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Abstract-A classical Fourier amplitude theory of combined Doppler and pressure broadening 
in the impact approximation is developed which treats phase changes due to translation and 
collision on an equal basis. Radiator motion is accounted for properly by includingspeed depen- 
dence in the collision frequency and velocity dependence in the distribution function for phase 
shifts and final velocities as the result of a collision. The resulting theory is shown to be equi- 
valent to a previous kinetic equation formulation of the problem. Theone-perturberandclassical 
analogue of the quantum one-interacting-level approximations are derived. In the latter case, a 
simple expression for the line shape in terms of speed dependent width and shift functions is 
obtained without approximation. Correlation effects are investigated by means of model speed 
dependent width and shift functions calculated for an inverse power interaction using straight 
line trajectories. The model shows no departure from a Voigt profile for the r - 3  interaction and 
for the r - 6  and r - I 2  interactions the resulting profile is narrower in the core than the Voigt and 
in general asymmetric. Analysis of correlated profiles as Voigt profiles is shown under some 
conditions to lead to non-linear density dependence in the width and shifts resulting in extra- 
polation anomalies and to significant errors in temperatures inferred from Doppler widths. 
Results are compared with previous work. 

1. I N T R O D U C T I O N  
FUNDAMENTAL to an understanding of spectral line shapes is the problem of combining the 
effects of various phenomena that influence the line profile. The present work is concerned 
primarily with the combined influence of radiator-perturber collisions and radiator trans- 
lational motion"-'') in the context of foreign gas broadening of optical transitions in 
neutral radiators. 

As is well known the translational motion of a radiator produces frequency shifts due to 
the Doppler effect and we may quasi-classically describe collisions as producing phase 
changes in the emitted radiation. Traditionally, one has assumed that these broadening 
mechanisms are statistically independent so that the line profile is described by a convolution 
integral (GRIEM,(") p. IO]), 

m 

I ( o )  = ID(w')I,,(o - 0') dw', 
- 0 3  
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where Z,(O) and Z p ( w )  are pure Doppler and pure pressure broadening profiles respectively 
and o is the angular frequency measured from the unperturbed frequency. Most calculations 
have treated the Doppler effect in the approximation that collisions do not alter the radiator 
trajectory in which case Z,(O) is Gaussian : 

Here wo is the unperturbed atomic transition frequency of interest for radiators of mass M 
at temperature T, K is the propagation vector of the emitted radiation and CM is the most 
probable radiator speed. Pressure broadening theories for which the isolated line and impact 
approximations are appropriate(",' 3' lead to Lorentzian profiles characterized by width 
r (2r = FWHM) and shift A :  

1 r 
7~ (O - A ) ~  + rz ' Z p ( 0 )  = - 

When Gaussian and Lorentzian profiles are used in (l.l),  Z(O) is referred to as a Voigt 
profile. 

Two decades ago, DICKE(30) pointed out that collisions could lead to narrowing and a 
change in character of the Doppler profile from Gaussian to Lorentzian but with significant 
effects only when the mean free path between collisions is small compared to the wavelength 
of the emitted radiation. In an extension of Dicke's work, GALA TRY"^) treated a radiator 
undergoing collisions as a particle in Brownian motion but assumed statistical indepen- 
dence in the treatment of combined Doppler and pressure broadening. Theories incorporat- 
ing a simple type of statistical dependence first appeared in the work of RAUTIAN and 
SOBEL'MAN(' 5 ,  and GERSTEN and FOLEY.(' 6 ,  Independently,both groups of authors developed 
what we call the " correlated strong collision model " which assumes that the post-collision 
distribution of radiator velocities is always Maxwellian (strong collision model) and that 
phase shifts and velocity changes are uncorrelated except that both occur in the same 
collision. Gersten and Foley used a conventional line broadening argument (which we 
generalize) adapted specifically to the correlated strong collision model whereas Rautian 
and Sobel'man developed a general kinetic equation formalism of combined Doppler and 
pressure broadening and derived the model as a special case. All authors have worked in the 
context of classical Fourier amplitude (CFA) theory which obtains the line profile from a 
Fourier analysis of the emitted (classical) radiation. In the absence of a more fundamental 
theory of correlation effects, MI~~sHIMA( '  '.I8) and EDMoNDS('~' have introduced ad hoc 
modifications in the Voigt profile. Essentially they assume that the width parameter of the 
Voigt profile may depend on radiator speed and then attempt a calculation of this depen- 
dence. 

In general, correlation effects appear to enter the problem in three ways that stem from 
one basic fact : the velocity distribution important for collision processes is the distribution 
of perturber velocities relative to the radiator. For a moving radiator, the perturber gas 
appears to be streaming past it with mean velocity opposite that of the radiator resulting in a 
relative perturber velocity distribution which depends on radiator velocity. Consequently, 
the collision frequency, the distribution of phase shifts in a collision and the distribution of 
radiator velocity changes in a collision all depend on radiator speed or velocity. 
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In a series of papers we formulate a general CFA theory of combined Doppler and pres- 
sure broadening, establish its validity conditions and investigate departures from Voigt 
behavior produced by correlation effects. In this paper the general theory is developed in the 
impact approximation using methods familiar in line broadening theory. Phase changes in 
the emitted radiation due to translational motion are treated on an equal basis with phase 
shifts due to collisions and the velocity dependence of the collision frequency and the distri- 
bution function for phase and velocity changes is taken into account. After showing that 
the resulting theory is exactly equivalent to the kinetic equation formalism of Rautian and 
Sobel’man, two useful approximations are developed: the one-perturber approximation and 
the CFA analogue of the quantum mechanical one interacting level (OIL) approximation 
(also called the “no  lower state interaction ” approximation). We conclude by exhibiting the 
effects of correlation on representative line profiles calculated in the OIL approximation for 
simple inverse power law interaction potentials and compare our results to previous work. 

This leaves unsettled the question of validity conditions. For conventional pressure 
broadening theory, BAR ANGER'^') has derived the classical theory as a limit of the isolated 
line, adiabatic, quantum impact theory and this result has been implicitly assumed in 
previous extensions of classical theory to the problem of combined Doppler and pressure 
broadening. With the advent of quantum theories of combined Doppler and pressure 
broadening in the work of SMITH et a1.(21,22) (hereafter denoted SCCD) and BERMAN and 
 LAMB@,^) a proper treatment of validity conditions is now possible. This has already been 
done in part by SCCD who show that in the limit of radiator mass much greater than pertur- 
ber mass the general theory goes over to the conventional theory to which Baranger’s 
argument applies. However, for arbitrary perturber/radiator mass ratios the question of 
validity conditions requires a tedious derivation of the semi-classical limit of the quantum 
one-perturber approximation and is therefore deferred to a second paper. There we will 
show that for arbitrary perturber/radiator mass ratios the classical theory derived here is 
valid only for the case of identical radiator-perturber interaction in both radiating levels 
or the case of interaction in only one level (OIL case). Moreover, in  the OIL case quantum 
theory indicates that JWKB scattering phase shifts should be used in place of the conven- 
tional classical phase shift (integral of the interaction potential along the scattering trajec- 
tory). The relationship between these phase shifts has been discussed by b . 2 ~ ‘ ~ ~ )  and will 
be further developed in the second paper of this series. 

The OIL calculations presented in this paper use the conventional phase shift calculated 
along straight line trajectories and consequently serve as model calculations. However, in 
comparison with conventional results calculated under the same assumptions, we believe 
the model accurately reflects the nature and magnitude of correlation effects that may be 
expected in optical transitions for which the OIL approximation is appropriate. 

2. SPEED DEPENDENT COLLISION FREQUENCY 

Careful velocity averaging plays a distinctive role in the treatment of combined Doppler 
and pressure broadening and accordingly we begin with a brief review. Consider a system of 
radiators (mass M )  and perturbers (mass m) described by Maxwellian velocity distributions 

fM(v) andf,(v) where for example 
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Then the average value of any velocity dependent properly A(v) of an isolated radiator is 
given by 

A = A(v)&(v) d3v. s 
A more interesting situation occurs when we consider properties depending on the 

relative velocity vR of two interacting particles as for example a scattering or reaction cross 
section. Let B(vR) be such a property for an interacting radiator-perturber system and 
neglect collisions between radiators. Then two types of average B properties may be con- 
sidered: the average resulting from those collisions in which the radiator always enters with 
velocity v which we denote by &(v) and the average resulting from all possible radiator- 
perturber collisions which we denote by &, . To perform these averages we introduce the 
relative collision frequency v,(vR ; v) defined SO that v,(vR ; v) d3vR is the frequency of 
collisions with perturbers which have a velocity vR to vR + d3vR relative to a radiator with 
velocity v. Then the collision frequency for a radiator with velocity v is given by 

vc(v) s v c ( v R  ; d3vR (2.3) 

and the mean collision frequency for a radiator is 

I n  terms of these collision frequencies, we may express our averages as 

1 

vc 
BII = - J v , ( v ) ~ ~ ( v ) B , ( v )  d3v .  

In obtaining E,, one requires the probability that a radiator has velocity v to v + d3v in a 
collision which is [v,(v)/v,]fM(v) d3v. 

Our discussion so far rests on the assumption that a collision is a well defined event which 
is unfortunately not generally the case. To circumvent this difficulty we introduce a collision 
sphere(24p25’ of radius R about the radiator and define collision frequencies in terms of 
those encounters with distance of closest approach less than or equal to R. To calculate 
v,(vR ; v) consider the number of collisions AN(vR ; v) d3vR in time At with relative velocity 
vR to vR + d3vR which is given by the perturber density times the volume of perturber gas 
colliding with the radiator in time At at speed vR times the probability of a perturber having 
relative velocity vR to  vR + d3vR. Since the radiator is moving with velocity v the appropriate 
relative velocity distribution for the perturber gas is a displaced Maxwellian, fm(v + vR). 
Thus 

AN(vR ; V) d3vR = nrrR2vRAtf,(v + vR) d3uR 

where n is the perturber density. Dividing by At and passing to the limit At + 0 gives the 
relative collision frequency v , ( v ~  ; v). By expressing all collision frequencies in terms of the 
mean collision frequency we can delete explicit reference to R from our formalism. Carrying 
out the indicated integrations in (2.3) and (2.4) gives 
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Here @(z)  is the error function (GRADSHTEYN and RYZHIK,‘~’) No. 8.250.1, p. 930) 

(2.1 1) dt @(z) = - 1 
J. 0 

and we have introduced the reduced mass p = mM/(m + M ) .  As expected, v,(v) depends 
only on radiator speed and we have adjusted our notation accordingly. Notice that w,(x; 1) 
is simply a dimensionless collision frequency with radiator speed x expressed in units of the 
most probable radiator speed 8,. Using (2.5) and (2.7) in (2.6) and introducing the reduced 
mass Maxwell distribution gives 

B I I  = ‘1 Z’Rfp(vR)B(VR) d3uR (2.12) 
UR 

which is the familiar velocity average in line broadening theory. 

3.  GENERAL THEORY 

A .  The correlation function 

We adopt the usual classical model (BORN and  WOLF,(^^) pp. 90-98; RossI,(”) pp. 
348-366) in which the radiator is treated as an oscillating dipole with unperturbed frequency 
wo . The Fourier analysis of the radiation emitted by an ensemble of such oscillators leads 
to an expression for the line shape in terms of a correlation functi~n.(’,~,’~-’~,~~-~~) 

In previous treatments of combined Doppler and pressure broadening we note that some 
authors (GERSTEN and FOLEY;(’ 6 ,  BEN-REUVEN(31’) have assumed that a moving dipole 
oscillates at its Doppler shifted frequency. Another point of view assumes that a moving 
dipole oscillates at its unperturbed frequency and to lowest order in v/c the Doppler shift is 
then a retardation effect brought about by the finite speed of light. However, a careful 
treatment(32) of retardation effects in the correlation function leads in the nonrelativistic 
limit to the usual results: 

m 1 

= o  
Z(o) = - Re c(s)eiws ds, (3.1) 

c(s) = (3.2) 

a s >  = + K . M) - R(0)1, (3.3) 

c(-s) = c*(s). (3.4) 
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Here Z(w) is the line profile normalized to unity, w is measured from the unperturbed 
frequency, c(s) is the correlation function and (. * .) denotes an ensemble average over the 
perturbers. The total phase shift in time s, [(s), is the sum of the phase shift due to collisions, 
~ ( s ) ,  and the phase shift due to translational motion given by K . [R(s) - R(O)] where K is 
the propagation vector of the emitted radiation and R(s) is the position vector of the oscil- 
lator. As is customary, we have made the adiabatic approximation by taking constant 
amplitudes for each oscillator p. 246) and have excluded the so-called " nega- 
tive resonance " or VAN VLECK-WEISSKOPF term(29) (negligible for optical transitions) by 
requiring c( -s) = c*(s). 

B. The ensemble average 
The average over the phase shifts and velocity changes produced by collisions is performed 

as a Poisson process. The collisions are regarded as instantaneous events randomly distri- 
buted in time with frequency v,(u) where u is the speed of the radiator. The probability of 
free propagation at speed u for a time interval t followed by a collision between t and 
t + dt is given by 

Pc(u, t )  dt = v,(u)exp[ - v,(u)t] dt (3.5) 
where exp[ - v,(u)t] is the probability that no collision occurs during an interval t .  The phase 
shift in the classical oscillator induced by thejth collision will be denoted by + j ,  the radiator 
velocity after the j th  collision will be vi and the time interval following thejth collision will 
be Aj . The total phase shift in the emitted radiation due to a sequence of n collisions in time 
s is therefore given by 

n 

i ( s ; 4 1 , . . . 4 n , v o  , . . .  v n ) = ~ . v 0 A O +  x ( 4 j + ~ . ~ j A j ) ,  (3.6) 
j = l  

n 

S =  C A j  (3.7) 
j = O  

where vo is the initial radiator velocity. The probability that thej th  collision induces the 
phase change 4j and a velocity change from vj-l to vi is denoted by C ( + j ,  vj ; d+j d3uj. 

The probability that a phase change [ in the emitted radiation will occur in an interval of 
time s due to a sequence of n collisions may now be given by Pn((, s) d[ where 

'Notice that the probability function for the time interval An following the nth collision is 
given by exp[ - vc(un)An] rather than Pc(un, An) because this interval is not terminated by a 
collision. The probability for a phase change [ due to all possible collision processes in time 
interval s is then given by 

(3.9) 



X exp{ - [ V , ( U 1 )  - V,(Vo)  + iK ' (Vi - vo)]A1} X . ' .  X 

x G(4,, v,, ; v,,-,)exp( - i4,,)exp{ - [v,(v,,) - V,(VO) + 
where we have performed the Ao-integration using 

i K .  (v,, - vo)]An}] (3.12) 

lom . . * JOw dAo . . . dA,, 6 exp{ - [vc(vj)  + iK . vj]Aj} 

l S  
n. 0 0 

= exp(- [v,(uo) + i K  . vo]s} . . . 1' dAl . . . dA,, 

x fI exp{ - [v,(vj) - V,(UO) + iK . (vj - vO)]Aj} (3.13) 

which expresses the fact that the &function constrains the A. ... A,, integrations to an 
n-dimensional shell in (n + 1)-dimensional space. The remaining A. * . . A,, integrations are 
trivial but not helpful and consequently we regard (3.12) as a formal solution to the problem. 

The only way in which our treatment of the ensemble average differs from that given by 
GERSTEN and is in the use of a speed dependent collision frequency and a general 
distribution function for the phase shifts and velocity changes in a collision. In place of 
G(4, v; vo) Gersten and Foley use g($)f,(v> where g(4) is the phase shift distribution from 
conventional pressure broadening theory; the only correlation in such a theory stems from 
the fact that phase and velocity changes occur in the same collision. By using G(4, v; vo) we 
allow for correlation between phase and velocity changes in a collision and the dependence of 
the distribution function on radiator velocity. 

C. Properties of G(4, v; vo) 
To evaluate the G-function we assume elastic scattering by a potential for which there 

exists a unique relation between impact parameter and scattering angle. In the Appendix we 
show that 

J = 1  

w = v - v o ,  

(3.14) 

(3.15) 
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@ = n - 2 C0s-l 9R ’ &, (3.16) 

4(@? O R )  = + [ p ( O R  * fi> u R ) ~  O R ] .  (3.17) 

The integration variable vR is the velocity of the perturber relative to the initial radiator 
velocity vo , w is the velocity change vector, a(@, vR) is the center of mass differential scatter- 
ing cross section, 4(p,  vR) is the phase shift in a collision with impact parameter p, p(VR * +, 
uR) is the impact parameter as a function of scattering angle and relative speed as determined 
by classical mechanics, n is the perturber density, p is the reduced mass and denotes unit 
vector. 

One may verify that G(4,  v ;  vo)  is correctly normalized to unity and that in the limit of 
scattering only in the forward direction 

(3.18) 

The interpretation of g(4; vo) is that it gives the distribution of phase shifts in a collision 
irrespective of the velocity change and as the notation indicates, it depends only on radiator 
speed. Using (2.6) we obtain the distribution of phase shifts in a collision averaged over all 
possible collisions 

(3.20) 

which is recognized as the phase shift distribution function of conventional CFA pressure 
broadening theory. 

Finally, we note two symmetry relations : time reversal invariance 

G(4 ,  - v ;  -vo) = G(4, V ;  vo) (3.21) 

vc(vO)fM(vO)G(4, = vc(v>fM(v)G(4, vO ; (3.22) 

The interpretation is that the frequency of collisions making phase change 4 and velocity 
change vo -+ v is equal to the frequency of collisions making the same phase shift and the 
velocity change v -+ vo . 

and detailed balance 

D. Kinetic equation formalism 
The first task in deriving a kinetic equation is to express our theory in terms of the pro- 

bability per unit time per particle (= transition rate per particle) for the process of interest 
This is just the collision frequency times the probability in a collision for the process of 
interest. Consequently the transition rate per radiator for a phase change 4 and a velocity 
change vo -+ v is 

4 4 ,  v ;  VO)  = vc(uo)G(4, v ;  vo). (3.23) 
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Next we define the distribution functionf(r, v, t )  for t 2 0 as follows: 

(3.24) 

The interpretation of f(r, v, t) rests on establishing the connection between our work and 
that of Rautian and Sobel'man. Then it follows that f(r, v, t) gives the distribution of 
positions and velocities at time t for a radiator initially at the origin with a Maxwellian 
velocity distribution. One may verify that f ( r ,  v, t )  satisfies the correct initial condition 

,f(r, v, 0)  =fM(v>w> (3.25) 

and that the correlation function may be expressed as 

c(s) ;= j d 3 v  ~d3re-'" ' 'f(r, v, s). (3.26) 

Now we consider the equation thatf(r, v, t) satisfies. In view of the divergent initial con- 
dition we may not differentiate (3.24) under the integral sign at t = 0 so we limit ourselves to 
t > 0. Then one obtains 

(3.27) 

where we have added and subtracted a v,(v)f(r, v, t )  term on the right-hand side. The 
Maxwell distributionf,(v) can be brought under the v,-integral and use made of the detailed 
balance relation (3.22) to obtain 

[g + v . v]f(r, v, t )  = -v,(v>f(r, v, t )  

(3.28) 



564 J.  WARD. J. CCQPER and EARL W. SMITH 

Next we relabel dummy integration variables: 

VI -+ v’ 

41+4 
( ~ , , , V , , ) + ( ~ , , - ~ , V , , - ~ )  for n = 2 , 3 - . .  . 

Then the orders of integration are interchanged and we obtain finally the desired equation 
forf(r, v, t ) :  

[$ + v . V]f(r, v, t )  = - v , (u ) f ( r ,  v, t )  + I d 4  [d3u‘e-i4A(4, v, v’)f(r, v’, t ) .  (3.29) 

This result has the form of a kinetic equation and is in fact exact/y equivalent to equations 
( 5 . 9 ,  (5.16) and (5.17) of Rautian and Sobel’man. Note that the A(vo, v, 4)of Rautian and 
Sobel’man which means exactly the same as the A ( 4 ,  v; vo) of this work has the order of its 
velocity variables opposite to our convention. Similar results hold for related functions such 
as the A” of Rautian and Sobel’man equation (5.17). Also our distribution function,f(r, v, t )  
corresponds to thef(r, v, t )  of Rautian and Sobel’man. Thus we have obtained their general 
kinetic equation formalism using a more conventional approach to the pressure broadening 
problem. Alternatively, one may regard our work as a formal solution to the Rautian and 
Sobel’man kinetic equation. Both points of view are constructive as each formalism, suggests 
its own approximations. For example, the one-perturber approximation developed in 
Section 5 follows naturally from our formalism. Similarly, the GALATRY(’ 4, and DICKE(~’) 
results follow naturally from the Kinetic equation as developed by RAUTIAN and 
SOBEL’MAN.(’ ’) We conclude this section by noting that Doppler and pressure broadening 
have been treated in a consistent fashion in a generalized CFA theory. 

4.  ELEMENTARY SOLUTION 

The conventional Voigt profile may be obtained as an illustrative example of the for- 
malism. We assume a constant mean collision frequency, unperturbed trajectories and the 
usual distribution of phase shifts (3.20): 

VC(U0) -+ vc (4.1 a) 

G(4, V; vO) = g(4)6(V - ~ 0 ) .  (4.1 b) 
With these assumptions in (3.12), the velocity integrals are trivial, the A-integrals all con- 
tribute an s factor and we obtain 

“ 1  
“ = o n .  

c(s) = fd3u0 f’(v,)exp[ - (v, + iK . vo)s] 2 7 (v,s Jd4g(4)e- ‘4)‘ 

= expl-vcs fd4g(d)(l - e-ib)J j”d3l;,fM(v0)exp[-i~. vos] 

= exp[ -(I- + iA)s]exp( -oD2s2/4) (4.2) 
where we have used the normalization of g(4) to unity and made the familiar definitions of 
width and shift: 

r + iA = v, jd4g($)(l - e-’$) (4.3) 
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The fact that the correlation function is a product of Doppler and pressure correlation 
functions means that the two broadening mechanisms are sfufisficully independent. Use of 
(4.2) in (3.1) gives a Voigt profile 

5 .  O N E - P E R T U R B E R  A P P R O X I M A T I O N  

This approximation treats the correlation function under the condition that one collision 
occurs on the average during times of interest. One can show  BARA ANGER,''^) p. 530; 
COOPER(33') that for any profile satisfying the conditions of the impact approximation there 
is a region in the wings for which the one-perturber approximation is valid. Mathematically 
we assume vcs 4 1 for times of interest s and expand the correlation function to first order 
in v,s. The resulting line profile will be valid for o 9 v C .  

The correlation function has already been written as a sum of terms corresponding to the 
number of collisions in an interval of time. Retaining only the first two terms in (3.12) and 
expanding, we obtain 

c(s) = jd'c., f$,(v,,)exp(-iK. v0s) [ l  - ~~(c, , )s + 

1 x [ 1 + j d 4  [d3c 1' dAv,(c,,)G(4, v ;  vO)exp( - i4)exp[ --iK . (v - vO)s] + . . . 
' 0  

= J^ d3r0 fVf(v,)exp( - iK . v0 s) 

a "  1 - exp[ - i~ . (v - vo)s] 
1 - \,c(i.o)s + 1 d 4  1 d3r.vC(r.,)G(4, v ;  v,)exp( - i4)  + . . .]. (5.1) 

iK ' (V - Vo) 

This is the one-perturber result which we can now write in a form that will prove convenient 
for later comparison with quantum theory. We define a function B by the expression 

1 - exp[ - iK ' ( v  - vo)s] 
= 1 + . F [ K  ' (V - Vo)S] 

iK ' ( V  - V0)S 

and use the normalization of G ( 4 ,  v :  vO),  (3.13) and (3.19) to write 

(5.2) 

QSRT-\ol. 14 iio. 7-B 
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Notice that the terms in these equations may be interpreted physically: the unit term in the 
square brackets is the collisionless Doppler term, the second term is a generalized pressure 
broadening term which contains some correlation effects because of its dependence on 
radiator speed and the third term contains additional correlation effects which cannot 
easily be separately identified as due to radiator motion or perturbations of phase. It is a 
distinctive feature of the one-perturber approximation that these various factors are additive. 

6 .  ONE-INTERACTING-LEVEL (OIL)  APPROXIMATION 

As one may surmise from the name, the OIL approximation has its basis in a quantum 
mechanical treatment and from a purely classical point of view is difficult to interpret. In  
fact, a simple classical interpretation only appears possible when both upper and lower 
states scatter in the same d i r e ~ t i o n . ( * , ~ , ~ ' )  At this point we simply assert that the classical 
analogue of the quantum OIL approximation is obtained by adopting the G-function 

G(4, v; Yo) = d 4 ,  vo)d(v - VO) (6.1) 
where g(4, uo) is given in (3.19). This will be justified in a future paper by comparison of 
(6.4) and (6.5) with the results of a fully quantum mechanical OIL theory(21) in the adiabatic 
semiclassical limit. Alternatively (6.1) may be substituted into (3.29) and the result compared 
with the appropriate limit of equation (17) given by BERM AN.'^^) In retrospect we can argue 
that (6.1) may represent in  a classical sense the fact that the quantum mechanical OIL 
approximation can be expressed entirely in terms of forward scattering amplitudes."') 
Still, the naive classical interpretation of (6.1) is that no scattering of the radiator takes 
place in a collision and this runs counter to the intuitive picture of how things should 
happen. 

Using (6.1) in (3.12) leads to 

c(s) = 1d3u0 ~ v O ) e x p {  - [v,(uo> + i~ . ~01s)  

= Jd3v0 fM(vo)exp( - i K  . vo s) 

= /d3v0 .fM(vo)exp( - i~ . vos)exp{ - [T(vo) + iA(uo>]s} (6.4) 

where we have used the normalization of g(4; uo) to unity and introduced speed dependent 
width and shift functions defined by 

T(vo) + iA(vo) = vc(u0) Jd&g(4; vo)(l - e-'"). 

The interpretation of these quantities as the width and shift for a radiator with speed vo 
is substantiated by the observation that the average of T(vo) and A(vo) over all radiator 
velocities gives the width and shift functions of conventional theory: using (3.20) and (4.3) 
one easily shows that 

1d3~o.fM(~0)[T(v0) + iA(vo)] = r + iA. 
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In (6.4) we see that contributions to the correlation function from motional and pressure 
broadening do not enter in  a statistically independent fashion. 

The line shape which follows from (3.1) and (6.4) is given by 

which may be interpreted as the Maxwell average of the velocity dependent Doppler shifted 
pressure broadened profile that would describe emission in the direction K from an ensemble 
of radiators with velocity vo . This expression was obtained implicitly by SCCD [see equa- 
tions (2.20), (3.1), (5.3), and (9.3) of Ref. (21)] and explicitly by BERM AN'^^' [see equations 
(la), (4a) and (4b)l. 

Performing the angular integrations in (6.7) and using the fact that T(u,) and A(uo) are 
even functions as can be established from equations (6.5), (2.10) and (3.21) gives 

Integrating by parts and defining w’ = K U ~  leads to a general expression for the line shape in 
the 01L approximation: 

w - A(w’/K) - w‘ d 
- r ( U ‘ / K ) .  

d 
W(w’; w )  = 1 + A(o’/K) + d o  r (w ’ /K )  dw’ 

(6.10) 

Comparison with the Voigt profile in (4.5) suggests an interpretation of the OIL profile as a 
‘ weighted convolution ’ of a Doppler distribution with a generalized pressure broadening 
distribution. Clearly the OIL profile reduces to a Voigt profile in the limit of constant width 
and shift functions. 

To investigate the symmetry of the OIL profile we may use the fact that for a profile to be 
symmetric there must exist a center frequency w, such that 

I (w)  = I( - w + 20,). (6.1 1) 

But from (6.9) by transforming w‘ + -a’ and noticing that the derivative of an even func- 
tion is odd one can show that 

(6.12) 
w - 20.1, + A(o’/K) - w’ d 

- dw’ ~ ( u ’ / K ) }  dw‘. 
r(W‘/K) 

Thus the condition for symmetry is that 

d 
- A(w‘/K) = 0 
do‘ 

(6.13) 
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in which case w, is expressed in terms of the constant shift function as w, = A. In general, 
this result means that the OIL profile is asymmetric except when the shift function is vanish- 
ingly small. In passing we note that the asymmmetry of the OIL profile depends on the 
speed dependence of the shift function whereas the asymmetry found by RAUTIAN and 
SOBEL'MAN''~) (p. 714) in their correlated string collision model (phase shifts and velocity 
changes uncorrelated except both occur in the same collision) depends only on a non-zero 
shift function which may be taken as a constant. 

7 .  INVERSE P O W E R  LAW M O D E L  C A L C U L A T I O N S  

A .  Width and shift functions 
From (3.19) and (6.5) we have 

Notice that the only difference between (7.1) and the expression for the width and shift 
functions of conventional theory given in (4.4) is in the perturber velocity distributions. 
Here the displaced Maxwell distribution takes into account the motion of the radiator. 

The problem is now to calculate 4 ( p ,  v R )  explicitly. For this we use a model thatisstandard 
in conventional CFA theory ( F ~ L E Y , ' ~ ~ '  p. 620; MARGENAU and LEWIS,'25' p. 590): we 
assume that &I, cR) may be expressed in terms of the radiator-perturber interaction poten- 
tial V(r) and the classical trajectory r(t)  as 

and we evalute this expression assuming straight line trajectories for a splierically symmetric 
interaction that varies as the inverse yth power of the radiator-perturber separation. Writing 

const 
V ( r )  = - 

1.4 

we have 

(7.3) 

where x depends on y and the strength of the interaction. The utility of this model is twofold: 
when the broadening is dominated by distant collisions so that straight line trajectories are a 
good approximation for most collisions of interest the model turns out to be equivalent to a 
semi-classical limit of the full quantum theory and even when this is not the case the model 
permits us to consider the changes in the line profile that result from a general formulation 
of the combined Doppler and pressure broadening problem in the OIL approximation as 
compared with the conventional CFA line profile derived under the same assumptions. 

Using (7.5) in (7.1) and (4.4) one may show by a somewhat tedious c a l c u l a t i o n ( W ~ ~ ~ , ' ~ ~ '  
p. 143) that 
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9 ( 2 9 - 2  q - 3  2 
p(xo ; R ,  q )  = (1 + i - [ ( 4 - 3 ’ 2 q - % 4  - -, -, -Axo (7.7) 

Here p(xo ; 1, q)  is just the dimensionless width undshift function in terms of the dimensionless 
radiator speed xo introduced in (2.10) and the perturber/radiator mass ratio 1 = m / M .  
M(u,  b, z) is the confluent hypergeometric function defined by the series (ABROMOWITZ and 
sTECUN,‘36’ p. 504) 

uz U(U + I )  z2  U ( U  + i ) (u  + 2)  z3 

b b(b + 1) 2 !  b(b + l ) (b  + 2) 3! 
M ( u ,  6, Z )  = 1 + - + -- + - +  . . . .  

Notice that the shift-to-width ratio is independent of radiator speed and is identical to the 
usual result for shifts all of one sign(35’ 

(7.9) 

The result that T(uo) and A(2ro) have the same velocity and mass dependence is somewhat 
surprising. This is not a general feature of the theory but rather depends on the existence of a 
transformation of variables which separates the p and v,-integrals in (7.1). Such a trans- 
formation is not available for a general potential and its availability for the straight line 
trajectory inverse power potential is what makes the model tractable. 

Turning now to the form of p(xo ; 2, q)  for specific types of interaction we find from (7.7) 
and (7.8) that for resonance broadening ( q  = 3), 

B(Xo ; R ,  3) = 1. (7.10) 

In other words the spatial dependence of the C 3  interaction in our model exactly compen- 
sates for the speed and mass dependence of g(4; u,,), v,(uo) and 4(p ,  uR)  so as to yield a 
result unchanged from the conventional CFA impact theory treatment of this interaction. We 
conclude that the Voigt profile exactly describes the r - 3  interaction under the conditions of 
the OIL approximation to the CFA theory and our model g(4; uo)  function. 

Owing to the relatively long range of the r - 3  interaction, meaning that distant collisions 
contribute significantly to the broadening, this result is expected to be generally valid for 
the usual impact theories of resonance broadening using an r - 3  interaction and is consistent 
with existing experimental data on the resonance lines ’P3,2 -+ 2S1,2) of K and Cs. 
LEWIS, REBBECK and VAUCHAN(~’) have recently measured resonance broadening of the K 
resonance lines by extracting the Lorentzian (resonance broadened) components from an 
analysis of the observed profiles in terms of Voigt profiles. Their work uses the core of the 
observed profile where impact theory is valid and they point out that the results are in 
agreement with observations by CHEN and PHELPS(~” on the fur wings of Cs resonance lines 
where statistical theories should apply. This is taken‘37’ as indicative of the velocity inde- 
pendence of resonance broadening, though admittedly the test is not very sensitive (+25 x) .  

Encouraging as this result is, we must point out that simple impact theories based on the 
F 3  interaction may not provide an adequate treatment of resonance broadening. In experi- 
ments on resonance broadening in the noble gases, KUHN et u1.(2,3p39940) have observed 
that the pressure width apparently depends nonlinearly on density at low pressures where 
resonance broadening and natural broadening are comparable. A number of authors have 
considered deviations from the r - 3  interaction(41p43’ and their effect on the radiative width 
of the excited Other a ~ t h o r s ( ~ ~ , ~ ~ )  have suggested that excitation transfer may 
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affect the profile by introducing an " effective statistical dependence " between Doppler and 
pressure broadening (excitation transfer occurs without change in phase but results in a 
different velocity for the excited atom). Neither of these effects is included within the model 
CFA-OIL theory presented here. One concludes that our work is restricted to the regime 
where radiative width is negligible and excitation transfer between atoms with appreciably 
different velocities is unimportant. 

The other cases which we consider are for q = 6 and q = 12. Series and asymptotic expan- 
sions can be developed from the properties of M(a,  b, z ) :  

A2xO4 + - . . ) [q  = 61 (7.11a) 
7 

250 

azX04 + ...)L~ = 121 ( 7 . m )  
1210 

P(X0 ; 4 4 )  = 

(7.12b) 

The r(9p) and r(21/11) in (7.12) are gamma functions (ARRAMOWITZ and S T E G U N , ( ~ ~ )  
p. 255). 

Figure 1 shows P(xo ; 1, q)  for several values of 1 and q = 6, 12. For purposes of inter- 
pretation note that 71 per cent of the radiators have 0.5 I xo 5 1.5. We observe that the 

I I I I 

+ -  

I I I I 
0 10 20 3 0  4 0  

R A D I A T O R  SPEED X, 

Fig. 1 .  Dimensionless speed dependent width and shift function for the r - 6  and r - l z  inter- 
action. The radiator speed xo is in units of the most probable radiator speed and h = m/M. 

speed dependence of the width and shift is greatest in the massive perturber-light radiator 
case as expected and more severe for q = 12 than for q = 6. 

B. Line profile 
At this point it is convenient to introduce dimensionless frequency variables with wD as 

the unit of frequency. Rather than change the notation for o, r, A, we will use a tilde on the 
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line profile symbol to remind the reader that frequencies are expressed in units of the Doppler 
width: o,,I(w) -+ I (w)  

From (7.6) and (6.8) or (6.9) we can derive a number of equivalent expressions for the 
model OIL profile. Writing 0 for P(t; i ,  q )  we have: 

2 “  
= - j 713/2 

dt t exp( - t2)arctan 
- m  

(7.14) 

2 “  
= i,(o) + j” dt t exp( - t’) 

0 

1. (7.16) 
2(1 - p)rt[t2 - w2 + p(r2 + A’)] 

x arctan 
[4/X’t2 + [t2 - bzr2 - (w - Ap)’][t2 - r2 - (w - A)’] 

Equation (7.13) follows from (6.9) and shows the structure of the weight function (6.10) for 
our model; (7.14) follows from (6.8). Equation (7.15) has been given by BERM AN,'^^) 
(equation 13) and follows from (7.14) by considering the even part of the integrand in (7.14) 
and using an identity relating the arctangents of z and z - ’ .  The last expression involves the 
difference between I0,,(w) and the Voigt profile I,(o) where (7.15) and its Voigt profile 
analogue ( p  1) have been used. Although it looks messy, (7.16) has one of the better 
behaved integrands and forms the basis of our numerical work. 

An example of an 01L profile for the r - 6  interaction is shown in Fig. 2 where the shift 

0 4 0 -  I 
r = o 5  - A = 0 363 

3 

< c 
0 0 2 0 -  

,= 0 3 0 -  q . 6 0  - 
A . 2 0 0  

z 
W 
k 
z 
- 010-  

0 
-4.0 -3.0 - 2  0 - I  0 0 I O  2 0  3 0  4.0 

FREQUENCY, w 

Fig. 2. Comparison of Voigt and model CFA-OIL profiles for non-vanishing shift. 

to width ratio has been chosen in accord with (7.9). Generally we may characterize the OIL 
profile as having a greater maximum intensity and being narrower in the core with slightly 
broader wings than the corresponding Voigt profile. Additionally, when A # 0 the OIL 
profile is asymmetric and shifted in the direction of A by an amount less than A. All of these 
features (with the exception of the wing behavior) are apparent in Fig. 2. 

To discuss the wings we will use an asymptotic expansion of the one perturber approxima- 
tion to the OIL profile analogous to the corresponding expansion of the Voigt profile. 
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Using (6.1) and (6.5) in (5.3) leads to the one-perturber OIL correlation function. When this 
is substituted into (3.1) an asymptotic expansion in powers of w - l  leads to I WARD,'^') 
p. 10lff). 

For /3 1 this reduces to the familiar expansion 

i"(0) - - r +  
7cw2 

t4e-12/3(t. , 2, q )  dt. (7.17) 

of the Voigt profile(49) 

31- 
2 n o 4 .  (7.18) 

Although the OIL expansion lacks the algebraic simplicity of the Voigt expansion, the 
integral in  (7.17) is very well behaved numerically and the expansion provides a simple 
means of analyzing the OIL wing. As might be expected, the two expansions make very 
nearly the same error in approximating their respective profiles. 

8 .  COMPARISON WITH VOIGT PROFILE 

A number of methods of comparison are possible. For example, we could examine the 
fractional difference between Voigt and OIL profiles as a function of frequency. However, 
we feel a more interesting comparison results if we analyze OIL profiles as ifthey were Voigt 
profiles. This method of comparison mimics the procedures used in the interpretation of 
low pressure foreign gas broadening to date. 

We adopt the point of view that the parameters r, A and W ,  which characterize both the 
OIL and Voigt profiles are theoretical quantities related to the interaction potential by 
(4.4) in the case of r and A and to the temperature by (1.3) in the case of 0,. The problemin 
analyzing line profiles is to  deduce these parameters and thereby make inferences concerning 
the potential and/or the conditions under which the line was formed. However, if the actual 
profile is an OIL profile which is analyzed in terms of a Voigt profile, one obtains parameters 
r', A' and wD' characteristic of some kind of best fit but not necessarily related to the inter- 
action potential or the temperature. The differences between the best fit parameters (primed) 
and the true parameters represent the kind of errors one may make in assuming a Voigt 
profile and  accordingly we investigate the ratios r'/I-, A'/A and o,'/o, under a variety of 
conditions. 

Although we believe the results which follow serve clearly to delineate the kinds of errors 
and the conditions under which they occur when correlation effects are ignored and analysis 
is made in terms of Voigt profiles, we emphasize that the present work is based on the one- 
interacting-level assumption and is tied to a particular model for the interaction potential 
(inverse power) and the way in which this interaction produces phase changes (classical 
straight line trajectory approximation). Moreover the ratios T'/T and w,'/o, depend on 
what criteria are applied in fitting the Voigt profile as we shall discuss below. Finally, we 
discuss briefly the effect of instrumental width which enters the OIL profile in a non-trivial 
manner and may mask correl ation effects. 

A .  Core analysis 
For the core of the line (frequencies within several HWHM of line center) at least two 

methods have been used to fit Voigt profiles to experimental data: fit the half maximum 
~ i d t h ( ~ O , ~ O )  and full Voigt a n a l y ~ i s . ' ~ ~ ~ ~ ~ ~ ~ )  The former method is useful when r $ 1 
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(dimensionless frequency variables) or when a priori  knowledge of the temperature can be 
assumed and is the method used by BERMAN‘34’ in analyzing the fit of Voigt profiles to OIL 
profiles (SDVP in his nomenclature) for the r - 1 2  interaction. In the general case one wants 
to obtain both and wD and this requires ‘full Voigt analysis’, that is, the width of the 
Voigt profile is required to fit the experimental profile at two different fractions of the profile 
m a ~ i m u m . ( ~ , ~ ’ - ’ ~ )  Clearly the parameters r’ wD’ which result from this procedure will be 
independent of what fractions are chosen for the fits only when the experimental profile is 
Voigt and systematic variations in r’ or wD’ with choice of fitting points provide a sensitive 
test of deviations from Voigt behavior. In applications of this method it is customary to 
chose the FWHM as one of the fitting points and various fractions r of maximum intensity 
for the other fitting point. In the present analysis we have chosen c i  = 0.4, 0.3, 0.2, 0.1 and 
0.05 although our figures show only the r = 0.4 and 0.05 cases for simplicity; the other 
three cases fall between the extremes at nearly equally spaced intervals. 

We should also note that this fitting procedure is based on fits of thefull widths at various 
fractions of maximum intensity and consequently minimizes the effects of profile asym- 
metry. Indeed, we have analyzed OIL profiles for A = 0.0 and A = tan[n/(q - l)] and find 
that asymmetry has very little effect on either of the ratios r’/r or o’/w, ; at most the 
differences would just barely show in the figures and are omitted for clarity. The parameter 
A‘ is of course the frequency at which the maximum of the OIL profile occurs. 

Figure 3 shows the variations in r’/r, w D ’ / o D  and A’/A as a function of perturber/radiator 
mass ratio, /I = m/M, for representative values of r. In Fig. 3(a) the ratio r’/r for r = 0.01 
is omitted because it reaches a value of 1.6 at z 1.0 for the q = 12, a = 0.40 case (see Fig. 
4). The extreme cases of rl = 0.4 and 0.05 serve to indicate the level of sensitivity required to  
detect departures from Voigt behavior. As an example, for r = 0.5, lL = 1.0, the difference 
in r’/r at x r 0 . 4  and 0.05 is 0.14 so one would need width determinations better than 10 per 
cent to begin observing any correlation effects. 

It is also encouraging to note that the ratios are not especially strong functions of the 
choice of power in the interaction potential. Although this probably limits the utility of 
correlation effects as a probe of the interaction potential, it is a welcomed result in the 
context of the present work where only the simplest model potentials have been considered. 

- 4 - 6 . 0  
-- 4 = 12.0 

N I  L / ’/ I 

6.0 I 0. I 10 10.0 100.0 
M A S S  RATIO,  X = m / M  

(4 
Fig. 3 
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This strengthens the expectation that the inverse power model serves to adequately delimit 
the scope of correlation effects. Still a word of caution is in order. HINDMARSH, PETFORD and 

have investigated conventional theory for the case of a Lennard-Jones (12-6) 
potential and found results surprisingly different from either the r - 6  or Y - "  interactions. 
The nature of correlation effects for the Lennard-Jones (12-6) potential is currently under 
investigation. 

In Fig. 4 we show the dependence of r'/r and u D ' / W D  on r for the case A = 20.0. 
Again the ratios are not especially significant functions of q except for the Doppler ratio 
near r = 1.0. Note that for some r 2 1 the fitting procedure fails to yield a physical solution 
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Fig. 4. Ratio of fit parameters (primed) to the true parameters as a function of width para- 
meter r for the r - 6  and r - 1 2  interaction potentials and the perturber/radiator mass ratio 
A = 20. Since I? is linearly proportional to perturber density, the figure shows the density 

behavior (on a log scale) of the ratios I?’/ I? and wD’/wD. 

for the Voigt parameters; in Fig. 4 this is apparent in the oD’/oD ratio for the CL = 0.40, 
q = 12.0 case. Also the increased negative slope of r‘jr for r 5 0.005 is a real effect and we 
suspect that for some r sufficiently small the slope diverges signifying that the fit equations 
again no longer possess physical solutions. Although such a divergence occurs in a region 
of no physical interest (possibly at r = 0), it would be the analogue of what is apparent in the 
oD’/oD ratio for larger r. 

For any given radiator-perturber system, r is directly proportional to perturber density 
so that Fig. 4 may be interpreted as the density behavior of the r’/r and o,‘/o, ratios. 
The behavior is more or less what one might expect, namely, correlation effects lead to 
signlficant errors in the parameter that plays a minor role in the characterization of thepro3le. 
Thus for small r, Doppler effects dominate the profile and residual correlation effects are 
interpreted as anomalous behavior of the Lorentzian component. As r increases, Doppler 
effects play a progressively less important role in  determining the profile and correlation 
effects lead to increased errors in the Doppler width and decreased errors in the Lorentzian 
width. 

The rather large r’/r ratios for r 50.1 suggest that experiments may easily detect 
correlation effects with favorable perturberiradiator mass ratios. However, small r corres- 
ponds to low pressure and for many systems the region r 5 0.1 remains experimentally 
difficult or altogether inaccessible. Moreover, the actual difference between OIL and Voigt 
profiles for l- 5 0.1 is everywhere less than a few per cent (because Doppler broadening 
dominates the profile) which gives some estimate of the signal to noise requirements in an 
experiment. Figure 5 shows the fractional difference [jv(w) - 10,L(o)]/lv(o) for the case 
2 = 20.0 and a range of r values. For r 50.1 full Voigt analysis with 0.05 5 CI 5 0-4 uses 
that part of the profile corresponding to frequencies in the range 1.0 5 w 5 2.0. 

Experiments have traditionally been interpreted in terms of plots of width and shift 
vs perturber density, n, and summarized in terms of the broadening and shift constant and 
the shift to width ratio, r / n ,  A/n  and A/I- respectively. Figures 6(a) and (b) show plots of r’ 
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Fig. 5 .  Fractional difference between the Voigt and model OIL profiles as a function of 
frequency from line center for the r - 6  interaction and perturber/radiator mass ratio h = 20.0. 
Since both profiles are symmetric in the A = 0.0 case only positive frequencies are shown. 

and A' vs r (proportional to n) for 1. = 20 and q = 6 and thereby indicate the density 
behavior as it would normally be encountered when full Voigt analysis is applied to OIL 
profiles. Again the difference between the c( = 0.4 and 0.05 curves indicates the level of 
sensitivity required in an experiment to detect correlation effects. If we use the slopes from 
the linear portion of the curves and take an average slope of 0.94 for the r' vs curve we 
obtain broadening constant, shift constant and shift to width ratio 6, 16 and 11 per cent 
smaller than predicted by conventional theory. These are not appreciable changes and the 
case /I = 20.0 is rather extreme. In fact the variation of w,'/w, with density (Fig. 6c) may 
be a more experimentally accessible indicator of correlation effects and we caution that 
experiments which rely on temperature determinations from oD in the r - 1 region to infer 
perturber densities may be susceptible to systematic error; the fitted Doppler width oD' is 
smaller than the true Doppler width resulting in temperatures (T - a,') lower than the 
true temperatures. 

We should also note that the non-linear variation of r' with density will lead to errors if 
natural or instrument widths are obtained from extrapolations to zero density based on the 
linear portion of the curve. The amount and even the sign of the error will depend on the 
method of Voigt analysis applied to the profile as is clear from a comparison of Fig. 6(a) 
with Fig. 3 given by BERMAN.'34' (The SDVP width parameter Wab'(r) used by Berman is 
rp( 1 ; A, q)  N I' since p( 1 ; A, q)  N 1 independent of 1. and q.) The relation between the Lorentz 
parameters deduced by the two methods is easy to see qualitatively. Let rB' denote the 
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Fig. 6. Fit parameters as a function of r (proportional to perturber density) for the case of an 
r - 6  interaction with perturber/radiator mass ratio h = 20.0. The figures show the non-linear 
density dependence and concomitant extrapolation errors as they would normally be encoun- 
tered. Also shown is the extent to which convolution of an OIL profile with a Lorentzian 
(HWHM = r o )  may mask correlation effects when full Voigt analysis is applied. The Lorent- 
zian parameter ro is in general the sum of natural and instrumental widths with the latter 
usually dominant; r0 = 0.0 of course corresponds to an OIL profile as given by (7.1 3) (natural 

width neglected). (a) r’; (b) A’; (c) wD’. 

dimensionless Lorentz parameter obtained by requiring that a Voigt profile using the correct 
Doppler width, w D ,  fit an OIL profile at the FWHM (Berman’s method). Since the OIL 
profile is slightly narrower at the FWHM point than the corresponding Voigt profile, 
T i  will be smaller than the true Lorentz parameter I-. However, when a full Voigt analysis 
is applied to approximately the same region of the profile (ct = 0.4) we find that the Doppler 
width wD’ of the best fit (Voigt) profile is smaller than the true Doppler parameter so that r’ 
must be greater than r. Since both r’ and rB’ approach at low densities, we see that full 
Voigt analysis will yield curves of width vs density with negative curvature and positive 
extrapolation errors while Berman’s method yields curves with positive curvature and nega- 
tive extrapolation errors. Similarly, we note that the non-linear variation of shift with 
density will yield an extrapolation at zero density and here the result is unambiguous. 

Figure 5 also permits a somewhat different characterization of correlation effects on the 
basis of where in the profile they appear. What we observe is that when r is large the OIL 
wings approach Voigt behavior and deviations, though sizeable, are confined to the central 
part of the 01L profile. This is because as gets large the Doppler core and hence correla- 
tion effects are confined to a smaller region of the profile. The opposite occurs in the limit 
r + 0. Then the pressure and correlation part of the OIL profile behaves increasingly like 
a delta function with the result that in the central region of the OIL profile the convolution 
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integral (7.1 3) samples only the collisionless Doppler factor exp( - t 2 )  which gives essentially 
a Voigt profile. Residual correlation effects appear in the wing where pressure and Doppler 
effects make approximately equal contributions [this occurs at w z 2.0 for r = 0.01 on the 
basis of HUMMER'49' equation (2.6)] to the profile and the far wing goes over to Voigt 
behavior. 

B.  Wing analysis 
This discussion applies to that region in the line wing at frequencies greater than several 

HWHM from line center where an  impact or one perturber theory is still applicable. Here 
the asymptotic expansions (7.17) or (7.18) provide a good description of the profile and by 
fitting these expansions to the wing we can determine the parameter r approximately. This 
method of analysis is applicable to a wide range of ,< 0.1 
in  which case wD is determined from the FWHM by treating the core as a pure Gaussian. 
Letting 2w,,, be the FWHM, we have oD' = o,,,/(log 2)'12. Figure 7(a) shows the frac- 
tional error made in wD' as a function of r with the interesting result that smaller errors 
are made when OIL profiles with larger q and ;I are analyzed this way. This reflects the fact 
that OIL profiles are slightly narrower in the core than Voigt profiles as previously noted. 

Knowing oD (or its approximation w,') we can proceed to fit an asymptotic expansion to 
the OIL profile wing. We consider two cases: in the Voigt-wing-fit case the asymptotic 
Voigt wing (7.18) is fitted to the OIL profile resulting in the width 

if wD is known a priori or to 

whereas in the OIL-wing-fit case the asymptotic OIL wing (7.17) is fitted to the OIL profile 
resulting in the width 

.W2j0 ,L(w> 

I' 4 "  
" =  [I  +mJo t4exp(-t2)P(t;R,q)dt 

In Figure 7(b) we plot the fractional error (r' - r)/r for both cases as a function of w for 
= 0.1 and l- = 0.0001. Only fits to an OIL profile with q = 6.0 have been shown for 

clarity; in the region w 2 5.0 thefractional errors for fits to an OIL profile with q = 12.0 are 
approximately 25 per cent greater for the Voigt-wing-fit case and 10 per cent greater for the 
OIL-wing-fit case. As A decreases th'e Voigt-wing-fit curves move down towards the OIL- 
wing-fit curves which move down slightly (about 10 per cent) to the limiting case defined by 
fitting the asymptotic Voigt wing to a Voigt profile. We see that the errors incurred in the 
Voigt-wing-fit case are quite respectable and such a procedure may be entirely adequate in 
practice. We conclude that Doppler width determinations based on the FWHM of the OIL 
profile are in fact better than those from the corresponding Voigt profile, that the OIL wing 
is largely Voigt is character and that analysis of OIL profiles based on the FWHM and the 
asymptotic Voigt wing expression will lead to errors of less than 1 per cent in wD and r 
under a wide variety of conditions. We stress that the errors incurred depend on where in 
the wings the fit is made and that the asymptotic expansion fits are unreliable for frequen- 
cies less than about five Doppler (half) widths from line center. 

C .  Instrumental width 
in which 

case the convolution of a Voigt line profile and the instrument profile is again a Voigt 
One may often approximate an instrumental profile by a Voigt 
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(b) 
Fig. 7. Fractional errors incurred in determination of profile parameters using the FWHM for 
wD’ and asymptotic wing expansions for r’. The case of perturber/radiator mass ratio h = 20.0 
is shown. (a) Fractional error (wD’ - w D ) / w D  as a function of r when wD’ is determined from 
the HWHM = wli2 of an OIL profile according to wD’ = w,, , /~’ log  2. (b) Fractional error 
(I?’- r)/r as a function of frequency from line center (in units of the Doppler width w D  
which is assumed to be known exactly) at which Voigt or OIL asymptotic wing expansions are 

applied. 

~ 
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profile and the problem of deconvolution is reduced to algebra by the theorem(5’) on addi- 
tivity of Lorentzian widths and additivity of squares of Gaussian widths. When the spectral 
profile is not Voigt, the convolution or deconvolution problem is more difficult and in this 
section we consider briefly the convolution of an OIL profile with Lorentzian and Voigt 
instrumental profiles. 

We consider first the case of convolution with a Lorentzian with FWHM given by 2r0 
which in general is the sum of the natural width and the Lorentzian instrumental width. 
Typically natural width is negligible and we shall refer to To as simply instrumental width. 
From inspection of (4.2) and (6.4) we see that the convolution of Lorentzian and OIL 
profiles is again an OIL profile with total speed dependent width rtoc(u) given by 

This is equivalent to the replacement T/I -+ To + r/I in (7.13)-(7.15) but not in (7.16) where 
cancellation has occurred between the Voigt and OIL integrands. Not surprisingly, the 
effect of a Lorentzian instrumental profile is to increase the Voigt character of the resulting 
OIL profile as is shown in Fig. 6 for the extreme case of A = 20 and the relatively modest 
instrumental width ro = 0.2 (dimensionless variables). In the presence of instrumental 
width the error in the broadening constant deduced from the linear portion of the r’ vs 
curve is reduced from about 6 per cent to about 3 per cent whereas the shift constant 
remains relatively unchanged although the extrapolation anomaly in  the shift is appreciably 
reduced. The Doppler widths oD’ obtained from a full Voigt analysis are also improved in 
the presence of the Lorentzian instrumental width although in this case the sizeable correla- 
tion effects are not substantially altered. 

We have Blso considered the convolution of OIL and Voigt profiles in which case the 
resulting profile is no longer an OIL profile and the convolution must be performed numeri- 
cally. For the case of a Voigt instrumental profile with Lorentzian parameter To = 0.2 and 
Gaussian parameter oo = 0.2 we find little change from the case of a pure Lorentzian with 
To = 0.2 when full Voigt analysis is applied: r’ and A‘ are increased by 6 1 per cent in 
absolute value and the slopes (r’ and A‘ as a function of r) are changed negligibly. The 
Doppler widths wD’ are of course increased but when the instrumental component wo is 
subtracted according to the additivity of squares theorem, the corrected Doppler widths 
are 5 1 per cent greater than for the case of a pure Lorentzian instrumental profile. 

More generally the problem of instrumental width is particular to each experiment and it 
does not seem appropriate to pursue the problem further in this paper. We have raised the 
question to see what effects might be expected and we conclude that instrumental width 
tends to mask correlation effects when full Voigt analysis is applied to the resulting profiles 
and that small Lorentzian components are much more significant than small Gaussian 
components. 

9 .  PREVIOUS WORK 

A .  Theory 
Previous theoretical efforts to account for correlation between Doppler and pressure 

broadening consist chiefly of the correlated strong collision (CSC) model due to RAUTIAN 
and SOBEL’MAN(’’) and GERSTEN and FOLEY“~) and the ad hoc modifications of the Voigt 
profile by MIZUSHIMA(’ 7 , 1 8 )  and EDMONDS.(’9) 

QSRT-Vol. 14 No. 7-C 
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In the CSC model one assumes a constant collision frequency v, and adopts the G-function 
g(4)fM(v) where g(4) is given by (3.20) and the post-collision velocity distribution is Max- 
wellian. Then the line profile may be expressed in terms of the complex error function. 
However, it is unclear what status should be accorded the CSC model as far as the problem 
of Doppler-pressure correlation effects is concerned. We noted in the introduction that for 
arbitrary perturber/radiator mass ratios one can show that CFA theory is valid only for 
identical interaction in both levels or for interaction in only one level. In the former case 
correlation effects disappear because the phase shifts all vanish (although collisions still 
modify the Doppler profile) and in the latter (OIL) case we have used an exact form of the 
G-function (based on correspondence with quantum theory) which clearly incorporates 
rather different collision physics than the CSC model G-function. Consequently we regard 
similarities in the strong collision and OIL profiles as mostly the result of accident or 
fortune and are not surprised to find significant differences as for example the fact that the 
peak of the asymmetric CSC model profile is shifted by more than A whereas for OIL 
profiles the shift is less than A. 

The first problem to arise in any attempt at quantitative comparison of the OIL and CSC 
models is to choose the collision frequency v, for the CSC model. One expects that v, - r 
since departures from Voigt behavior (correlation effects) are small and for A = 0 the choice 
v, = r reduces the CSC model to a Voigt profile exactly. On the other hand, the CSC model 
has no explicit dependence on the perturber/radiator mass ratio A so that v, has to com- 
pensate for variations in A. It turns out that the choice of v, as a function of A can be settled 
unambiguously(32) by equating the asymptotic expansion of the one-perturber approxi- 
mation to the CSC model, 

r v, + 2 r  i(0) - - + - 9  

nw2 2n04 

to the asymptotic OIL wing given by (7.17). The result for the r - 6  interaction is that 1.0 5 
v,/T 5 1.6 as A ranges from 0 to m. With v, chosen in this manner we find fractional dif- 
ferences between the CSC and OIL model profiles (q = 6 case) of 51 per cent for A = 0.0 
and r 5 0.5 and significantly larger fractional differences for A fO. Unfortunately the 
asymptotic OIL wings are nearly Voigt in character and consequently do  not provide a 
sensitive criterion for the A dependence of either the OIL profile itself or the CSC model 
collision frequency as the following example illustrates. For the case A = 0.0, A = 20.0 and 

= 1.0 the ' optimum ' collision frequency based on the asymptotic wing criterion is 
v, = 1.57 which results in agreement between the OIL and CSC models of about 5 per cent 
for I w I 5 2.0 and 5 1 per cent over the rest of the profile out to I w I z 8.0. However, use 
of v, = 2.2 for this case reduces the fractional differences in the core by a factor of 10 with 
no significant loss over the rest of the profile. In general, however, the CSC and OIL 
models are different (especially when A # 0) because the basic physics is different and we do 
not believe parameter manipulation should obscure this fact. 

In the ad hoc theories of Mizushima and Edmonds both authors begin by generalizing the 
Voigt profile (4.5) with the replacement r + T(u) so that the profile they consider is given by 

1 "  rP 
Ivr(w) = --p dt exp(- t 2 )  

- m  (O - t ) 2  + r2p2 (9.2) 

where we have written p for B( t ;  1, q )  as previously. Comparison with (6.9) or (7.13) shows 
that this procedure approximates the " convolution weight function " given in (6.10) by 
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unity. For the straight line trajectory-inverse power law interaction model (also used by 
Mizushima and Edmonds) this amounts to requiring 

d 
(w - t )  -log B ( t ;  A, q)  4 1 (9.3) dt 

which from the properties of the confluent hypergeometric function (7.8) one can show is 
satisfied for At  small. Since values of I t 1 - 1 are important the condition is essentially that 
A be small. Consequently the basic Mizushima-Edmonds line profile is a massive radiator 
approximation which is also the limit of small correlation effects. 

It is worth noting that the starting point for Berman’s derivation of the 01L profile 
(SDVP profile) is the replacement r -+ r(u) (along with A -+ A(u)) in a formula for the 
Voigt profile exactly equivalent to and only slightly different in form from the conventional 
formula used by Mizushima and Edmonds (see BERMAN,‘34’ equation la). The lesson is 
that the deceptively simple replacement r + T(u)  and A --f A(u) is a delicate matter that must 
be informed by fundamental theory which of course BERMAN has 

In the calculation of the speed dependent width Mizushima and Edmonds proceed 
differently. Edmonds considers natural, Stark and Van der Waals broadening as weli as 
macroscopic turbulence and we shall illustrate his method for a general r - q  potential in the 
absence of macroscopic turbulence. First he calculates the mean relative speed as a function 
of radiator speed:* 

( u R ( u ) )  = I 1 V’ - v I fm(v’) d3u‘ (9.4) 

(9.5) = U R  w,(u/fi, ; A). 
Next he notices that the width of conventional line broadening theory assuming straight 
line paths and an r - q  potential may be expressed as 

r = (const)nfiRC(v 3 ) / ( q -  1)1 

from which Edmonds obtains his expression for the speed dependent width by the replace- 
ment O R  + (vR(u)) :  

(9.6) 

= r p E ( u / h f ;  A q ) ,  (9.7) 

(9.8) p E ( X ;  1, q )  = [o,(x; ~ ) y ( q - 3 ) / ( q - 1 ) 1  

where PE(x; A, q )  has the interpretation a dimensionless width function; Edmonds does not 
consider the effect of line shift. In general PE(x; 1, q)  approximates the behavior of p(x; I, q)  
and from the series expansion of (2.10) one has 

(9.9a) 

43 
1210 

Ax2 - - A2x4 + ... [q = 121. (9.9b) 

Comparison with (7.11) shows that jIE(x; I ,  q )  is an excellent approximation to P(x;  A, q)  for 
the small I region in which (9.2) is valid. 

* [The (-) signs in Edmond’s equation (10) should be replaced by (+)signs; on the basis of his discussion, 
these are probably typographical errors.] 
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MIZUSHIMA‘’ 7, works in the language of isolated line adiabatic quantum line broadening 
theory, but his method may just as easily be cast in the language of CFA theory where it is 
perhaps a little more transparent. He derives an expression for the speed dependent width 
and shift including correct velocity averaging which is equivalent to (7.1) and then assumes 
small phase shifts so that 

1 - exp[-idO, %)I M WP, OR) + + $ 2 ( ~ ,  OR) (9.10) 

is a reasonable approximation. Using straight line trajectories for an r - 4  potential leads to 
[a  comes from (7.5)] 

1 

OR 

00 

r,(v) = m a 2  Jo Jd3V, - f,(V -I- VR). (9.1 1) 

A similar treatment of conventional theory lead\ to an expression for r and allows us to 
express Mizushima’s results in the form* 

r,(q = rp,(oja, ; ;.) (9.12) 

p,M(x; A) = +&(1 + A ) ” ’ @ ( J S X ) / J X X  (9.13) 

where @(z) is the error function (2.1 1) and Mizushima’s dimensionless shift function 
p,(x; A) is independent of the inverse power of the interaction potential. To the same approxi- 
mation, the sh$ is independent ofspeed.  Comparison of Fig. 1 with Fig. 3 of Mizushima’s 
1967 paper shows that p,(x; 1.) seriously misrepresents the speed dependence of the speed 
dependent width. Only for small IL does Pw(x;  A) behave approximately as p ( x ;  R, q )  (both 
being approximately unity) but this is just the condition under which the modified Voigt 
profile (9.2) properly includes correlation effects. Nonetheless, Mizushima applies his 
theory to the case 1. = 1 and these results must be regarded as suspect. 

B. Experiment 
We have examined some of the recent experimental literature to see if there is any evidence 

of correlation effects. To date the interaction between theory and experiment has been 
justifiably concerned with the problem of interaction p~tential‘~’’ and most if not all work 
has been carried out for systems with A 5 2. Not surprisingly we find no direct evidence. 

on Kr broadened by He, Ne, 
Ar, and Kr no departures from linearity in the density dependence of the width and shift 
were found and Vaughan and Smith report no asymmetries. However, the Smith experiment 
suffers from a large and difficult spectrographic instrument profile and on the basis of our 
simulation of the Vaughan and Smith experiment we would not expect any observable 
departures from linear density dependence or obvious asymmetries; essentially i. 5 1 is just 
too small. 

In an experiment by MCCARTAN and HINDMARSH(56’ on the broadening of the K reso- 
nance line 1.4047 8, by Kr (2 = 2.14) the density dependence of width and shift is reported as 

In  the experiments Of and VAUGHAN and 

* Actually pw(x;  h)  differs from Mizushima’s equation (1 1) of his 1971 paper (I8) (which corrects equation 
(13) of his 1967 paper‘”)) by a factor of d2which comes about by using the reduced muss Maxwell distri- 
bution in the expression for r of conventional theory (see our equation 4.4); Mizushima apparently uses the 
perturber mass Maxwell distribution. The ordinate in Fig. 3 of the 1967 paper should be multiplied by dj. 
Mizushima considers mainly the case h = 1 but our dependence on the mass ratio h corrects equation (35) 
of his 1967 paper. 
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“ satisfactorily linear ” but both show extrapolation anomalies at zero density. The method 
of Voigt analysis is not specified and we note simply that the very small extrapolation 
anomaly in the broadening constant is qualitatively what would be expected in a Berman 
type analysis (fit of half maximum width). The larger anomaly in the shift vs density curve is 
ascribed to a shift in the emission line relative to which the shift was measured. However, 
we estimate that as much as 20 per cent of the observed anomaly may be due to correlation 
effects. 

In  a more recent experiment on the broadening of the Ca resonance line 1,4227 A by He, 
Ne, Ar, Kr and Xe, SMITH(58) has observed asymmetries and non-linear density behavior in 
the broadening and shift constants for Ar, Kr and Xe perturbers. These results are ascribed 
to breakdown of the impact approximation although this is not obviously the case for the 
densities and region of profile examined. Correlation effects were not considered but are not 
ruled out and the experimental results should perhaps be re-evaluated with this in mind. 

10. S U M M A R Y  

A classical Fourier amplitude theory of line broadening in the impact approximation has 
been developed which accounts for radiator motion by including speed dependence in the 
collision frequency and velocity dependence in the distribution function (G-function) for 
collisional phase shifts and velocity changes; the work is equivalent to the general kinetic 
equation theory of Rautian and Sobel’man. We have derived the one-perturber approxima- 
tion which serves as the starting point for asymptotic wing expansions and, in conjunction 
with the one-perturber quantum theory of combined Doppler and pressure broadening, 
permits an investigation of the validity conditions of the classical theory to be reported in a 
future paper. The classical 01L approximation corresponding to the quantum mechanical 
one-interacting-level approximation was introduced and in this case the general theory was 
reduced to a single integration for the line shape provided the speed dependent width and 
shift functions are known. Correlation effects in the OIL approximation were extensively 
investigated by means of model speed dependent width and shift functions. The model 
assumed an inverse power interaction potential and evaluated the classical phase shift using 
straight line trajectories. Conventional impact theory for this model leads to Voigt profiles 
and correlation effects were studied in terms of departure from Voigt behavior. For the case 
of an r - 3  potential the model leads to Voigt profiles just as with conventional theory. 
However, resonance broadening is a more complicated phenomenon involving exchange of 
excitation which the present theory does not consider so that the applicability of this result 
remains open to question. Our main concern was with foreign gas broadening and here we 
found that correlation effects are relatively insensitive to choice of power in the interaction 
potential (F6  or r - 1 2 )  which suggests that the simple model adequately displays the range 
and behavior of correlation effects. 

Generally we may characterize the model 01L profiles as being slightly narrower in the 
core than corresponding Voigt profiles and with nearly Voigt wings. Except when the shift 
parameter A is vanishingly small, the OIL profile is asymmetric and has maximum intensity 
shifted by an amount less than the corresponding Voigt profile. Considerable attention was 
given to the question of errors in the width, shift and Doppler parameters (r’, A‘ and a,’) 
that result if OIL profiles are analyzed as Voigt profiles. When r 60.1 we find that an 
analysis based on using the FWHM value to determine wD‘ and a fit of the asymptotic 
Voigt wing expansion at frequencies greater than 50,’ to determine r‘ leads to errors of 6 1 
per cent. When full Voigt analysis is employed, correlation effects were found to lead to the 
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following kinds of behavior: dependence of r' and wD' on choice of fitting points, non- 
linear density dependence in r' and A' with concomittant extrapolation anomalies at zero 
density, and significant variations in wD' which may result in systematic errors in density if 
temperatures are inferred from cog'. All correlation effects are functions of the perturber/ 
radiator mass ratio A and systems with A 2 5 will probably have to be used in experimental 
investigations. Also close attention will have to be given to the problem of instrumental 
profile which tends to mask correlation effects when conventional methods of analysis are 
used. 

With the possible exception of systematic errors in the density, correlation effects do not 
seem to have affected previous work on line broadening primarily because only I 5 2 
systems have been extensively investigated. Also the broadening constant (slope of linear 
region of width vs density curve) turns out to be rather insensitive to correlation effects, 
especially in the presence of a Lorentzian component to the instrumental profile. The con- 
clusion is that correlation between Doppler and pressure broadening warrants further 
theoretical work (more general potentials and removal of OIL restriction) and careful 
experimental investigation but the results are not likely to significantly alter either the kind 
of information available from line broadening studies or the means of obtaining that infor- 
mation. 
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A P P E N D I X  

To derive the distribution function for collisional phase and velocity changes we first 
consider a collision in the frame of reference where the radiator is initially at rest and the 
perturber is incident with velocity uo along the z axis. The perturber scatters with a final 
velocity u in the direction 8 and the radiator recoils with a final velocity v making an angle 
$ the z axis. Conservation of energy and momentum leads to p. 325) 

2P u = - uo cos $ 
M 

where p is the reduced mass of the radiator-perturber system. The relation between radiator 
recoil angle $ and the center of mass scattering angle 0 is given simply by  MARI ION,'^^) 
p. 322) 

Consequently the probability for a recoil angle $ can be expressed in terms of the probability 
for scattering through an angle 0 in the center of mass frame. This probability is simply the 
ratio of the differential center of mass scattering cross section to the total elastic cross 
section. Unfortunately, in classical scattering theory, the total cross section is in general 
undefined ( M A R I O N , ' 5 8 )  p. 334; GOLD STEIN,'^^) p. 85) so we introduce an interaction 
sphere of radius R outside of which the potential is assumed to vanish. This results in a total 
cross section ut = n R 2 .  

2$ = 7c - 0. (A21 
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With this definition of o, the probability of radiator recoil with velocity v is 

1 

6, 
P(v; uo) d3v = - - a(@, uo)sin 0 d O  d4cM6 

4 
o(7c - 2$, uo)cos $ 

x v 2  sin $ dv d$ d4u  

Here o(O, uo) is the center of mass differential scattering cross section with relative speed 
dependence introduced explicitly, the minus sign was introduced because of the opposite 
sign conventions on 0 and $, the center of mass azimuthal scattering angle 4CM is related 
to the rest frame azimuthal recoil angle +,, by an uninteresting constant and the transfor- 
mation 0 -, $ follows from (A2). 

Now the joint probability P(4, v; uo) d 4  d3v, for a phase change 4 and a radiator recoil 
velocity v in a collision with the radiator initially at rest and the perturber incident with 
velocity uo is just 

P(4, V; u0) d 4  d3v = P(v; u0) d3v P ( ~ / v ;  u0) d 4  (A41 
where P ( ~ / v ;  uo) d 4  is the conditional probability for a phase change 4 subject to the con- 
dition of a recoil velocity v. The phase change in a collision is assumed to depend only on 
impact parameter and relative speed, 4 = $(p,  v,), so that P ( ~ / v ;  uo) d 4  can be expressed 
in terms of still another conditional probability distribution. Let w(p/v; uo) dp be the proba- 
bility of an impact parameter p subject to the condition of radiator repoil with velocity v. 
Then 

(A5) 

and 

This essentially solves the problem for perturbers incident with velocity uo in the rest 
frame of the radiator. Let P ( 4 ,  v;  vo , vR) d 4  d3v be the probability of a phase change 4 and 
a new radiator velocity v in a collision event where the radiator initially has velocity vo and 
the perturber initially has velocity vR relative to the radiator. Then P(4,  v; vo , v,) follows 
from (A6) by the replacements: uo --f vR and v --f v - vo . Hence 
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where the velocity change vector, w, has been defined as 

w = v - - 0 .  (AS) 

The quantity of interest, G(4, v; v,) is just the average of P ( 4 ,  v; vo , v,) over all collisions in 
which the radiator has velocity vo . From (2.5), (2.7) and (2.9) we have: 

1 
649) 

( A W  

G($? v; - I v c ( v R  ; vO)p(4 ,  v;  vO > vR) d3vR 
V h O )  

V ~ V R  ; vo) = nor U R  f X v o  + V R )  

This is the general result. To obtain (3.14) we consider the case where there is a unique 
relation between impact parameter and scattering angle. This will be true of repulsive 
interactions and approximately true of realistic interatomic potentials under conditions 
appropriate to many line broadening problems. Then for azimuthally symmetric scattering 

w(p/w; vR) s[P - P(OR ' 6', uR)l (A 12) 

where the function p(QR .6', 0,) giving the impact parameter corresponding to recoil angle 
cos-' 9, . 6' at relative speed vR is given by classical scattering theory (MARION,('9) p. 329; 
GOLD STEIN,(^^) p. 73). The p-integral in (A1 1) may be performed immediately giving (3.14). 

The normalization condition may be verified by relatively straightforward integration of 
(3.14). The forward scattering limit is defined by a differential scattering cross section of the 
form 

(A13) 
or 

2n 
a(@, D R )  = - qcos  0 - 1) 

in which case there is no longer a unique relation between impact parameter and scattering 
angle so that (A l l )  must be used with 

From (A13) we have 

= ar 6(w) (A151 
and (3.18), (3.19) follow in a straightforward manner. 

The time reversal symmetry relation (3.21) is easy but it appears that the detailed balance 
relation (3.22) requires evaluation of some of the integrations in (3.14). Put the v,-space z 
axis along fv and let vo have spherical coordinates (uo , B o ,  40) so that 

vR . vo = vR vo[cos Bo cos 8, + sin Bo sin 8, cos(4, - &)I. (A 16) 
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Then 

x d4R exp[-mvo uR sin eo sin 6, cos(4R - (bo)/kT]. (A17) 

The 4,-integral may be expressed in terms of the modified Bessel function Io(x) (GRAD- 
SHTEYN and R Y Z H I K , ( ~ ~ )  No. 8.431.3, p. 958) and the v,-integral may be performed with the 
first delta function provided the B,-integration is restricted to 0 I OR I x/2. Defining 
z = (cos OR)- ’  we obtain 

871nw M m 

G(4, v; vo) = - (-) fm(vo)exp(-mMvo w/2pkT) dzz exp(-mM2w2z2/8p2kT) 
V&O) 2P 1 

The integrand is insensitive to the sign of w and from the identity 

(A191 
mM mM 

P P 
(M + m)uo2 + - vo (v - vo) = (M + m)v’ + - v (vo - v) 


