CO₂ laser coincidences with ν_3 of SiF₄ near 9.7 μ m

Robin S. McDowell, Chris W. Patterson, and Norris G. Nereson

Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545

F. R. Petersen and J. S. Wells

Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303

Received June 15, 1981

Doppler-limited tunable-diode laser spectra of the stretching fundamental (ν_3) of ²⁸SiF₄ at 1031 cm⁻¹ have been analyzed and the spectroscopic constants determined. Explicit identifications have been made for transitions near CO₂ laser lines between 1023 and 1038 cm⁻¹; 51 such transitions have been observed in sub-Doppler saturation spectra obtained with a CO₂ laser. The closest observed coincidence is R(53) F_1^9 of ²⁸SiF₄, at -1.391 MHz from ¹²C¹⁶O₂ P(30). Implications for isotope-enrichment experiments are discussed.

The infrared-active stretching fundamental (ν_3) of silicon tetrafluoride is centered at 1031 cm⁻¹, overlapping the *P* branch of the 9.4- μ m (00⁰1-02⁰0) band of the CO₂ laser. Several experiments involving pumping of ν_3 of SiF₄ with 9.4- μ m CO₂ laser radiation have been reported, including saturation spectroscopy,¹⁻⁵ the observation of photon echoes,⁶ laser-induced fluorescence and dissociation,⁷⁻⁹ silicon isotope separation,¹⁰ and the use of vibrationally excited SiF₄ as an inert sensitizer for inducing chemical reactions.^{11,12} A full understanding of these effects depends on the identification of the SiF₄ absorptions that are in resonance with the various CO₂ laser frequencies. We report here the assignment of all ²⁸SiF₄ transitions from the vibrational ground state that fall near the ¹²Cl⁶O₂, ¹³Cl⁶O₂, ¹²Cl⁸O₂, and ¹³Cl⁸O₂ lines from 1023 to 1038 cm⁻¹. These assignments will be useful in the design and interpretation of infrared-microwave and infrared-radio-frequency double-resonance experiments. This work is the first

Table 1. v₃ Spectroscopic Constants of ²⁸SiF₄ ^a

	Diode Data	Saturation Data
Scalar constants	3	
m	1031.39661(13)	1031.39700(14)
n	0.127726(4)	0.127727(4)
$p \times 10^4$	-2.5489(20)	-2.5559(20)
$v \times 10^4$	-3.7872(27)	-3.7892(23)
$q \times 10^8$	-1.36(18)	-1.84(18)
$s \times 10^9$	-1.10(6)	-0.85(6)
$w \times 10^{10}$	2.0(11)	[0] ^b
Tensor constant	ts	
$g imes 10^5$	4.1171(23)	4.180(6)
$h imes 10^8$	3.15(5)	3.12(6)
$k imes 10^{10}$	1.28(13)	1.10(30)
u	[0] ^b	[0] ^b
Goodness of fit		
N	216	51
σ	18 MHz	7.7 MHz

^a In cm⁻¹; standard deviations, in parentheses, given in units of the last decimal place quoted.

^b Indeterminate; fixed at zero.

Fig. 1. Spectra of SiF₄ near the ${}^{12}C^{16}O_2 P(34)$ line. Trace A, taken with a tunable-diode laser, is the absorption that is due to 6.7-kPa (50-Torr) CO₂ in a 75-cm cell, showing P(34) at 1033.487999 cm⁻¹. Trace B, recorded simultaneously with A, is of 7-Pa (50-mTorr) SiF₄ in a 1.25-m cell at 198 K and displays the R(16) manifold. The transitions immediately to the low-frequency side of CO₂ P(34) are shown in detail in Trace C, a saturation spectrum of 4-Pa (30-mTorr) SiF₄. Line A_1^0 appears weak because it is near the tuning limit of the CO₂ waveguide laser.

© 1981, Optical Society of America

Table 2. SIF4 Transitions within ±200 mill 01002 Laser	Lines
--	-------

				$v(SiF_4) - v(CO_2)$ (MHz)						$v(SiF_4) - v(CO_2)$ (MHz)			
CO, Line		ine		Observed			CO ₂ Line			Observed			
Iª	Ident.	. v	²⁸ SiF ₄ Transition	Calc.	Satn.	Diodeb	Iª	Ident,	v	²⁸ SiF ₄ Transition	Calc.	Satn.	Diode
838	R(16)	1037,8840	$R(54) F_2(12) + F_1(12)$	+162			6 3 6	R(18)	continued	Q(28) F1(2)	+118	+118.629	1 +95
			R(55) E(1)+F, (2)+A, (0)	+42	+41.030					Q(29) A2(1)	+103	+101.968)
828	P(56)	1037.6096	$R(52) = (7) + F_2(11) + A_2(3)$	+130	•••					Q(27) F2(3)	+35	+34.495	+25
			R(55) F2(10)	-193	•••	•••				$Q(21) F_2(0) + F_1(0)$	-31	-32.188	
626	P(30)	1037,4341	R(53) F2(8)	+187		+205				Q(27) F1(3)	- 33	-33,401	- 30
			E(5)	+114	+124.314	+130				Q(29) F ₂ (4)	-33	\$	
			F1(9)	-15	-1.391°	-5				Q(28) F2(3)	-80	-81.047	· • • •
636	R(28)	1037.1671	R(50) F ₂ (5)	+143	•••	•••				Q(31) A2(2)	-132	-129.369	
			F1(5)	+83	+87.029					Q(26) F1(3)	-147	-147.829	
			R(47) F ₂ (0)+F ₁ (0)	+87	+78.378	•••				Q(29) F ₁ (5)	-164	•••	-180
			R(49) E(2)+F1(4)+A1(1)	-55	-56.759	•••				Q(31) F ₂ (6)	-169	•••	1
838	R(14)	1036.6725	R(45) F1(6)	+65	+65.069					Q(26) F2(4)	-170	• • •	1
			F2(6)	-10	-12.254	•••				$Q(23) = (0) + F_2(1) + A_2(0)$	-178	• • •	
			$R(46) F_1(0)+E(0)+F_2(0)$	-21	-42.175	•••	838	R(4)	1030.2953 ^d	$Q(42) A_2(3) + F_2(10) + E(6)$	+131	•••	•••
636	R(26)	1036.0170	$R(37) F_1(0) + F_2(0)$	+158	•••	•••				Q(44) F1(9)+F2(10)	+21	•••	•••
828	P(58)	1035.6992	R(36) F1(1)	+7		•••	636	R(16)	1029.8351 ^d	P(12) F ₂ (2)	-129	-144.226	•••
			E(0)	-2		•••				F1(1)	-158	•••	、
			F ₂ (1)	-10		•••	626	P(38)	1029.4421 ^d	P(15) F1(0)	+179	•••	\$+190
626	P(32)	1035.4736	R(34) F1(0)	-139	-147.223	3				F2(0)	+178	•••)
			E(0)	-140	-147.989	-155	838	R(2)	1028.9558	(none)			
			F ₂ (0)	-140	-148.742	,	636	R(14)	1028.5119	(none)			
838	R(12)	1035.4398	R(33) P ₁ (3)	+68	+68.162	+80	838	R(0)	1027.5950	P(28) F1(2)	+117	•••	•••
			F ₂ (3)	+60	+60.810)				E(1)	-53	•••	• • •
			$R(32) A_1(2) + F_1(7) + E(5)$	-76	-72.339	-55				F2(2)	-98	•••	· · · ·
636	R(24)	1034.8383	$R(27) F_1(0) + F_2(0)$	+198		•••	626	P(40)	1027.3822	P(30) A1(2)	-82	-96.155	
838	R(10)	1034.1857	R(22) E(1)	+34	+39.038	•••				F1(5)	-83	-96.550	-110
			F ₂ (2)	+6	+10.845	•••				E(3)	-83))
			A ₂ (0)	-120	-116.265	• • •	636	R(12)	1027.1597	$P(31) F_1(4)$	+190	•••	•••
			F ₂ (1)	-190	•••	•••				F2(5)	+16	+8.685	•••
828	P(60)	1033.7717	(none)							E(3)	-118	-124.426	•••
636	R(22)	1033.6308	(none)			`				$F_{1}(5)$	-164	•••	•••
626	P(34)	1033,4880	R(16) E(1)	+155	+160.376	+150	636	R(10)	1025.7783	$P(40) A_2(0)$	+64	+70.977	•••
			F ₂ (2)	+141	+145.993	,				$F_2(1)$	+58	+64.552	•••
			A ₂ (0)	+99	+104.380	+90				$F_1(1)$	+52	+58.338	
			$F_{2}(1)$	-30	-24.311	- 30				A1(0)	+46	+52.35/	•••
			$F_1(1)$	-69	-63.481	-75				$P(41) F_1(3)$	-88	-82.568	
	- / • •	1000 0100	A1(0)	-111	-102.891	-120				F2(3)	-00	-83.069	
638	R(8)	1032,9102	(none)	100			838	P(2)	1025.5138	$P(42) F_1(3)$	+173	•••	•••
030	R(20)	1032.3945	$R(7) F_2(1)$	+196		•••				A1(1)	+85	•••	•••
			E(0)	+1/8	•••	•••	626	P(42)	1025.2979	(none)			3
838	B(6)	1031 6134		+101		•••	636	R(8)	1024.3677	$P(50) P_2(7)$	+42	+53.353	+40
626	P(36)	1031 4774	(none)							F1(6)	+ 30	105 771	~
636	R(18)	1031.1293	$O(33) A_2(2)$	+206		١				5(42) WI(2)	-100	-107 109	1
			Fa(7)	+200		1				F1(11)	-108	-109 501	-110
			F1 (8)	+201		+210				r 2 (10)	-109	-110 004	
			A1 (2)	+199)		D(A)	1024 0006	n2(3) D(52) E(5)+E.(0)+1.(3)	+195	-110.004	+175
						·	638	P(4)	1023.1894	$P(57) = F_1(9)$	-52	-75.421	-110
a ider	The iso itified	otopic speci as 626, 636	es ¹² C ¹⁵ O ₂ , ¹³ C ¹⁶ O ₂ , ¹² C ¹⁸ , 828, and 838, respective	0 ₂ , and 1y.	¹³ C ¹⁸ O ₂ ar	e	620 C	Reporte	d at (-1.5 d	: 0.5) MHz by Beterov et a	.1.3		
	Rounded	to nearest	5 MHz.				. d	There a	re also high	i−J (J ≥ 50) Q-branch line	s in thi	is region.	

general features of multiphoton absorption in this molecule.

The ν_3 band of SiF₄ was recorded by using a $Ph_{1-x}Sn_xTe$ tunable semiconductor-diode laser source in a double-beam arrangement.¹³ The sample was cooled to 170–200 K to suppress hot-band structure. A total of 216 lines between 1023 and 1038 cm⁻¹ was measured, covering all or portions of most manifolds in the ranges P(13-59), Q(20-53), and R(5-56); all these lines were within ± 0.1 cm⁻¹ of a CO₂ or OCS calibration feature.¹⁴

The usual formulas for the transition frequencies in the diagonal approximation are

$$\begin{split} \nu_{P,R}(M) &= m + nM + pM^2 + qM^3 + sM^4 \\ &+ \ldots + (g - hM + kM^2 + \ldots)\overline{F}(4), \\ \nu_Q(J) &= m + vJ(J+1) + wJ^2(J+1)^2 \\ &+ \ldots + [-2g + uJ(J+1) + \ldots]\overline{F}(4), \end{split}$$

where M = -J, (J + 1) for P, (R)-branch transitions and the $\overline{F}(4)$'s are functions of tetrahedrally adapted fourth-rank tensor operators. Off-diagonal terms were included as corrections that were determined from a full diagonalization of the Hamiltonian. A fit of these equations to the diode data yielded the spectroscopic constants given in Table 1, and with this analysis we could identify transitions observed in Doppler-free saturated absorption using a CO_2 laser.

Both waveguide and free-space CO_2 lasers were used for the saturation spectroscopy. Their frequencies were shifted by acousto-optic modulators up to ± 120 MHz in 40-MHz steps to obtain overlaps with the SiF₄ absorption lines.¹⁵ The spectroscopic laser was frequency referenced, by means of a voltage-swept rf oscillator, to a CO_2 laser that was stabilized to the standing-wave saturation resonance in a low-pressure (5.3-Pa) intracavity CO_2 absorption cell.¹⁶ A typical saturation spectrum is shown in Fig. 1. The output power was not leveled and therefore varies across the scan, following the gain profile of the laser. Maximum intensity is near the center of the laser line (0-MHz displacement unshifted; $\pm n40$ MHz shifted), but absorption intensities cannot be normalized in a simple way because of the saturation phenomenon. The frequency of each saturated SiF₄ line was measured by adjusting the spectroscopic laser frequency (by means of the rf oscillator) to a point corresponding to the maximum absorption intensity and then measuring the offset rf. Measured frequencies of assigned saturated resonances near the ${}^{12}C^{16}O_2$, ${}^{13}C^{16}O_2$, and ${}^{13}C^{18}O_2$ laser lines are given in Table 2.

The constants obtained by fitting Eqs. (1) to only the 42 saturation lines are also given in Table 1 and are in satisfactory agreement with those obtained from the diode data. The improvement in the second fit is limited by the fact that the Hamiltonian exhibits evidence of perturbations at high J: those 35 saturation frequencies for which J < 42 could be fitted with a standard deviation of 1.1 MHz. All transitions out of the vibrational ground state that are calculated to fall within ± 200 MHz of a laser line (using the second set of constants in Table 1) are summarized in Table 2; similar tabulations for other isotopic CO₂ lasers are available from the authors. The CO₂ frequencies used in this work are those of Petersen¹⁶ and Freed *et al.*¹⁷

The ¹²C¹⁶O₂ lines P(30) to P(34) pump the R branch of SiF₄, are inferred by Gutman and Heer⁶ from the polarization of photon echoes. The nearest coincidence is at CO₂ P(30), which is offset by 1.4 MHz from R(53) F_1^9 of ²⁸SiF₄; the latter transition has been proposed for frequency stabilization of the CO₂ laser.^{1,3} At CO₂ P(32), Harter *et al.*⁴ illustrate the FEF triplet of R(34)at -148 MHz; they also show an AFFA cluster at ~-37 MHz that belongs to a hot band, which is as yet unassigned. (At 300 K, 30% of ²⁸SiF₄ molecules are in the ground vibrational state, 17% in $v_2 = 1$, 14% in $v_4 = 1$, 8% in $v_2 = v_4 = 1$, and 7% in $v_2 = 2$.)

 ${}^{12}C^{16}O_2 P(36)$ falls between Q(1) and R(0) of ${}^{28}SiF_4$, separated by 2.43 GHz from the former and 1.41 GHz from the latter. There are, however, several hot-band or isotopic absorptions in this region, including a strong line of -3.643 MHz from CO₂ P(36) (reported at +2.4MHz by Beterov *et al.*³). In the isotope-enrichment experiments of Lyman and Rockwood,¹⁰ SiF₄ was pumped with CO₂ P(36) because the latter line appears to coincide with the SiF₄ Q branch as observed at low resolution.^{3,10} The present results, however, show that P(36) does not pump any transition out of the vibrational ground state of ${}^{28}SiF_4$. This may help to explain the results of Lyman and Rockwood, who found the laser-induced reaction of SiF₄ with H_2 to be inefficient, with poor isotopic selectivity.

The ${}^{12}C^{16}O_2 P(J \ge 38)$ lines pump the *P* branch of ${}^{28}SiF_4$. There are no near coincidences with ground-state transitions, but there are numerous hot-band absorptions that are close to the CO_2 laser lines.

The authors from the National Bureau of Standards thank Howard P. Layer for supplying the CO_2 waveguide laser used to obtain part of the saturated absorption spectra. The portion of this work performed at Los Alamos National Laboratory was supported by the U.S. Department of Energy.

References

- F. R. Petersen and B. L. Danielson, "Laser saturated molecular absorption in SiF₄," Bull. Am. Phys. Soc. 15, 1324 (1970).
- 2. J. Nella, "Saturated resonance spectroscopy of SiF₄," Appl. Phys. Lett. 23, 568–570 (1973).
- 3. I. M. Beterov, L. S. Vasilenko, V. A. Gangardt, and V. P. Chebotaev, "Investigation of narrow resonances in the saturation of the absorption of $CO_2 \ 00^{01}-02^{00}$ radiation in silicon tetrafluoride," Sov. J. Quantum Electron. 4, 535–536 (1973).
- 4. W. G. Harter, H. P. Layer, and F. R. Petersen, "Evidence of tumbling multiplets in saturation absorption spectra of SiF₄," Opt. Lett. 4, 90–92 (1979).
- 5. E. I. Ivanov and I. R. Krylov, "Some details of the saturated absorption of CO_2 laser radiation by the SiF₄ molecule," Opt. Spectrosc. (USSR) 46, 687–688 (1979).
- 6. W. M. Gutman and C. V. Heer, "Photon echo measurements in SF_6 and SiF_4 ," Phys. Rev. A 16, 659-665 (1977).
- 7. V. S. Dolzhikov, V. N. Lokhman, N. V. Chekalin, and A. N. Shibanov, "Nature of 'instantaneous' luminescence due to interaction of SiF₄ molecules with a strong infrared field," Sov. J. Quantum Electron. 8, 373–374 (1978).
- 8. V. E. Merchant, "Dependence of fluorescence from laser irradiated SiF₄ on the CO₂ laser wavelength," Can. J. Phys. 57, 1779–1783 (1979).
- 9. V. M. Akulin, S. S. Alimpiev, N. V. Karlov, A. M. Prokhorov, B. G. Sartakov, and E. M. Khokhlov, "Appreciable increase of the dissociation rate of polyatomic molecules in the red shift of the nonresonant frequency under conditions of two-frequency laser action," JETP Lett. 25, 400-403 (1977).
- 10. J. L. Lyman and S. D. Rockwood, "Enrichment of boron, carbon, and silicon isotopes by multiple-photon absorption of $10.6-\mu m$ laser radiation," J. Appl. Phys. 47, 595–601 (1976).
- K. J. Olszyna, E. Grunwald, P. M. Keehn, and S. P. Anderson, "Megawatt infrared laser chemistry. II. Use of SiF₄ as an inert sensitizer," Tetrahedron Lett. 1609–1612 (1977).
- C. Cheng and P. Keehn, "Organic chemistry by infrared lasers. I. Isomerization of allene and methylacetylene in the presence of silicon tetrafluoride," J. Am. Chem. Soc. 99, 5808–5809 (1977).
- 13. C. W. Patterson, R. S. McDowell, N. G. Nereson, B. J. Krohn, J. S. Wells, and F. R. Petersen, to be published.
- 14. J. S. Wells, F. R. Petersen, and A. G. Maki, "Heterodyne frequency measurements with a tunable diode laser-CO₂ laser spectrometer: spectroscopic reference frequencies in the 9.5- μ m band of carbonyl sulfide," Appl. Opt. 18, 3576-3573 (1979).
- 15. F. R. Petersen, J. S. Wells, C. W. Patterson, and R. S. McDowell, to be published.
- 16. F. R. Petersen, D. G. McDonald, J. D. Cupp, and B. L. Danielson, "Accurate rotational constants, frequencies, and wavelengths from ¹²C¹⁶O₂ lasers stabilized by saturated absorption," in *Laser Spectroscopy*, R. G. Brewer and A. Mooradian, eds. (Plenum, New York, 1974), pp. 555–569.
- C. Freed, L. C. Bradley, and R. G. O'Donnell, "Absolute frequencies of lasing transitions in seven CO₂ isotopic species," IEEE J. Quantum Electron. QE-16, 1195-1206 (1980).