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Confidence Estimates in Simulation of Phase
Noise or Spectral Density

Neil Ashby

Abstract— In this paper, we apply the method of discrete
simulation of power-law noise, developed by Timmer and König,
Ashby, and Ashby and Patla, to the problem of simulating phase
noise for a combination of power-law noises. We derive analytic
expressions for the probability of observing a value of phase noise
L( f ) or of any of the one-sided spectral densities Sφ( f ), Sy( f ),
or Sx( f ), for arbitrary superpositions of power-law noise.

Index Terms— Phase noise, power-law noise, simulation, spec-
tral density.

I. INTRODUCTION

POWER-LAW noise is widely used to describe the
performance of many types of clocks, particularly those

used in modern standards laboratories. Simulation of such
power-law noise can be very useful for testing software
algorithms that extract spectral density and stability infor-
mation from measured time deviations, and particularly in
predicting the probability of observing values of some clock
stability variances. In a series of investigations [2]–[4],
a method of simulating power-law noise has been developed
that is based on creating a spectrum for white phase noise,
modifying the spectrum in the frequency domain to corre-
spond to some chosen power-law noise, and then transform-
ing to the time domain, producing a time series with the
desired statistical properties. This method was first proposed
by Timmer and König [1] who applied it to the study of AGN
light curves. The method has been successfully applied to the
Allan and Hadamard Variances, with and without dead time,
in modified, overlapping, and nonoverlapping forms [3], [4].
In this paper, we apply the method to one-sided spectral
densities, thus not requiring a transformation to the time
domain. In Section II, we summarize the process of discrete
simulation of power-law noise and show how it leads directly
to simulations of the phase noise L( f ). In Section III, we
develop probability distributions for observation of phase noise
as a function of offset frequency, and discuss probability
distributions for observations of the various forms of spectral
densities. Section VIII compares the predictions for a particu-
lar type of flicker-like noise with real data from an amplifier.

II. SIMULATION METHOD

We imagine that the noise amplitudes at Fourier frequen-
cies fm are generated by a set of normally distributed random
complex numbers wm having mean zero and variance σ 2 that
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would by themselves generate a simulated spectrum for white
phase noise. These random numbers are then divided by a
function of the frequency, | f |λ, generating a spectral density
that has the desired frequency characteristics. For ordinary
power-law noises, the exponent λ is a multiple of 1/2, but
any value is possible. The frequency noise could then be
Fourier transformed to the time domain, producing a time
series that could be used to simulate one of the stability
variances. The time between successive simulated time mea-
surements is denoted by τ0. A natural frequency cutoff occurs
at fh = 1/(2τ0). The time measurements are assumed to be
made at the times kτ0, where k is an integer, and the time errors
or residuals relative to a reference clock are denoted by xk . The
total length of time of the entire measurement series is Nτ0.
The possible frequencies that occur in the Fourier transform
of the time residuals are

fm = m

Nτ0
; − N

2
+ 1 ≤ m ≤ N

2
. (1)

For a set of noise amplitudes in the frequency domain to
represent a real series in the time domain, the amplitudes must
satisfy the reality condition

w−m = (wm)
∗. (2)

Thus, if wm = um + ivm , where um and vm are independent
uncorrelated real random numbers, then (wm)

∗ = um − ivm .
N random numbers are placed in N/2 real and N/2 imaginary
parts of the positive frequency spectrum and then (2) is
used to populate the negative frequency part of the spectrum.
Since the frequencies ±1/(2τ0) represent essentially the same
contributions, we shall assume that vN/2 does not occur.
We shall assume that the variance of the noise amplitudes
is such that

〈
(wm)

∗wn
〉 = 〈

u2
m + v2

m

〉 = 2σ 2δmn; m �= 0, N/2. (3)

Also, in order to avoid division by zero, we shall always
assume that the Fourier amplitude corresponding to zero
frequency vanishes. This means that the average of the time
residuals will be zero, and has no effect on any variance that
involves time differences. This model does not account for
drift.

The kth term in the discrete Fourier transform of white
phase noise generated by the random variable wm is pro-
portional to the kth member of the time series for white
PM [3], [4]

xk ∝
N/2∑

m=−N/2+1

e− 2π imk
N wm . (4)
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We multiply each frequency component by |1/ fm |λ and insert
a proportionality constant K to determine the level of the
noise, and give the sequence of time residual measurements
the physical dimensions of time. This will generate the desired
power-law form of the spectral density or of the phase noise
when K and λ are appropriately chosen. The simulated time
series will be represented by

Xk = K
N/2∑

m=−N/2+1

1

| fm |λ e− 2π imk
N wm . (5)

To show how (5) gives rise to commonly used expressions for
spectral density, we shall compute the single-sided spectral
density arising from the time series. The average (two sided)
spectral density of time residuals is obtained from a single
term in (5)

sx( fm) = K 2

| fm |2λ
〈
wm(wm)

∗

� f

〉
= K 2 Nτ0(2σ 2)

| fm |2λ (6)

where� f = 1/Nτ0 is the spacing between successive allowed
frequencies. We double (6) to obtain the average one-sided
spectral density: Sx ( fm) = 2sx ( fm). The average one-sided
spectral density of fractional frequency fluctuations is given
by the well-known relation

Sy( fm) = (2π fm)
2Sx ( fm). (7)

The average one-sided spectral density of fractional frequency
fluctuations is then

Sy( fm) = 2(2π fm)
2 K 2 Nτ0(2σ 2)

| fm |2λ = hα f αm (8)

for positive frequencies, where Sy( f ) = hα f α is usually used
for a single type of power-law noise [5]. Therefore, we must
set

λ = 1 − α

2
; α = 2 − 2λ (9)

and

K =
√

hα
16π2σ 2(Nτ0)

. (10)

In a particular simulation run in which one set of random
variables (um, vm) is generated, resulting in a time series
as in (5), a spectral density will generally deviate from its
average value. We denote such particular values by omitting
the overbar, whereas an average is denoted by relations,
such as

Sx( fm) = hα f αm
(2π fm)2

. (11)

The averaged spectral density of fractional frequency fluctua-
tions is then

Sy( fm) = (2π fm)
2Sx( fm) = hα f αm . (12)

The spectral density of phase fluctuations is [5]

Sφ( fm) = ν2
0

f 2
m

Sy( fm) (13)

and its averaged value is

Sφ( fm) = ν2
0

f 2
m

Sy( fm) = ν2
0

f 2
m

hα f αm . (14)

A particular simulation run will result in values of phase noise
at offset frequency fm given by

L( fm) = ν2
0

2 f 2
m

hα f αm
|wm |2
2σ 2 . (15)

Here, the factor of 1/2 arises when the IEEE definition of
phase noise L is used. The average value of the phase noise
at a given frequency will be obtained by replacing |wm |2 by
its average value, 2σ 2, so the average value of the phase noise
will correspond to the definition

L = 〈L( f )
〉 = 1

2

ν2
0

f 2 Sy( f ) = 1

2

ν2
0

f 2 hα f αm . (16)

III. PROBABILITIES

We are going to employ a representation of the delta
function of the form [6]

δ(L − L( f )) =
∫ ∞

−∞
dω

2π
eiω(L−L( f )). (17)

The probability of observing a particular value L of the phase
noise at offset frequency fm can be obtained from

P(L) =
∫
δ

(
L − L( fm)

)
dumdvm

2πσ 2 e
− u2

m+v2
m

2σ2

=
∫

dω

2π
e

iω

(
L− ν2

0
4σ2 f 2

m
Sy( f )(u2

m+v2
m)

)

× dumdvm

2πσ 2 e
− u2

m+v2
m

2σ2 (18)

where it is understood that all quantities refer to a fixed
frequency. We shall drop the subscript m where it is simpler
to do so. The delta function in the first line of (18) constrains
the normally distributed random variables to values which
satisfy the condition that a particular value of phase noise
is of interest, and the exponential representation of the delta
function (17) allows the integrals to be performed. An inter-
mediate result is obtained by performing the integrals over the
random variables

P(L) =
∫ ∞

−∞
dω

2π

eiωL

(√

1 + iων2
0 Sy ( f )
2 f 2

)2

= 2 f 2

iν2
0

∫ ∞

−∞
dω

2π

eiωL

ω − 2i f 2

ν2
0 Sy( f )

. (19)

The integration contour can be deformed to encircle the simple
pole in the complex ω plane and the final result is

P(L) = 2 f 2

ν2
0 Sy( f )

e
− 2 f 2

ν2
0 Sy ( f )

L
. (20)

The average value of L( f ) obtained from this probability is

L( f ) =
∫ ∞

0
L P(L)d L = 1

2

ν2
0

f 2 Sy( f ). (21)
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Fig. 1. Two million white FM measured data points were divided into
4096 files each with 512 points. For one of these files, the phase noise,
having 256 data items, was computed and compared with the limits given
in (24) and (25). The mean and rms deviations of the numbers of points
between the limits for the set of 4096 files was 126.5 ± 8.5.

The rms deviation from the mean of L( f ) is a crude measure
of the confidence in the average value, and is

√∫ ∞

0
L2 P(L)d L − L2 = 1

2

ν2
0

f 2 Sy( f ). (22)

For any given power law for the spectral density of fre-
quency, the ±25% limits on the probability can be determined
from (20). The cumulative probability will be

�(L) =
∫ L

0
P(L)d L = 1 − e

− 2 f 2L
ν2
0 Sy ( f ) . (23)

Equating the cumulative probability to 0.25 or 0.75 gives
the values of corresponding to the ±25% limits of observing
around the average. For the value corresponding to −25%

0.250 = 1 − e
− 2 f 2L
ν2
0 Sy ( f )

and solving for the phase noise

L|−25% = 0.2877
ν2

0

2 f 2 Sy( f ) (24)

similarly

L|+25% = 1.3863
ν2

0

2 f 2 Sy( f ). (25)

Fig. 1 shows a comparison between the ±25% limits calcu-
lated above and the probabilities obtained from actual data.
Further analysis of the data is discussed in Section VIII.

IV. PROBABILITY DISTRIBUTIONS FOR

OTHER NOISE MEASURES

Because of the linear relationships between phase noise and
spectral densities, such as in (11)–(14), probability densities

can easily be derived for the spectral densities Sx ( f ), Sy( f ),
and Sφ( f ). Thus

P(Sx ) = 1

Sx
e
− Sx

Sx = (2π f )2

hα f α
e− (2π f )2Sx

hα f α

P(Sy) = 1

Sy
e
− Sy

Sy = 1

hα f α
e− Sy

hα f α (26)

P(Sφ) = 1

Sφ
e
− Sφ

Sφ = f 2

ν2
0 hα f α

e
− f 2 Sφ

ν2
0 hα f α .

V. AVERAGING MULTIPLE RUNS

In this section, we consider what happens to the probability
when M independent measurements of the phase noise are
averaged. The probability of obtaining an average value 〈L〉
can be expressed in terms of the independent values that are
averaged, using a representation for the δ-function. We use the
subscript M to denote the average over independent simulation
runs. Then

P(〈L〉M ) =
∫

dω

2π
eiω

(
〈L〉M − 1

M

∑M
K=1 L K

)
d L1d L2 . . . d L M

× P(L1)P(L2) . . . P(L M ) (27)

where L K denotes the value of the phase noise obtained in
the K th simulation run. From (20), one of the independent
integrals in the product in (27) is of the form
∫ ∞

0
d L

2 f 2

ν2
0 Sy( f )

e
− 2 f 2 L

ν2
0

Sy( f )− iωL
M = 1

iω
M + 2 f 2

ν2
0

Sy( f )
. (28)

There are M such factors, so

P(〈L〉M ) =
∫ ∞

−∞
dω

2π

eiω〈L〉M

(
iω
M + 2 f 2

ν2
0 Sy( f )

)M
. (29)

The contour integral can be closed in the upper half ω plane,
where it encircles the pole of order M on the imaginary axis at

ω = 2i M f 2

ν2
0 Sy( f )

. (30)

The result of the contour integration is

P(〈L〉M ) = (〈L〉M )
M−1

(M − 1)!
(

2M f 2

ν2
0 Sy( f )

)M

e
− 2M f 2

ν2
0 Sy ( f )

〈L〉M
. (31)

This is a chi-squared distribution with 2M degrees of freedom.
If M is large compared with unity, a chi-squared distribution
can be approximated by a normal distribution, which in this
case is approximately given by

P(〈L〉M ) =
√

M

2π

(
2 f 2

ν2
0 Sy( f )

)

× e
− M

2

(
2 f 2

ν2
0 Sy ( f )

)2(〈L〉M − ν2
0 Sy ( f )

2 f 2

)2

. (32)

From this expression, it is straightforward to see that the
average of LM is

〈L〉M =
∫ ∞

0
LP(L)dL = ν2

0 Sy( f )

2 f 2 (33)
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that is, there is no dependence on M . However, the rms
deviation from the mean is reduced by a factor of M−1/2

〈L2− < L >2 〉 =
∫ ∞

0
L2

P(L)dL −
(
ν2

0 Sy( f )

2 f 2

)2

=
(
ν2

0 Sy( f )

2 f 2

)2 (M + 1)!
M(M!) −

(
ν2

0 Sy( f )

2 f 2

)2

= 1

M

(
ν2

0 Sy( f )

2 f 2

)2

. (34)

This might well have been expected for white FM, which
involves simple Gaussian noise, but it has been shown here
to be valid for any one of the power-law noises.

VI. SUPERPOSITION OF POWER NOISE PROCESSES

Probabilities, such as are given in (20), may be generalized
to an arbitrary superposition of independent random noise
processes. At a given offset frequency fm , let wαm be the
random variable that contributes to the time residual from the
random power-law noise process described by the parameter α.
The superposition of time residuals will be the sum over the
processes that contribute

Xk = 1

4πσ
√

Nτ0

∑

α

N/2∑

m=−N/2+1

√
hα f αm
| fm | e

− 2π imkτ0
Nτ0 wαm (35)

where we have used (9) and (10). The contribution to the time
series Xk from a given frequency fm is

Xk( fm) = 1

4πσ
√

Nτ0
e
− 2π imkτ0

Nτ0

∑

α

√
hα f αm
| fm | wαm . (36)

The two-sided spectral density of time fluctuations is the
absolute square of this quantity divided by the resolution
bandwidth, 1/(Nτ0)

sx ( fm) = 1

(4πσ)2

∣
∣
∣∣
∑

α

√
hα f αm
| fm | wαm

∣
∣
∣∣

2

. (37)

For a one-sided spectral density, we must multiply by 2 and
take fm > 0. Then, the simulated phase noise will be

L( fm) = 1

2

ν2
0

f 2
m
(2π fm)

22

[
1

(4πσ)2

∣
∣
∣
∣
∑

α

√
hα f αm
| fm | wαm

∣
∣
∣
∣

2]

= ν2
0

4σ 2 f 2
m

[( ∑

α

√
hα f αm uαm

)2

+
(∑

α

√
hα f αm v

α
m

)2]
.

(38)

As the random variables take on their values during the
simulation runs, the probability of observing a value of phase
noise will be given by integrating over all the possibilities,
subject to the condition that the phase noise is constrained by
expression (38)

P(L) =
∫
δ

(
L − ν2

0

4σ 2 f 2
m

[( ∑

α

√
hα f αm uαm

)2

+
( ∑

α

√
hα f αm v

α
m

)2])

×
∏

α

(
duαmdvαm

2πσ 2 e
−
(
(uαm )

2+(vαm )2
2σ2

))
. (39)

To evaluate this expression, we first observe that the result will
be independent of the variance σ ; only ratios, such as um/σ
and vm/σ , occur. Therefore, we can set σ = 1, simplifying
the expression. The integrations will be performed by diago-
nalizing the squared quantities occurring in the exponent due
to representation (34). Furthermore, we shall do this in such
a way that the Gaussian form of the probability distributions
remains essentially unchanged. We need an orthogonal trans-
formation of variables in order to accomplish this, as discussed
in [3] and [4]. There is a further simplification since if the
diagonalization can be accomplished for the variables uαm , the
same procedure will work for vαm . Then, defining

Km = ν2
0

(2 fm)2
(40)

the probability becomes

P(L) =
∫

dω

2π

∏

α

duαmdvαm
2π

e−
(
(uαm )

2+(vαm )2
2

)

× e
iω

(
L−Km

[(∑
α

√
hα f αm uαm

)2+
(∑

α

√
hα f αm v

α
m

)2]
)

.

(41)

This integral can be completely evaluated. First, we note that
the dependence on the real and imaginary contributions from
the random variables separates so that integrals can be done
separately. Consider the contribution from the real part

I =
∫

e−iωKm

(∑
α

√
hα f αm uαm

)2 ∏

α

(
duαm√

2π
e− (uαm )

2

2

)
. (42)

Obviously, the contribution from the imaginary parts will be
similar so the final result will involve the square of the above-
mentioned integral.

Let us define the symmetric real matrix by means of the
elements

Hαβ = (
hαhβ f αm f βm

)1/2
. (43)

Then, we look for eigenvalues ε and column eigenvectors
ψβ(ε) of Hαβ by solving

∑

β

Hαβψβ(ε) = εψα(ε). (44)

Study of the eigenvalue problem for a matrix, such as (43),
shows that there is only one nonzero eigenvalue, which sim-
plifies the calculation. We find for this eigenvalue

ε =
∑

α

hα f αm = Sy( fm). (45)

To prove that there is only one nonzero eigenvalue, consider
a matrix of the form

⎛

⎜
⎜⎜
⎝

a11 − ε
√

a11a22
√

a11a33 . . .
√

a11ann√
a22a11 a22 − ε

√
a22a33 . . .

√
a22ann

...
...

...
. . .

...√
anna11

√
anna22

√
anna33 . . . ann − ε

⎞

⎟
⎟⎟
⎠
. (46)

Multiply the first row by (a22/a11)
1/2 and subtract it from the

second row. The second row is reduced to
(
ε −ε 0 0 0 . . . 0

)
(47)
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that is, the second row is reduced to only two nonzero
elements. Similarly, if we multiply the first row by
(a j j/a11)

1/2 and subtract it from the j th row, that row will
be reduced to only two nonzero elements. Then, if we expand
the determinant along the rows 1, 2, 3, . . . , n, it is obvious that
there will be a factor εn−1 in the expansion of the determinant.
Thus, there will be n − 1 zero eigenvalues, and there can only
be one nonzero eigenvalue. To obtain an expression for the
nonzero eigenvalue, consider the product of all the diagonal
elements. It will be of the form

(−ε)n + (−ε)n−1(a11 + a22 + · · · + ann + 0)

= (−ε)n−1(−ε + Tr(ai j )). (48)

since products, such as (−ε)n−2, (−ε)n−3,...and so on, cannot
occur. Thus, the nonzero eigenvalue is just the trace of
matrix (43). We can proceed with the argument given that
only one nonzero eigenvalue will contribute.

In preparation for diagonalization of the quadratic forms that
occur in the exponent of (42), we define some new column
vectors by means of

U T = {u2
m, u1

m , u0
m , . . . }

CT = {
√

h2 f 2
m ,

√
h1 f 1

m ,
√

h0 f 0
m , . . . )} (49)

where the upper indices label the power-law noise type. Then,
we can write

∑

α

√
hα f αm uαm = U T C = CT U. (50)

Therefore

ν2
0

4 f 2
m

(∑

α

√
hα f αm uαm

)2 = KmU T CCT U = KmU T HU. (51)

Then, the integral (42) becomes

I =
∫

e−iωKm U T HU
∏

α

(
duαm√

2π
e−

(
(uαm )

2

2

))
. (52)

The orthogonal transformation O that diagonalizes the
quadratic form in the exponent of (52) is obtained by writing
the normalized eigenvectors of H in successive columns, say
in order of increasing eigenvalue. Then, it follows that:

H O = O E; OT H O = E (53)

where E is a diagonal matrix consisting of the eigenvalues,
and we have used the fact that the inverse of an orthogonal
matrix is just the transpose

O−1 = OT . (54)

Thus, H = O E OT and

U T HU = U T O E OT U. (55)

We can then introduce a linear combination of random
variables with the same orthogonal transformation

V = OT U. (56)

The argument of the Gaussian distribution remains essentially
a sum of squares

∑

α

(uαm)
2 = U T U = U T O OT U = V T V . (57)

Also, the element of integration over the space of random
variables remains essentially unchanged because

dV1dV2 · · · =
∣
∣∣
∣ det

∂V

∂U

∣
∣∣
∣dU1dU2 . . . = | det(O)|dU1dU2 . . .

= dU1dU2 . . . . (58)

The expression in the exponent of (52) becomes

KmU T CCT U = Km

∑

�

ε�V
2
� . (59)

The integral that we seek is then

I =
∫

e−iωKm
∑
� ε�V 2

�

∏

i

( dVi√
2π

e− V 2
i
2

)
. (60)

Now, only one eigenvalue contributes. The factors from all the
zero eigenvalues just integrate out, and the result is

I = 1√
1 + 2iωKmε

. (61)

There is one such factor from the real part, and an equal factor
from the imaginary part. The probability obtained from (41)
is, therefore

P(L) =
∫ ∞

−∞
dω

2π

(
eiωL

1 + 2iωKmε

)
. (62)

This contour integral may be evaluated by closing the contour
around the simple pole in the upper half plane, yielding for
any superposition of power-law noises

P(L) = 2 f 2

ν2
0

∑
α hα f αm

e
− 2 f 2

ν2
0

∑
α hα f αm

L
(63)

which is the generalization of (20).

VII. RANDOM WALK

To give a specific example, we discuss the case of random
walk FM. In this case, in the limit of continuous frequencies

Sy( f ) = h−2 f −2 (64)

so

P(L( f )) = 2 f 4

ν2
0 h−2

e
− 2 f 4L( f )

ν2
0h−2 . (65)

The ±25% limits on the probability can be determined from
this expression. These limits are

{0.14384ν2
0(h−2/ f 4), 0.693147ν2

0(h−2/ f 4)}. (66)
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Fig. 2. Flicker-like spectral density data from an amplifier. The
spectral density is given in units of rms voltage/

√
Hz; the frequency range is

5–500 Hz offset from the carrier.

VIII. COMPARISON WITH EXPERIMENTAL DATA

In this section, we apply these methods to the calculation
of the probability distribution for a power-law spectral density
and apply it to actual measurements. From (7)–(9), before
averaging, a single-sided spectral density at a particular fre-
quency is simulated as

Sy( fm) = hα f αm
2σ 2

(
u2

m + v2
m

)
. (67)

Following the procedure of (18), the probability of finding a
value S will be:

P(S) =
∫ ∞

−∞
dω

2π
e

iω

(
S− hα f αm

2σ2

(
u2

m+v2
m

))

× e

(
u2

m+v2
m

)

2σ2
dumdvm

2πσ 2 . (68)

The integrals over the random variables are straightforward;
no additional diagonalization is necessary. Each integral gives
the same factor so the probability is

P(S) =
∫ ∞

−∞
dω

2π

(
eiωS

1 + iωhα f αm

)
= e−S/

(
hα f αm

)

hα f αm
. (69)

For comparison of this probability distribution with measure-
ments, the Metrology Group at NIST in Boulder provided
1024 independent measurements of amplifier noise as a func-
tion of frequency offset from the carrier; one such run is
shown in Fig. 2. Usually many such runs are averaged and
the average spectral density is presented as the measure-
ment result. In Fig. 2, the frequency spacing between points
is � f = 0.61875 Hz. The conversion from time residuals to
spectral density is not known, but by selecting a small range of
frequencies and collecting data from many such independent
runs, the number of times a spectral density occurs within the
range of a particular bin can be reduced to a probability and
compared with (69). When these data are plotted on a log–log

Fig. 3. Histograms of occurrences of spectral densities of flicker-like noise
at two offset frequencies; smooth lines are simulated results (69).

Fig. 4. Comparison between probability function (69) and experimental data.
The dots are computed directly from the data at frequencies 75, 100, 126, 252,
and 400 Hz; 200 data files were used.

scale, it is found that the spectral density is proportional to
f α where α = −0.83 ± .070, so the noise process is similar
to flicker noise but the slope varies. We shall compare the
distributions of spectral density with simulations at the unique
slope −0.83. The probability function (69) is then determined
except for one overall constant, hα , which is the unknown
conversion between time residuals and spectral density (the
density was provided as rms voltage per root hertz). Fig. 3
shows plots of the theoretical number of occurrences, propor-
tional to (69), at two frequencies, together with a histogram
of the number of occurrences constructed from the data. The
values of spectral density were collected into bins of width
4.415 × 10−12 Volts2/

√
Hz for plotting as a histogram. The

probability function (69) can easily be used to find the mean,
median, and 25% and 75% confidence levels of the spectral
density distribution and hence to compared with the data.
Fig. 4 provides these theoretical plots, with no additional
adjustment of parameters. The corresponding values obtained
from the data are given at several frequencies. The simulated
probability distribution begins to disagree with the data at
frequencies lower than about 70 Hz; use of a value α = −0.80
improves the agreement significantly at low frequencies.

IX. SUMMARY AND CONCLUSION

A method for simulation of power-law noise based on
generation of white phase noise in the frequency domain, then
division of each frequency component by an appropriate power
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TABLE I

PRINCIPAL RESULTS FOR PROBABILITIES

of frequency, has been applied in this paper to simulation of
spectral density and phase noise. The main results are sum-
marized in Table I. The simulation method does not require
transformation to the time domain, and is simpler to apply
than applications previously discussed [3], [4] to Allan and
Hadamard variances. Probabilities for observation of values
of phase noise L( f ) and related spectral densities have been
derived and applied to estimate confidence intervals for various
forms of power-law noise. Theoretical predictions compare
well to flicker-like experimental noise data obtained from an
amplifier, showing good agreement between simulations and
experiment over a wide range of frequencies.
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