric dilution of precision factor
(GDOP); the top row giving the XDOP, the second
giving the YDOP, the third giving the ZDOP and
the last the TDOP.(1) The dilution of precision
(DOP) factors are the amounts by which errors in
satellite ephemerides and clocks are magnified
in the solution for the user's X, Y, Z, and T
due to the geometric configuration of the satel-
lites relative to the user. Thus we can get an
idea of the size of A "¢ by using GDOP - p.(1-
cos(B.)). The range Jo a satellite, Pi» il of
the order of 2 - 10'm. The angle ©; 'is the
largest when AX and ; are perpendicu]a}

Then

E:

Ri ei R‘i

2% .
2
laxl , cos(8;) =(1‘(“§ln) )

Using the bihominal theorem, which' is accurate
to first order since

sin(ei) =

ax ) 2
( ) << 1:
TR
laxlt 2 % . Haxll 2
cos(8.) = (1- ) = 1-%
’ liw, Il 2 liR; 1l 2

He

So p;(1-cose,) = |Iaxi?/2p, laxii2 7 a-107.

We see the size of the error is about

(6) error = 99927-|AX" 2
(meters) 4-:10

The resultant error is proportional to the GDOP
and to the square of the error in the initial
estimate. The GDOP should be under 4. To get
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an error under 1 meter, then, we need
1 2
1= [laxii
107

lax]| 2 3.2 - 103 m .

Thus to get an error of 1 meter with a reason-
able geometry for the satellites we need to be
within 3 km for the initial estimate.

or

Some small deviation from this analysis
also results from the lack of accuracy of our
assumptions. We have assumed the satellite
position data and clock correction are exact as
transmitted, and that the exact propagation
velocity from the satellite is known. Errors in
satellite ephemeris and clock bias will be
introduced due to limitations in the GPS control
segment. The use of propagation velocity to
cenvert a time measurement to a pseudo-range
measurement is limited by the correctness of
ionospheric and tropospheric models. In that we
are concerned mainly about common view of satel-
lites much of these errors will cancel as dis-
cussed elsewhere. (2)
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