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Recent interest in HgCd a s  an excimer laser mole- 
cule' has created a need for better knowledge of the Cdz 
excimer. In this Note we report the visible fluores- 
cence spectra and discuss its temperature and pressure 
dependence a s  well a s  some preliminary measurements 
of the decay rate for this fluorescence. 

est  radiating excimer state (i. e. ,  a state originating 
from the 5 3P1 atomic asymptote), while Figure 2 shows 
the observed decay times for the fluorescence following 
pulsed excitation. Following the procedure used in pre- 
vious work on mercury, the Cd was carefully prepared 
in q u a r t L  cells and excited by optical radiation in the 
wings of the atomic intercombination line at 326 nm. 
The steady state spectra were produced using cw exci- Figure 1 shows the fluorescence band from the low- 
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FIG. 1. The Cdf fluorescence band shape; normalized to unit 
area and calibrated in relative units of quanta per  unit wave 
length per  unit time. 
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tation fram a He-Cd laser operating at  325 nm. Note 
that this excitation lies some 100 cm-’ to the blue of the 
resonance line but its effectiveness a s  a pump shows 
that it l ies within the pressure broadened wing of the 
line. A search of Ref. 3 has revealed a total lack of 
detailed, quantitative information about the self broad- 
ening of this Cd 326 nm line. The decay data were pro- 
duced by using the 10 ns pulse from a nitrogen laser  a t  
337.1 nm for excitation and observing the total fluores- 
cence through a wide band filter (470 f 20 nm). 

The Cd; (excimer) fluorescence band shape showed 
no pressure dependence at the densities we observed 
( N Z  10l8/cc) but did show the broadening and shifting 
with temperature one would expect from a thermalized 
excimer population (see Ref. 2). Figure 1 shows the 
spectra at two different temperatures, normalized to 
unit area to show the broadening and calibrated in rel- 
ative units of quanta per unit wavelength per unit time. 
The band is typified by the marked shoulder a t  about 
450 nm, mild undulations between 390-420 nm (not vis- 
ible on the scale of Fig. 1) and a precipitous decrease 
on the red side. The only sign of the t r imer  band 
analogous to the mercury visible band, was a low flat 
emission observed at  lowest temperatures and highest 
pressures to extend to the red beyond 650 nm. The in- 
tensity at this radiation relative to the dimer band did 
scale linearly with pressure as it should for a t r imer  
in equilibrium with its dimer parents. The t r imer  may 
have been observed in matrix isolation4 with a band 
centered at 645 nm. 

The decay data of Fig. 2 show a strong dependence 
on both temperature and pressure. Following the 
pulsed excitation, the fluorescence intensity shows a 
fast  “spike,” then a slower rise to the main fluores- 
cence and finally an exponential decay. The decay 
from 0.1-57 (decay period) is a simple exponential 
within the accuracy of our data (< 1% deviation). These 
decay times, when plotted on a - ln7 vs l / k T  plot again 
in analogy to the mercury work, gave slopes of approx- 
imately 1 eV, the meaning of which is not understood at 
this time. The intensity “spike” and subsequent r ise  of 
the fluorescence band intensity observed a t  early time 
(0-0.17) may be indicative of rapid dissociation of the 
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FIG. 2. 
following pulsed excitation. 

The observed decay times for the Cd: fluorescence 

initially formed vibrationally hot excimers and subse- 
quent reformation by three body recombination. This 
process has been observed in the case of Hg: formed in 
a similar way. 5-7 However, time resolved spectra of 
the Cd; band show the radiation at very early times 
(during the “spike”) is dominated by atomic line emis- 
sions produced by a small amount of multiphoton exci- 
tation during the laser pulse. Therefore, the rapid 
dissociation and subsequent recombination before ther - 
malization and emission is not conclusively demon - 
strated in this case. And before one attempts to use 
this early time behavior for the analysis of recombina- 
tion and vibrational relaxation rates,  proof of the me- 
chanism would have to be obtained, f o r  example, by ob- 
serving the atomic 5 3P1 or  5 3P, populations. 
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