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A Historical Perspective on the Development
of the Allan Variances and Their

Strengths and Weaknesses
David W. Allan and Judah Levine, Member, IEEE

Abstract—Over the past 50 years, variances have been devel-
oped for characterizing the instabilities of precision clocks and
oscillators. These instabilities are often modeled as nonstationary
processes, and the variances have been shown to be well-behaved
and to be unbiased, efficient descriptors of these types of processes.
This paper presents a historical overview of the development of
these variances. The time-domain and frequency-domain formu-
lations are presented and their development is described. The
strengths and weaknesses of these characterization metrics are
discussed. These variances are also shown to be useful in other
applications, such as in telecommunication.

Index Terms—Allan variances (AVARs), atomic clocks, nonsta-
tionary processes, precision analysis, time series analysis.

I. INTRODUCTION

N ATURE gives us many nonstationary and chaotic
processes. If we can properly characterize these pro-

cesses, then we can use optimal procedures for estimating,
smoothing, and predicting them. During the 1960s through the
1980s, the Allan variance (AVAR), the modified Allan vari-
ance (MVAR), and the time variance (TVAR) were developed
to this end for the timing and the telecommunication communi-
ties. Since that time, refinements of these techniques have been
developed. The strengths and weaknesses of these variances
will be discussed in the following text. The applicability of
these variances has been recognized in other areas of metrology
as well. Knowing the strengths and weaknesses is important so
that they can be properly used.

Prior to the 1960s, before atomic clocks were commercially
available, quartz-crystal oscillators were used for timekeeping.
The largest contribution to the long-term-frequency instabil-
ity of these oscillators was frequency drift. It was generally
recognized that the stochastic contribution to the long-term
performance could be modeled by flicker-noise frequency mod-
ulation (FM), which is a nonstationary process, because it has
a power-spectral-density proportional to 1/f , where f is the
Fourier frequency. The integral of the power spectral density
for this type of process diverges logarithmically, so that the
data cannot be characterized by a well-defined classical vari-
ance. In real experiments, the upper and lower limits on the
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integral of the power spectral density are bounded by frequen-
cies of order 1/τ , the reciprocal of the averaging time between
measurements, and 1/∓, the reciprocal of the total elapsed time
∓ of the data set, respectively. The variance is thus a function
of the number of data points that are used in the computation,
since this number is on the order of ∓/τ .

In 1964, Barnes developed a generalized autocorrelation
function that was well behaved for flicker noise [1]. Barnes’
work was the basis for his Ph.D. thesis, and it also gave Allan
the critical information that he needed for his master’s thesis,
which was based on Barnes’ results and the work of Lighthill
[2]. Allan studied the dependence of the classical variance of
frequency-difference measurements as a function of various
parameters of the measurement process.

The frequency-difference of a device under test is measured
as the evolution of the time-difference between it and a sec-
ond, standard device over some time interval. The result is the
average frequency-difference over that averaging time inter-
val. In addition, the early version of the hardware that was
used to make these time-difference measurements could not
make measurements continuously, and required some “dead
time” between measurements. Allan studied the estimate of the
classical variance as a function of the averaging time τ the
number of samples that were included in the variance N, the
dead time between frequency averages T − τ , where T was the
time between the beginning of one measurement to the begin-
ning of the next one, and the dependence of the variance on the
measurement-system bandwidth fh.

Barnes and Allan developed a set of spectral density, power-
law noise models that covered the characterization of the
different kinds of instabilities that were observed in clock data.
The models, which proved to be very useful, included the
noise of the measurement systems, the frequency fluctuations
of the clocks, and any environmental influences. These results
were published as a Technical Report of the National Bureau
of Standards (which became NIST, the National Institute of
Standards and Technology in the 1980s), and in a Special Issue
of the PROCEEDINGS OF THE IEEE on “Frequency Stability”
[1], [3].

II. MODELING CLOCKS WITH POWER-LAW NOISE

PROCESSES

If the free-running frequency of a clock at some time is ν(t),
and its nominal frequency is νo, then the normalized dimension-
less frequency deviation at that time is y(t) = (ν(t)− νo)/νo.
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The time-deviation (TDEV) of a clock x(t) is the integral
of y(t). The frequency-domain spectral densities of the time
and frequency fluctuations are Sx(f) and Sy(f), respectively.
The spectral densities for many clocks and oscillators can be
represented as a power of the Fourier frequency, Sy(f) ∼ fα

and Sx(f) ∼ fβ , where the exponents are small integers, and
α = β+2, since the frequency is the evolution of the time-
difference over some averaging time. The statistical models of
clocks, their measurement systems, and their distribution sys-
tem can generally be modeled with integer values of alpha from
−2 to + 2. For most clocks and oscillators, the value of α in
the noise model becomes more negative as the averaging time is
increased. That is, the dependence of the power spectral density
on Fourier frequency diverges at low Fourier frequencies.

Fig. 1(a)–(e) displays examples of the visual appearance of
data that can be modeled by the different power-law spectra.
In each case, the data set is computed so that the two-sample
Allan deviation is nominally the same value for an averaging
time of 1 s—the time interval between individual samples. As
one can see in the figure, the appearances of these power-law
spectra are very different, so that it is often possible to estimate
the exponent of the power spectral density by a simple visual
examination of the data. This visual examination is often diffi-
cult in practice, because most data sets cannot be characterized
only by a single noise type.

III. TIME-DOMAIN REPRESENTATION

In his master’s thesis [4], Allan had studied the divergence
of the classical variance for the power-law noise processes
described above as a function of the number of data points
taken. The divergence depends upon both the number of data
points in the set as well as upon the kind of noise. In other
words, the classical variance was data-length-dependent for all
of the power-law noise models being used to characterize clocks
except for classical white-frequency noise. Hence, the classi-
cal variance was not useful in characterizing atomic clocks,
because more than just white-frequency noise models were
needed.

The two-sample variance, which is typically called the
AVAR, may be written as follows:

σ2
y (τ ) =

1

2

〈
(Δy)

2
〉
=

1

2τ 2

〈
(Δ2x)2

〉
(1)

where the brackets denote the average over the ensemble of
observations, and the “2” in the denominator normalizes it
to be equal to the classical variance in the case of classical
white-frequency noise. By using the results of Lighthill and
Barnes referenced earlier, Allan showed that this variance is
well behaved and convergent for all the interesting power-law
spectral density processes that are useful in modeling clocks
and measurement systems.

The bias function B1(N), which is the ratio of the classi-
cal N-sample variance to the AVAR as a function of N [5], is
defined as

B1 (N) = σ2 (N) /σ2
y (τ0) . (2)

It is a function of N in all cases except for classical white
noise. One can turn this dependence to an advantage and use it
to characterize the kind of noise by estimating the value of the
bias function for the data set being studied and comparing it to
the values expected for the different noise types.

The two-sample or AVAR is defined above without dead
time. In other words, the frequency measurements are sequen-
tially adjacent. For example, the ith frequency deviation taken
over an averaging time τ may be computed from the TDEVs
as yi = (xi − xi−1)/τ . This equation gives the average fre-
quency deviation over that interval, but it may not be the
optimum estimate of frequency. If the average is taken over
the whole data set, then all the intermediate-differences can-
cel, and one is left with the average frequency deviation over
the data set: yavg = (xN − x0)/Nτ . This is one of the bene-
fits of no-dead-time data. For white-frequency noise, σ2

y(τ) is
an optimum-variance estimator of the change of frequency over
any averaging time τ and is equal to the classical variance for
the minimum data-spacing τ0.

Barnes also showed that σ2
y(τ) is an unbiased estimator for

the level of the power-law noise process of interest in model-
ing atomic clocks and that it is Chi-squared distributed. The
value of τ in the software analysis can take on values for all
τ = n τo for any integer n = 1 to n = N/2. The confidence
of the estimate is best at τ = τo decreasing to τ = (N/2)τ0,
where there is only one degree-of-freedom for the confidence
of the estimate. The Chi-squared-distribution function has a
most probable value of zero for one degree-of-freedom. Even
though it is unbiased, the probability of small values is signif-
icant. Therefore, in a plot of σ2

y(τ ) as a function of τ , one
often observes too small values for σ2

y(τ ) as the value of τ
approaches half the data length, because the number of degrees-
of-freedom is too small for a good confidence on the estimate.
This problem was addressed many years later by David Howe
as we discuss below [14], [15].

For the noise types commonly found in time and frequency
applications, the simple power-law dependence of the spectral
density on the Fourier frequency results in a corresponding
power-law dependence of the two-sample AVAR on the aver-
aging time. That is, if Sy(f) ∼ fα, then σ2

y(τ) ∼ τμ. Fig. 2,
based on Lighthill’s work referenced above [2], shows the rela-
tionship between μ and α for the noise types commonly found
in clock and oscillators. The slope of a log-log plot of the AVAR
as a function of averaging time can be used to estimate both the
kind of noise and its magnitude in the time domain. The rela-
tionship between α and μ can also be used to estimate the power
spectral density of the noise for any averaging time.

From Fig. 2, we can see that there is an ambiguity problem
for the simple AVAR at μ = −2. The relationship between α
and μ is no longer unique at that point, and one cannot tell
the difference in the time domain between white and flicker
phase noise processes. This problem was a significant limitation
in clock characterization for the time and frequency commu-
nity for 16 years after the simple AVARs was developed. Even
though there is an ambiguity in the τ dependence in this region,
it was known that it could be resolved because the variance
also depended on the measurement bandwidth. Since it was
inconvenient to modulate the measurement-system bandwidth
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Fig. 1. (a)–(e) Appearance of typical time-difference data that can be modeled by the five common power-law spectra. Each plot shows 513 points computed with
the same value for the Allan deviation at an averaging time of 1 s—the interval between data points. The x- and y-axes are in units of seconds.

to distinguish between white and flicker phase noise types, this
approach never became useful. But, in 1981, a way was dis-
covered to effectively modulate the bandwidth as part of the
estimation process, and this was the breakthrough needed. [6].
This gave birth to MVAR, the modified Allan variance, and the

concept of varying the bandwidth by averaging is illustrated in
Fig. 3.

One can think of software bandwidth modulation in the
following way. There is always a finite measurement-system
bandwidth. Call it the hardware bandwidth fh. Let τh = 1/fh.
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Fig. 2. Relationship between the exponent of the power spectral density α and
μ, the exponent of the dependence of the two-sample AVAR on averaging time
for each of the common noise types. Note the elegant relationship between the
exponent of the dependence of the power spectral density on Fourier frequency
α and the exponent of the dependence of the AVAR on averaging time μ is
given by the simple equation α = −μ− 1.

Fig. 3. Software-bandwidth modulation technique used in the modified AVAR
to resolve the ambiguity problem at μ = −2 and allows us to characterize
all the power-law spectral density models from α = −3 to α = +2, which
includes the range of useful noise models for most clocks. Illustrated in this
figure is the case for 4-point averages, or n = 4. The averaging parameter n
takes on values from 1 to N/3, where N is the total number of data points in the
data set with a spacing of τo.

Then, every time a phase or time reading is added to the data,
it inherently has a τh sample-time window. If n of these sam-
ples are averaged, the sample-time window has been increased
by n, τs = nτh. Let τs = 1/fs. Now if we increase the num-
ber of samples averaged as τ is increased, then the software
bandwidth is decreased by the reciprocal of the number of sam-
ples averaged, or 1/n. Modulating the bandwidth in this way
removes the above ambiguity and maintains validity for our
simple Fourier transform equation over all the power-law noise
processes of interest: α = −μ− 1.

In the later part of the 1980s, the telecommunications indus-
try in the United States came to Allan and asked for help in

developing a metric for characterizing telecommunication net-
works. Allan and Dr. Marc Weiss worked on this problem, and
analyzed a lot of telecommunications data sent to them to find
the best metric. Out of this work they developed the time vari-
ance, TVAR. It is defined as follows: TVAR = τ 2 MVAR/3.
The “3” in the denominator normalizes it to be equal to the
classical variance in the case of white-noise phase modulation,
or WPM. One can show that for white-noise PM, TVAR is an
optimum estimator of change in the phase or time residuals in a
variance sense.

The three variances, AVAR, MVAR, and TVAR, became
international IEEE time-domain measurement standards in
1988 [7]. There are three general regions of applicability for
time and frequency systems:

1) AVAR for characterizing the performance of frequency
standards and clocks;

2) MVAR for characterizing the performance of time- and
frequency-distribution systems;

3) TVAR for characterizing the timing errors in telecommu-
nication networks.

Following the development of each of these three variances,
many other areas of applicability have arisen. The TDEV, which
is the square-root of TVAR, has no dead-time issues and has
become a standard metric in the international telecommunica-
tions industry. All three have application capability in many
other areas of metrology. If you conduct a Web search for
“AVAR,” you will find about 50 000 results.

IV. SUMMARY OF THE DEFINITIONS OF THE VARIANCES

The equations for computing AVAR, MVAR, and TVAR
from N measurements of the time deviations are, respectively,

σ2
y (τ) =

1

2τ2 (N − 2n)

N−2n∑
i=1

(xi+2n − 2xi+n + xi)
2

mod.σ2
y (τ) =

1

2τ2n2 (N − 3n+ 1)

N−3n+1∑
j=1

⎛
⎝n+j−1∑

i=j

(xi+2m − 2xi+n + xi)

⎞
⎠

2

σ2
x (τ) =

1

6n2 (N − 3n+ 1)

N−3n+1∑
j=1

⎛
⎝n+j−1∑

i=j

(xi+2m − 2xi+n + xi)

⎞
⎠

2

(3)

where xi are the measured time deviation data separated by
a time interval τo, and τ = nτo. For MVAR and TVAR, the
computation involves a double sum. Although a simple eval-
uation of these variances would require a computation time
that increased as N2, which would be a problem for large
data sets, one can employ some computation tricks, such as
simple drop–add averaging, to make the time linear in N.
The software references cited later include these computation
techniques [8].

The following equations show how the three time-domain
variances may be derived from frequency-domain information.
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TABLE I
COEFFICIENTS RELATING THE POWER SPECTRAL DENSITY OF THE

FACTIONAL-FREQUENCY FLUCTUATIONS SY (f) AND THE RESIDUAL

TIME FLUCTUATIONS Sx(f) TO THE AVAR AND THE TVAR,
RESPECTIVELY, FOR THE FIVE COMMON NOISE TYPES

A = 1.038 + 3ln(2πfhτ ).

One cannot do the reverse—derive the spectral densities from
time-domain analysis. It is often very useful to analyze the data
in both the frequency and time domains:

τ = nτ0

AVAR:

σ2
y (τ) =

∞
∫
0
2

[
sin4 (πfτ)

(πfτ)
2

]
Sy (f) df.

MOD AVAR:

Modσ2
y (τ) =

∞
∫
0
2

[
sin3 (πfτ)

(nπfτ) sin (πfτ0)

]2
Sy (f) df. (4)

TVAR:

σ2
x (τ) =

8

3n2

∞
∫
0

[
sin3 (πfτ)

sin (πfτ0)

]2
Sy (f) df.

Allan et al. [9] have computed the effective Fourier windows
using the transfer functions H(f)2 for each of these three vari-
ances for n = 1, 2, 4, 8, 16, 32, 64, 128, and 256. The transfer
function between the time-domain and the frequency-domain
for any of the two-sample variances is approximately equivalent
to observing the Fourier components over a nominally square
window in Fourier space if the tau values used are incremented
by 2n, where n = 0, 1, 2, 3,. . . up to that allowed by the data
length. Allan et al. shows that the transfer-function window is
different for each of the three different variances. From experi-
ence, one can often observe low-frequency Fourier components
in the time domain better than in the frequency domain. TVAR
is especially sensitive to low-frequency components. We have
used this advantageously on several occasions.

Table I shows the conversion relationships between the
AVAR and power spectral density for the five common noise
types.

V. ESTIMATION, SMOOTHING, AND PREDICTION

There is a simple and powerful statistical theorem that is
useful for estimation, smoothing, and prediction. It is that the
optimum estimate of the mean value of a stochastic process
with a white-noise spectrum is the simple mean. As exam-
ples, in the case of white-noise phase modulation, the optimum
estimate of the phase or the time is the simple mean of the inde-
pendent phase or time-residual readings added to a systematic
value, if necessary. In the case of white-noise frequency mod-
ulation, WFM, the optimum estimate of the frequency is the
simple mean of the independent frequency readings, which is
equivalent to the last time-reading minus the first time-reading
divided by the data length, if there is no dead time between the
frequency measurements. Thus, the best estimate of the average
frequency is given by yavg = (xN − x0)/Nτ .

Using the above theorem for optimum prediction, if the cur-
rent time is “t,” and one desires to predict ahead an interval
τ , then the optimum time prediction, for a for a clock having
WFM and an average offset frequency yavg given by the above
equation, is given by a simple linear extrapolation

x̂ (t+ τ) = x (t) + yavg (t) τ. (5)

The even-powered exponents are directly amenable to this
theorem, but the flicker-noise (odd exponents) are more com-
plicated. However, there is a simple prediction algorithm for
flicker frequency modulation using what is called the second-
difference predictor. It is very close to optimum and is simple.
A prediction of τ seconds in the future can be obtained by the
following equation:

x̂ (t+ τ) = 2x (t)− x (t− τ) +
(
Δ2x

)
avg

(6)

where t is the current time and (Δ2x)avg is the average value of
the second-difference of the TDEVs—spaced by τ—over the
past available data. The first two terms on the right side of (6)
are simply the prediction based on the assumption of a constant
frequency offset, and the value of (Δ2x)avg will be nonzero if
frequency drift is present. If there is no drift, it will tend to zero
for most of the common noise processes. In general, the time
predictability is given approximately by τσy(τ ).

VI. SYSTEMATICS

A good model for the time deviations in a clock is x(t) =
xo + yot+ 1/2 Dt2 + ε(t), where xo and yo are, respectively,
the synchronization error and syntonization error at t = 0, D
is the frequency drift, and ε(t) represents the remaining ran-
dom errors in addition to the first three systematic terms. It is
important to subtract the systematics from the data, so that the
random effects can be viewed visually and then analyzed with
better insights.

In addition, if frequency drift D is present in a clock, then
it adds a bias to AVAR, MVAR, and TVAR. For AVAR and
MVAR, it increases the variance estimates by Dτ/

√
2. For

TVAR, the increase is Dτ2/
√
6. If there is frequency drift, the

values of σy(τ ) in that region where the drift is affecting the
plot will lie very close to the τ+1 line. If there is random noise
present, then the values will not fit tightly to this line.
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Fig. 4. Sigma-tau plot of the frequency instabilities between a precision free-
running, quartz-crystal oscillator, and a commercial cesium-beam atomic clock.
The shaded region shows the contribution of the measurment noise to the
variance. The points are the measured values, and the fitted lines display the
estimated noise type as discussed in the text.

The Hadamard variance is an estimate based on the second-
difference of the fractional frequencies or, equivalently, the
third-difference of the time-difference data. Therefore, it is not
sensitive to a constant frequency drift [10].

If there is a frequency modulation with frequency fm present
in the data, then there is a systematic bias to the calcuated value
for ADEV given by

σy (τ) =
xpp

τ
sin2 (πfmτ) (7)

where xpp is the peak-to-peak amplitude of the modulation.
Both MVAR and TVAR are affected as well. The effect of
the modulation is exactly cancelled by aliasing for averag-
ing times of τ = n/fm, where n is any positive integer.
Recognizing this null effect allows these three variances to be
used as low-frequency spectrum analysis techniques for bright
Fourier-frequency lines in the data. It is our experience that the
low-frequency spectral lines can often be observed using this
null approach in the time domain better than can be observed in
the frequency domain.

VII. EXAMPLE

In Fig. 4, we show a sigma-tau plot of the frequency instabil-
ities between a precision free-running, quartz-crystal oscillator,
and a commercial cesium-beam atomic clock. For sample times
shorter than 1 s, we see a τ−1 behavior due to the measure-
ment noise. This plot was made before MDEV, the square-root
of MVAR, was developed, so the noise type is ambiguous. The
Allan deviation, ADEV, is the square root of AVAR. Whenever
a τ−1 behavior occurs in an ADEV plot, one should then ana-
lyze the data using MDEV to resolve the ambiguity regarding
the kind of noise modulation present in the data.

The rise in the value of σy(τ ) as the sample or averag-
ing time approaches 10 s is due to the attack time of the

cesium-beam locking its quartz-crystal-slave-oscillator to the
cesium resonance. Over the next decade, one observes a τ−1/2

behavior or μ = −1, which means α = 0 from our simple
“super-fast-Fourier” transform relationship. This is classical
white-frequency noise being measured for this cesium-beam
atomic clock. For the longest averaging times, one observes
a τ 0 behavior, which then corresponds to α = −1, and this
is due to the flicker-noise FM of the precision, quartz-crystal
oscillator.

In 1965, Bob Vessot brought his hydrogen maser from
Boston, MA, USA, Harry Peters brought his hydrogen maser
from NASA Goddard, Beltsville, MD, USA, and Len Cutler
brought his Hewlett Packard commercial-cesium-beam atomic
clock. These devices were compared to the primary frequency
standard at NBS/Boulder. This grand-clock-comparison effort
resulted in an interesting 12-author paper [11]. This was one
of the first papers illustrating the usefulness of ADEV for clock
characterization. The AT1 time-scale algorithm [12], which was
also developed by Allan at that time, was a major application of
the AVAR. Although it has been modified several times since
then, the basic algorithm is still used to generate the official
time scales at NIST. The Echelle Atomique Libre (EAL) time
scale used the BIPM, the International Bureau of Weights and
Measures, as the first step in the computation of international
atomic time (TAI) and coordinated universal time (UTC) [13]
was based on similar principles. In both cases, the weight of a
clock in the ensemble average is determined by its prediction
error over some previous averaging time—a quantity directly
related to the AVAR.

VIII. CONCLUSION

With 50 years of experience in the time and frequency
community, the AVAR and its cousins (MVAR and TVAR)
have matured significantly. Over those years, one observes
the use of these variances increasing in several other areas of
metrology—especially in navigation and telecommunications.

A number of important milestones stand out in the improve-
ments and changes over the years. First, for 16 years, the time
and frequency community lived with the ambiguity problem
with the AVAR when ADEV, its square-root, varies as τ−1,
which means that it is not possible to distinguish between
white-noise phase modulation and flicker-noise phase modula-
tion. That ambiguity problem was resolved in 1981 with the
development of the modified AVAR, which allowed us to mod-
ulate the bandwidth in the software. We see this ambiguity
problem persisting, unnecessarily, in other areas of metrology.
In the case of quantization errors, MDEV allows to average
the noise down as τ−3/2, which then allows the observation of
other noise types and instability problems more quickly. MDEV
is also the optimum averaging technique for such errors. In
addition, if one desires to estimate the average frequency with
white-noise residuals present, then a linear regression on the
slope improves the knowledge of the slope as N−3/2, where N
is the number of data points in the regression analysis and is
the optimum estimate of the slope for exactly the same reason
that MDEV improves as τ−3/2. Second, after the quantization
errors are averaged down, ADEV works well and is an efficient
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metric for characterizing the intermediate and long-term insta-
bilities. But because the AVAR is Chi-squared distributed, when
there are too few degrees-of-freedom for the longest averag-
ing times available from the data [5], then the ADEV values
are often too small. This problem has, in large measure, been
solved by David A. Howe and his group at NIST, Boulder, CO,
USA, with “Theo BR” used in calculating ADEV for extended
averaging times [14], [15]. Their work, in a clever way, adds
the needed degrees-of-freedom and results in a more efficient
use of the data. Third, systematic errors are often hard to deal
with. It is generally useful to subtract the systematics from the
data, as much as is reasonable, before analyzing the residuals
for their noise characteristics. (Diurnal frequency fluctuations,
usually driven by the variation in the ambient temperature, are
a common systematic that is often removed before a statisti-
cal analysis is performed.) This practice is usually done after
the fact, but can be done in real time with proper filter func-
tions and prediction algorithms that will estimate and remove
the systematics. Since optimum estimation procedures depend
upon the kind of noise, this problem can be solved recursively
or from some prior knowledge of the noise characteristics of
a given system. The principle of parsimony dictates that we
use the simplest and most efficient metric in our noise analysis.
ADEV satisfies that requirement in many areas of metrology,
and this seems to be the main reason for it becoming as widely
used as it is.

Finally, we should mention the development of the dynamic
AVAR [16], which is useful when the time-differences are only
approximately stationary. This method is based on a compu-
tation of the variance of consecutive blocks of data and is
particularly useful in detecting time steps in the data or changes
in the amplitude of the noise.
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