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The general nonlinear ambipolar-flow equations are derived and discussed. The irriportant non- 
linearities are caused by the inertia of the ions and by the heat-conduction mechanism. It is shown 
that all essential effects associated with these nonlinearities can be demonstrated in the plane-parallel 
case. The influence of the nonlinearity caused by the inertia is discussed in detail for the plane-parallel 
case and it is shown that this flow is analogous to the flow of a fluid with friction through a contracting 
nozzle. The limiting velocity-the isothermal or the adiabatic sound velocity-which is found in the 
exit of a nozzle is also found a t  the boundary in the case of inertia-controlled diffusion, provided this 
boundary acts like a perfect sink. Bohm’s criterion-the ion drift velocity less than or equal to the 
sound velocity of the electron-ion gas in front of the boundary or the wall sheath-appears as :tn 
integral part of the inertia-controlled-diffusion theory. In the inertia-controlled-diffusion theory are 
incorporated, as integral parts, all the assumptions that necessarily must be added to the linear- 
diffusion theory in order to make it realistic. The isothermal and inertia-controlled diffusion 1e:tds 
always to wall-stabilized plasma configurations which directly rorresporid to the fundamental mode 
solution in the linear-diffusion theory. 

INTRODUCTION 

HE concept diffusion applies to the flow of one T medium in another under the influence of the 
density gradients and the thermal motion of the 
particles in thc two media. The analytical description 
of this phenomenon, the diffusion equation, is 
obtained by applying the laws of conservation of 
mass and momentum in their microscopic or maero- 
scopie forms to  the diffusing matter. The simple 
form of the diffusion, the linear diffusion, is obtained 
when the concentration of the diffusing matter is 
small in comparison with the concentration of the 
medium in which it is diffusing and when the non- 
linear terms can be neglected. This simple mechanism 
is modified in practical cases by nonlinear terms. 
The most important nonlinear terms are the terms 
caused by the inertia of the diffusing matter and 
by the heat-conduction mechanism. Both these 
nonlinearities are included in the basic equations 
of this paper although only the first kind, the one 
caused by the inertia of the diffusing matter, is 
fully analyzed. It will be shown that the inertia- 
controlled diffusion resolves the dilemma a t  the 
boundary which one experiences in the simple 
linear-diffusion theory when it is treated as an 
eigenvalue problem. It leads to “wall-stabilized” 
configurations which change into “free” configura- 
tions only when the heat-conduction mechanism is 
invoked. 

The medium treated here is the electron-ion 
plasma. The simplest practical model of this kind 
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of plasma has three kinds of particles: rIcctron~, ions, 
and ncutral particles. Diffusion in this kind of 
medium has becn discussed in the low-pressure case 
by Bcrnstcin and Holstein’ and in the high-pressure 
casc by Allis and P i “  Xrither of these authors 
have considered the influcnce of the nonliriearities 
discussed in this paper. Allis and Rose emphasize 
the influence of the ambipolar space-charge field 
and the nonlinearity associated with this field. The 
stand is taken in this paprr that the ambipolar 
space-charge field only gives rise to internal forces 
which have little influence on the momentum- 
balance equation for the ionized part of the plasma 
and that the primary function of this space-charge 
field is to serve as an energy-exchange mechanism 
for the transfer of random kinetic energy from the 
electron gas to the ion gas. 

The discussion will be limited to the case of 
ambipolar flow in the absence of a magnetic field. 
Then no currents are associated with the ambipolar 
flow and the plasma can be considered as consisting 
of two parts, the ionized part of the plasma and 
the part of the plasma that is formed by the neutral 
particles. It will be assumed that the concentration 
of the ionized part of the plasma is small in com- 
parison with the concentration of the neutral 
particles. The ion-to-neutral-particle collision fre- 
quency and the electron-to-neutral-particle collision 
frequency can then be considered as constants and 
the drift velocity of the neutral particles neglected 
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in comparison with the ambipolar drift velocity of 
the electron-ion gas. In  this limit, the electron-ion 
gas can be considered as diffusing in a random lattice 
of neutral particles. 

AMBIPOLAR-FLOW EQUATIONS 

The conservation of mass is expressed through 
the continuity equation for the ionized part of the 
plasma 

d p / d t  + ~ V - U  = pv.,  ( 1) 

where u is the ambipolar drift velocity, V, the 
ionization frequency, and p the mass density of the 
ionized part of the plasma defined as 

P = mn, + MnllI, (2)  

with 11% the electron mass, Ad the ion mass, n, the 
number density of the electrons, and n,  the number 
density of the ions. 

When the viscosity effects are neglected, the 
momentum balance equation for the ionized part 
of the plasma can be written as 

P duldt  + (v“  + VM)PU + V(p, + p,uj 

= !?(E, + Ea), (3 
where v ,+~  is the momentum-transfer collision fre- 
quency for the interaction between the ions and the 
neutral particles referred to  an average ion, p ,  is the 
electron pressure, p ,  the ion pressure, E, the space- 
charge field that necessarily is associated with the 
ambipolar diffusion, and q the corresponding free- 
space charge density, while E, is the applied electric 
field which is necessary for the maintenance of the 
plasma. Only the pure ambipolar flow will be dis- 
cussed in this paper, that is, cases where the applied 
electric field has no direct influence on the ambipolar 
flow. Electrode phenomena are, therefore, excluded, 
which means that the applied electric field E, 
generally is perpendicular to the ambipolar space- 
charge field E,. The applied electric field E, may 
be parallel with the ambipolar space-charge field E, 
and still not influence the ambipolar flow provided 
E, is an ac field with a frequency that is large in 
comparison with the inverted significant time 
constant associated with the ambipolar flow. 
Therefore, the applied electric field is neglected in 
the following discussion of the ambipolar flow. 

The momentum-balance equation for the ionized 
part of the plasma, Eq. (3)) is obtained by first 
setting up the momentum-balance equations for the 
electrons and ions separately and by summing thesc 

two equations. By taking the difference between the 
same two equations appropriately weighted one 
obtains the so-called generalized Ohm’s law. It is 
easily shown from the latter equation that under 
ambipolar-flow conditions, the ambipolar space- 
charge field E, can be related to a very good approxi- 
mation to the electron temperature T ,  and the 
electron pressure p ,  as follows: 

E, = - (1  cT,/e)V In p,. (4) 
This equation is an expression for the fact that the 
electrons have so small mass and so high mobility 
in comparison with the ions that, for all practical 
purpose&, the electron gas is in static equilibrium 
with the space-charge field E,. This statement is 
more or less obvious when the free-space-charge 
density p is made up of surplus electrons. It is, 
however, equally applicable when the space-charge 
density q is made up of surplus ions, provided one 
thinks of this space-charge density as made up of 
deficiency electrons, that is, in an essentially neutral 
plasma the free-positive-space-charge density q 
consists of a gas of “holes” with the negative-electron 
charge, the positive-electron mass, and the electron 
temperature. 

Pure ambipolar flow is found in the limit where 
the Debye length is small in comparison with the 
plasma dimensions. The space-charge field E, gives 
only rise to internal forces in this limit. It has 
practically no influence on the mass flow density 
of the ionized part of the plasma but acts as a very 
efficient mechanism, whereby the electrons transfer 
their kinetic energy to the ions. Therefore, in the 
ambipolar limit, the ionized part of the plasma can 
be viewed as a gas with the particle density equal 
to that of the ion gas, the particle mass equal to  the 
sum of the ion and electron masses, and with a 
temperature T* equal to the sum of the electron 
and ion temperatures. The explicit influence of 
the space-charge field E, on the momentum-balance 
equation for the ionized part of the plasma can be 
neglected in this limit as will be done in the following 
discussion. The solutions to Eqs. (1) and ( 3 )  then 
give spatial distributions of the mass density of 
the ionized part of the plasma and the ambipolar 
drift velocity. The mass-density distribution of the 
plasma is, for all practical purposes, equal to the 
ion-density distribution. The spatial distribution of 
the electrons is then obtained by applying Eq. (4) 
together with Poisson’s equation and by assuming 
that the electron gas in is static equilibrium with 
the space-charge field and the random-ion lattice 
as described by Eqs. ( I )  and ( 3 )  corresponding 
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directly to  the calculation of the spatial electron 
distribution in a potential well. The spatial distribu- 
tion of the ions or the mass density of the ionized part 
of the plasma is by far more important than the 
spatial distribution of the electron density in the 
determination of the possible plasma configurations. 

The explicit influence of the space-charge field E, 
and the applied electric field E, are, in view of the 
discussion above, neglected in the following analysis 
of the ambipolar flow. It is now convenient to write 
the continuity and momentum-balance equations in 
their complete Eulerian forms. The discussion will 
be limited to the three simple configurations: thc 
plane-parallel casc, the infinitely long cylindrical, 
and the spherical cases both with rotational sym- 
metry. Furthermore, it is assumed that the ambi- 
polar flow in all these cases is circulation-free and 
one-dimensional. The continuity equation can then 
he written 

with 

T* = T ,  + T,. (7) 

The two equations (5) and (6) describe the ambi- 
polar diffusion in the plane-parallel case with P = 0, 
the infinitely long cylindrical case when /3 = 1, and 
the spherical case when p = 2 .  The time variations 
are now accounted for by introducing the time 
constants 

Thc continuity equation then becomcs 

(5) The spatial derivative of the density p in Eq. (6) 
can now be eliminated with the help of the equation 
above and the spatial derivative of II.  written as 

I d  B 

while the momentum-bslancr cquation bccomes 

9 + - - (r pu) = pvL, 
d t  dr 

The transformation from Eqs. ( 5 )  and (6) into 
Eqs. (9) and (10) is purely algebraic, allowing the 
collision frequencies as well as the time constants 
to be functions of both the coordinate and time. 
The transformation into Eq. (10) is particularly 
important as this equation in thc limit 

vAI >>  TU, vt >> 1 / 7 0  (11) 

gives a differential equation for u with respect to r 
which is explicitly independent of the density p. 

Equations (9) and (lo), together with the 
equations which determine the energy balance and 
thereby the thermal gradients and Maxwell’s 
equations, form a complete set of equations which 
determine the ambipolar diffusion. The two equa- 
tions (9) and (10) will be written in terms of dimen- 
sionless variables and proper parameters before they 
are analyzed. The inverted time constants will be 
assumed negligible in comparison with the collision 
frequencies in this process. A convenient set of 
parameters and dimensionless variables is then 

where po is the mass density of the ionized part of the 
plasma in the center of the plasma and 1 is a mean 
free path determined by the interaction between the 
ions and the neutral particles. The origin of the 
coordinate system will be located a t  the center of 
the plasma and it is then necessary that 

9- 1, K - O ,  when 2 - 0 ,  (15) 

a t  least for the solution that applies to  the center 
of the plasma and its neighborhood. The final forms 
of the two equations (9) and (10) are then 

and 
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The variable 4 in this equation system is the mass 
density of the ionized part of the plasma normalized 
with respect to its value a t  the center of the plasma, 
K is the ambipolar drift velcoity normalized with 
respect to the local value of the isothermal sound 
velocity of the electron-ion gas, x is the coordinate 
measured in terms of the local mean free path 1, and 
T* = T ,  + T, is the temperature of the electron- 
ion gas. The inertia of the ions give rise to the 
second term in the denominator of Eq. (17). 

The rather elaborate normalization system de- 
scribed by Eqs. (12) and (14) is necessary when the 
temperature T" is a strong function of the coordinate 
since the plasma diffusion length Ap and the pro- 
duction parameter CY are strong functions of the 
temperature. The normalization system could be 
simplified in the isothermal case when A, and (Y are 
constant. Very little is gained by this simplification 
and the more elaborate normalization system has 
been used here anticipating a future analysis of the 
influence of the thermal gradient on the ambipolar 
flow. 

The two equations (16) and (17) describe the 
ambipolar diffusion mechanism as influenced by 
the production mechanism, the inertia of the ions 
and the energy dissipated in the plasma through the 
associated thermal gradient. To these equations 
must be added the energy-balance equations and 
Maxwell's equations. All the essential features of the 
equation system above can be demonstrated in the 
plane-parallel case. A discussion of the influence of 
the thermal gradient on the ambipolar flow requires 
a lengthy analysis of the energy balance in the 
plasma, too lengthy to be included in the present 
paper. This limits the discussion in this paper to 
the plane-parallel and isothermal case and its purpose 
is to demonstrate the influence of the inertia of the 
ions on the ambipolar diffusion. 

PLANE-PARALLEL AND ISOTHERMAL CASE 

The limitation to the plane-parallel case brings 
about a simplification as @ then is zero and the 
function x* no longer is present in the differential 
equations. The isothermal assumption which is 
applicable in the late afterglow plasma and in some 
wall-stabilized steady-state discharges brings about 
an additional simplification. Only the two equations 
(16) and (17) are then necessary for the description 
of the ambipolar flow or diffusion. They can, in the 
isothermal and plane-parallel case, be written as 

(a/ax) In ( 4 K )  = I / C Y ~ K ,  

a K / d X  = (K2 + l/CXz)/(l - K ' ) .  

(18) 

(19) 

One obtains, by eliminating the differential dx 
between these two equations, a differential equation 
for 9 as function of K 

a In + / a ~  = -(I + cr2)~/(1 + a'~') , ('LO) 
which replaces the differential equation (16). The 
solution to the differential equations (19) and (20) 
are, respectively, 

and 

, (22) 

where x, and dl are integration constants which are 
equal to unity and zero, respectively, for the prin- 
cipal solution that applies to  the center of the plasma 
and its neighborhood. The two equations above 
constitute the parametric general solution to the 
inertia-controlled (ambipolar) diffusion in the 
isothermal plane-parallel case. The fourth term in 
the momentum-balance equation (6)-the inertia 
term-gives rise to the singularity that appears in 
Eq. (19). The differential equation (18) is not 
changed when the inertia term is neglected, while 
the second term in the denominator of Eq. (19) 
disappears. The parametric general solution for the 
case when the inertia term is neglected can be 
written as 

4 = dl(l + a2K2)-4(l+l/a') 

x/a = x,/a + arc tan ((YK) 

4 = 41(1 + f f ' K 2 ) - * ,  

d = 41 cos Kx - 4 / f f l ,  

(23) 

(24) 

(25) 

and 

giving 

the standard solution to the plane-parallel isothermal 
diffusion, when the normalized drift velocity K is 
eliminated. The two parametric solutions (2l), (22) 
and (23),  (24) are illustrated schematically in 
Fig. 1 for 0, = 1 and K ,  = 0. The normalized drift 
velocity K and the normalized plasma density 4 are 
plotted linearly as function of x/a.  The curves 
labeled (l/a) tan (./a) and cos (x/a) illustrate the 
linear diffusion which is obtained when the inertia 
of the ions is neglected, while the curves B represent 
the solution for the inertia-controlled diffusion. The 
effect of the inertia of the ions is easily seen by 
comparing these two sets of curves. The function 
K ( X )  given by formula (23) and which applies to the 
linear diffusion goes to infinity when x/a approaches 
+T, giving rise to ambipolar drift velocities much 
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higher than the sound velocity of the electron-ion 
gas. This is a physical absurdity which, in the linear 
diffusion, is resolved by “assuming” that the ambi- 
polar drift velocity does not exceed the sound 
velocity and by cutting off the solution a t  an 
appropriate point close to K = 1. This artifact is not 
necessary when the effect of the inertia of the ions 
is included. The solution for the inertia-controlled 
diffusion, which is illustrated in terms of the curves 
B in Fig. 1, shows that the coordinate x has a 
maximum x, independent of whether it is viewed 
as a function of K or 4. This maximum is 

x m / a  = (I + l/az) arc tan a - I/& < +a (26) 

and is obtained when 

= 1 and 4 = (1 + az)-%(’+l/a*) + 1/a. (27) 
0: >> 1 

It is particularly significant that the maximum x, 
is obtained for the value K = 1 independent of the 
value of the parameter a. The sound velocity of the 
electron-ion gas appears naturally as a critical 
velocity in the inertia-controlled diffusion. Both 
K and C$ are double-valued as function of the coordi- 
nate in the inertia-controlled diffusion, while they 
are single-valued functions in the linear diffusion. 
The curves B,  represent the only acceptable solution 
for the ambipolar diffusion from the center of the 
plasma while the curves B, represent the behavior 
of a bcam of the electron-ion gas shot into the 
parent gas. The points A are terminal points for the 
continuous analytical solutions in either one of 
these two cases, that is, a neutral electron-ion bcam 
shot into a neutral gas will slow down until it reaches 
the sound velocity which occurs a t  the coordinate x, 
while the ambipolar drift velocity from the center 
of the plasma will increase with the coordinate until 
it reaches the sound velocity a t  the coordinate 2,. 
Figure 1 illustrates only the principal branches 

= 1 and xI = 0) of the solutions for the linear 
and inertia-controlled diffusion. Thc nonprincipal 

branches of the general solutions are generated by 
translating the principal branches along the x axis. 
It is quite obvious from the appearance of the 
principal branches that an analytical and continuous 
solution for the (ambipolar) diff usion-starting a t  
the center of the plasma-cannot be continued 
beyond the coordinate x, as long as the diffusion is 
isothermal and therefore based on the differential 
equations (18) and (19). In  order to continue the 
analytical description of the (ambipolar) diffusion 
beyond the coordinate x, i t  is necessary to  invoke 
the thermal gradients as they appear in Eqs. (16) 
and (17). 

It is impossible to conceive of high thermal 
gradients which could influence the diffusive flow 
in the late afterglow when the electrons and the ions 
have assumed the temperature of the parent gas. 
One comes inescapably to the conclusion that the 
principal solution [Eqs. (21) and (22) with C$l = 1 
and x1 = 01 cannot be accepted as a (quasi-) steady- 
state solution unless a wall with the appropriate 
“boundary conditions” is located somewhere be- 
tween the center of the plasma and the coordinate 
x,. If the wall is assumed to be a perfect sink for the 
electron-ion gas, then it is necessary that the flow 
of this gas into the wall be equal to the density of the 
gas in front of the wall times some average of the 
random thermal velocity. The wall, which acts like 
a perfect sink, must be located a t  the point where 
the flow is maximum and according to  Eq. (21) this 
occurs a t  the coordinate 5,. The wall, which cannot 
be considered as a perfect sink for the electron-ion 
gas, must be located in the range between the origin 
end the coordinate x,. Any such wall can be char- 
acterized by a number K,, less than or equal to  unity, 
which determines the wall coordinate x, 

xw/a = (1 + 1/a2) arc tan (CXK,) - ~ , / a .  (28) 
The number K ,  is a function of the probability f 
for the ions and electrons to stick on the wall a t  the 
first impact. The number K ,  is zero when f is zero 
and unity when f is equal to unity. How K ,  depends 
on f between these two points can only be found 
through an investigation of the velocity distribution 
function of the electron-ion gas just in front of the 
wall. In  most gas discharges, it is generally assumed 
that K ,  is equal to unity, that is, that the wall acts 
like a perfect sink for the electron-ion gas. 

= 1 and x1 = 0, 
together with the “boundary condition” Eq. (28) 
constitute the steady-state solution for the wall- 
stabilized plasma when it is governed by the inertia- 
controlled ambipolar diffusion. This solution 

Equations (21) arid ( 2 2 ) ,  with 
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corresponds directly to eigenvalue solution for the 
ambipolar diffusion as it was introduced by Schottky13 
provided one adds to  the Schottky solution the 
auxiliary requirement that the mass drift velocity 
of the electron-ion gas in front of the wall or the 
wall sheath is equal to the isothermal sound velocity 
of the electron-ion gas a t  this point. This auxiliary 
requirement agrecs identically with Bohm’s state- 
ment or criterion4 with regard to the ion current 
density entering the wall sheath provided the ion 
temperature is negligible in comparison with the 
electron temperature. The steady-state solution to 
the inertia-controlled ambipolar diffusion between 
two parallel walls-the distance d apart-phrased 
as Allis2 does, is obtained from Eq. (28) when the 
values of the parameters are introduced 

This equation for thc wall-stabilized plasma or 
discharge does, in the limit K ,  = 1 and v M  >> vi, 
become identical with the corresponding solution 

for the linear ambipolar diffusion. 
The solutions above apply, in principle, only to the 

steady-state plasma. The steady-state solutions are 
generally also applied in the interpretation of the 
decay measurements in the afterglow plasma which 
is looked upon as being in quasi-equilibrium. It is 
generally assumed that the shape of the plasma 
remains unchanged during the decay. The original 
differential equations ( 5 )  and (6) are linear in terms 
of the density p but nonlinear in terms of the 
ambipolar drift velocity u. This means that these 
equations are separable in terms of the time depend- 
ence of the density but not in terms of the time 
dependence of the ambipolar drift velocity u. A 
definite requirement for the quasi-equilibrium is then 
that the electron-ion gas has assumed the tempera- 
ture of the parent gas and that this temperature is 
uniform. Equation (29) gives then the time constant 
T for the diff usion-controlled, wall-stabilized plasma, 
provided V ,  is replaced by T-’. A deviation from 
this quasi-equilibrium in terms of the shape or in 
terms of a nonuniform temperature of the parent 

W. Schottky, Physik. Z. 25, 635 (1924). 
Characteristics of Discharges in Magnetic Fields, edited 

by A. Guthrie and R. K. Wakerling (McGraw-Hill Book 
Company, Inc., New York, 1949), p. 95. 

gas will bring in a time dependence in the ambipolar 
drift velocity u. The time constants for the processes 
which bring thc disturbed afterglow plasma back to  
the quasi-equilibrium are, of necessity, of the order 
of the diffusion times. Small deviations from the 
exponential diffusion decay in the afterglow can, 
therefore, not be interpreted as deviations from the 
diffusion process unless one has other strong evidence 
to that effect. 

The most striking feature of the differential 
equation (16) is that it has a singularity when the 
ambipolar drift velocity approaches the random 
thermal velocity of the electron-ion gas. The 
behavior of the electron-ion gas in the range of the 
singularity is, for all practical purposes, independent 
of the collisions. It is, therefore, reasonable to assume 
that thc electron-ion gas flows adiabatically as an 
ideal gas in this range. Thc large spatial variations 
in the ambipolar drift velocity are then accompanied 
by large spatial variations in the temperature of the 
electron-ion gas. The conservation of mass, momen- 
tum, and energy gives, then, since the effects of the 
collisions are neglected, the following relation : 

(5 /2 ) ( kT* /M)  + u2/2 = (5/2)(IcT:/M), (31) 

between the adiabatic temperature T* and the 
flow velocity u of the electron-ion gas. The tempera- 
ture T: is a stagnation temperature which can be 
considered as constant in the range of the singularity. 
One finds, when formula (16) is corrected for the 
adiabatic temperature variations that the singularity 
occurs when ambipolar drift velocity becomes equal 
to the adiabatic sound velocity of the electron-ion 
gas. The “adiabatic correction” has been neglected 
in the previous discussion. It is assumed that the 
electron-ion gas in one case, the steady-state case, 
is in good thermal contact with the electric field 
that maintains the plasma, and in the other case, 
applying to  the aftcrglow plasma, that the thermal 
contact between the electron-ion gas and the parent 
gas is sufficiently good to  prevent the adiabatic 
mechanism to be effective except just a t  the singu- 
larity. The adiabatic mechanism a t  the singularity 
is important in the analysis of the sheath mechanism 
which, howevcr, is not the subjcct of discussion in 
this paper. 

IV. SUMMARY 

The outstanding feature of the inertia controlled 
(ambipolar) diffusion is that it introduces in 
a natural way the isothermal sound velocity 
[ ( k / M ) ( T ,  + Tnr)]*-or when the adiabatic cor- 
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rection is introduced, thc adiabatic sound velocity 
[ ( 5 / 3 )  ( k / M ) ( T ,  + T,)I4-as the critical velocity 
in the diffusive flow. A result of the naturally 
appearing critical velocity is the fact that the 
density in front of a wall or a wall sheath is finite 
even if the wall is a perfect sink for the electron-ion 
gas. ... 

The isothermal and the inertia-controlled diffusion 
leads to a “wall-stabilized” configuration in a much 

0 6 0  

X 

- P 
2 

more definite way than does the simple linear FIG. 2. 
diffusion and without any need of patching up the 
solution close to the boundary. This is caused by the 
presence of the singularity in the differential equa- 
tions (10) and (17). This singularity is rendered 
ineffective if the numerator in any one of these two 
equations becomes zero before the ambipolar drift 
velocity u reaches the critical velocity. This is 
how the heat-conduction mechanism through the 
thermal gradient, which in most practical cases is 
negative, causes the plasma to change from a 
“wall-stabilized” configuration a t  low powers to  a 
“free)’ configuration at  high powers. This mechan- 
ism, which is capable of explaining some of the 
so-called plasma “striations,” will be the subject of 
discussion in a future paper. The term in the 
numerator of Eqs. (10) and (17) which contains the 
configuration factor p is also negative and could 
possibly in some cases cause the numerator to 
become zero before the ambipolar drift velocity u 
reaches the critical velocity and without invoking 
the heat-conduction mechanism. It is easily seen 
from Eqs. (13) that the function x* is identical 
with x in the isothermal case. Equation (17) can 
therefore be written as 

(32)  
d K  K2 + (I/cU’) - ( @ K / X )  - - ~ _ _ _ _ _ _ _  - 
drc 1 - K L  

in the isothermal case. The fact that the term 
containing the configuration factor p cannot cause 
the numerator of this cquation to  become zero before 
K reaches unity is bcst demonstrated with the help 
of Fig. 2 .  This figure illustrates in the X-K plane the 
curves along which the derivative d~/dll: either is 
infinite or zero. An investigation of Eq. ( 3 2 )  shows 
that 1x1 5 1 is negative in the range a and positive 
in the range b. The only two possiblc solutions to 
the differential equation (32)  in the range I K ~  5 1 
are shown in terms of the dashed curvcs A and B.  
It is rather obvious from these curves that in no case 
can the effect of the singularity bc avoided due to 
the presence of the term containing the configuration 
factor p. This is the reason why all the essential 
mechanisms-linear or nonlinear-that influence the 

ambipolar A ow can be demonstrated and discussed 
in the plane-parallel casc. 

The inertia-controlled diffusion is directly analo- 
gous to  the flow of a fluid with friction through a 
contracting nozzle. The two cases become identical 
if one assumes that the cross section of the nozzle 
varies in such a fashion that 

Vt - -- 1 aA 
A dr u ’  
_ _  - (33) 

and provided the ionization frequency v, is small in 
comparison with the ion-neutral collision frequency 
vI. It is a well-known fact that the limiting flow 
velocity a t  the exit of a contracting nozzle is the 
sound velocity just as has been shown to be the case 
for the inertia-controlled diffusion. 

The significance of the theory of the inertia- 
controlled diffusion is primarily conceptual. The 
linear-diff usion problem is solved as an eigenvalue 
problem leading to a series of solutions. Of these 
solutions the fundamental mode is picked out as 
the physical solution since the density of the diffusing 
medium cannot be negative. The drift velocity of the 
diffusing fluid is infinite a t  the boundary of this 
fundamental mode when the boundary acts like a 
perfect sink. This is physically absurd and is cor- 
rected with the help of Bohm’s criterion, which 
essentially says that the drift velocity of the diffusing 
medium a t  the boundary cannot exceed the local 
sound velocity of the electron-ion gas. These 
additional assumptions, that must be added to the 
linear diffusion theory in order to  get the physically 
correct description, appear as integral parts of the 
inertia-controlled diffusion theory. The description 
of the diffusion-based on the linear-diff usion 
theory-is accpptablc when the fundamental mode 
is used and provided the boundaries are far from 
being perfect sinks. The difference between the 
two theories is caused by the nonlinear terms. These 
terms are most important close to  the boundary and 
determine the boundary condition when the bound- 
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ary acts like a perfect sink. All cold wall and 
boundaries-excluding the electrodes in the dc and 
low-frequency cases-are generally considered as 
perfect sinks for the electron-ion gas; hence, the 
importance of the inertia-controlled ambipolar 
diffusion. 

The production parameter a = v,,,/v, is more 
than two orders of magnitude larger than unity 
in most practical cases. The numerical results ob- 
tained with the inertia-controlled-diffusion theory 
are then practically indistinguishable from the 
results obtained with the linear-diff usion theory 
provided the fundamental mode is used and Bohm’s 

criterion is added. It is important to  use the inertia- 
controlled-diff usion theory when the production 
parameter is relatively small and when the heat- 
conduction mechanism is included. The play between 
the inertia mechanism and the heat-conduction 
mechanism leads to  phenomena which cannot be 
accounted for in the absence of one or both of these 
mechanisms. 
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